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We give closed-form expressions both for the residues P&(s) of the Regge poles at l =0.(s)
-p and for the residues P&(s) of the fixed poles atl =-p —1, p =0, 1, 2, ... . We note thatP&(s)
should vanish for p odd integral if the Regge trajectories are spaced by two units of angular
momentum.

The structure of the Virasoro model' in the com-
plex angular momentum (l) plane has been analyzed
by Argyres and Lam. 2 They have followed a meth-
od used by Fivel and Mitter' in their /-plane analy-
sis for the Veneziano amplitude. The method ex-
hibits clearly the analytic structure of the partial
wave A(s, l), but does not allow one to calculate
the residues P~(s} of the Regge poles easily. In
this short note, we give an expression for the res-
idue P~(s) of fixed poles as well as moving poles.
Qur approach is similar to that used by Drago and
Matsuda, 4 who have also performed the l-plane
analysis of the Veneziano amplitude. In Ref. 2,
the residue )6~(s) is not given for arbitrary p.

The Virasoro model' shares many features with
that of Veneziano, but differs in some other re-
spects. In particular, it is completely symmetric
in s, t, and u, and its Regge trajectories are
spaced by two units of angular momentum apart.
Thus in its partial-wave projection we should find
an infinite family of Regge poles with parallel tra-
jectories spaced by two units. The result given in
Eq. (10) of Ref. 2, which states that the partial
wave A'(s, l) has moving poles in l at

Rel=Rea(s) -k, k=0, 1, 2, . . .

y(2p —l)v" 2 '
G=

aq'I'(2p, +y)r(l+ —,') (4)

y(g) ~-(1-b/2)(x/aq ) y($ y 2p 2p ++ ~ p x/aq
)

x(2x) ' 'M, „„,(2x).

Here F(a, b; c; z) is the hypergeometric function
and M, „„,(2x) is the Whittaker function.
M, „„,(2x)/I'(l+ —,') is analytic in l. Using the
linear transformation formula, '

F(a, b; c; z) = (1 z)' ' F(c——a, c —b; c; z),

in Eq. (5), we then have

1/2 -l -1
Q, (z)=

(
„dxx'e **(2x) ' 'M„„„,( x),I' l+2) 0

to give

A(s, l)=G t dxx'e *F(x),
0

where

A (e, f)=
2aq'I'(2p, —1)I'(1 -y)

X
I'(n+ I -y}1'(n+2)), ) n+ p

n! I'(n+2@, +y) ' aq'

(2)

The odd signature vanishes identically. The se-
ries is summed by using the integral representa-
tion of Q, (z), '

is therefore not quite correct. In fact, we show
below that P,(s) =0, and it is expected that the
poles at odd-integer values of k will be spurious.

We follow the same notation as Ref. 2 (note that
this reference omits an over-all negative constant).
Consider the g -g scattering in the Virasoro mod-
el. The partial-wave projection is given by'

A(s, l)=g dxx"'" 'e 'f(x),
0

where

g=y(2)), —l)7)'~'2 ' '(aq2) '&/I'(2p+y)

and

2J-1
f (aq&y) —e ~l &/2)v

xF(2)), + 2y —1,y; 2)), +y; e ~)

x(aq'y/2) ' '"f„„,(aq'y).

With the aid of Taylor's theorem, in the form

f (x) =Q, x'+R„„(x),
f!a)(0)

@=0

(6)

(7}

(8)
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where R„„(x}is the remainder term, we obtain

(kl(())
A(s, l)=g g F(l+2y+k)

4=0

~ d**""-'e 'R „(*)).
0

Hence the residue at the pole l= o.(s) —p is given by

At l= a(s), we easily get

y(sq') ~ &F(-.'+ -'. a(s)&
4I'(2p, —1)I'(—', + o,(s}) 'Po S}=

which agrees with Eq. (11) of Ref. 2.
We calculate, from Eq. (10),

}3,( )=o.

P~(s) =g —, —[f(x)e *]
%=0

(10)
At l= a(s) —2, the next residue is

2 -2

p (s)= —g,+, (E[2y+2y —l, y; 2g+y; 1}{p+[g+ (y —1)] (2y —1))
F(2p F(1 —y)F -2y+ —' F -2y ——'

+F(2p+2y, y, +1; 2p, +y+1; 1}y(2y, +2y —1) 2y+2p)
2p. +y

+F(2p, +2y+l, y+2;2p, +y+2;1) . (12)y(y+ 1)(2p, +2y —1) 2y+2y)
(2p+y)(2p, +y+1)

+ dxx'e "R„,,(x)
0

(13)

where R„„(x)is the remainder term of the Taylor
expansion for E(x), defined by Eq. (5). The resi-
dues at l= -p —1, p=p, 1, 2, . . . , are given by

1 d
P, (s) =G —, „— [F(x)e *]

The positivity condition for the residue requires

P, ( )s-

since an over-all minus sign has been dropped.
We give the result for the residue of the first re-
currence on the trajectory, i.e. , y = -1. We then
have

-P, (s) = -[2(1 —p) —& a~q4]/4F(2p —1) -O,

evaluated for 4aq'=2 —b —4am', where m is the
g' mass.

We now derive the expression for the residues
of the fixed poles by the same method as above.
From Eqs. (3), (4), and (5), we get

N g(P)(p )A(s, l) =G g „, I'(i+k+1}
—ft =0

At /=-1, we have

p (,)
y(2u —1)F(2y —1)

2aq'F(y)F(2p+2y —1) '

which agrees with Eq. (13) of Ref. 2. P, (s) vanishes
identically. It appears likely that P~(s) vanishes
for each odd-integral value of p.

We note that the analytic structure of the partial-
wave projection of the Virasoro formula resem-
bles closely that of its Lorentz amplitude' and al-
so its Khuri amplitude. ' It is seen that only when
s =0 are the Toiler poles spaced by two units; the
same is true for the spacing of the Khuri poles
when q'=0. Since the relation between Regge
poles and Toiler poles, and that between Regge
poles and Khuri poles have been established, ' "
the similarity is not unexpected. Mandelstam"
has pointed out one disadvantage of the Virasoro
amplitude, which is that the Regge residues have
poles at the negative wrong-signature integers,
which is not allowed by unitarity. That this is so
can be seen from the expressions (11) and (12).
However, in dual-resonance models, unitarity is
completely neglected.

~M. A. Virasoro, Phys. Rev. 177, 2309 (1969).
2E. N. Argyres and C. S. Lam, Phys. Rev. 186, 1532

(1969).
3D. I. Fivel and P. K. Mitter, Phys. Rev. 183, 1240

(1969).
4F. Drago and S. Matsuda, Phys. Rev. 181, 2095 (1969).
5Bateman Manuscript Project, Higher Transcendental

Functions, edited by A. Erd6lyi (McGraw-Hill, New York,
1953), Vol. 1.

See Ref. 5, p. 105.
YW. L. Kennedy and C. H. Oh, University of Otago Re-

port No. OTAGQ-09, 1971 (unpublished).
W. L. Kennedy and C. H. Oh, Lett. Nuovo Cimento 1,

1091 (1971).
9L. Durand, P. M. Fishbane, and L. M. Simmons, Phys.

Rev. Letters 21, 1654 (1968).
N. N. Khuri, Phys. Rev. 132, 914 (1963).

~~S
~ Mandelstam, Phys. Rev. Letters 21, 1724 (1968).


