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The threshold behavior of the trajectory function in gy3 field theory in the ladder approxi-
mation is reconsidered. A brief pinch analysis indicates how the elastic ard inelastic thresh-
olds arise. Working directly in the angular momentum plane, the "accumulation" of Regge
poles near the "promoted" value l =-y when s 4m is demonstrated in a simple manner,
starting from the homogeneous Bethe-Salpeter equation.

I. INTRODUCTION

The threshold behavior of Regge trajectories in
potential scattering (e.g. , off a Yukawa potential)
has been studied in detail. ' It is well known that
as k' approaches the threshold value 0, an infinite
number of Regge poles of the scattering amplitude
approach the point -& in the plane of the complex
angular momentum /. A similar result has been
obtained long ago' on the basis of general argu-
ments (elastic unitarity) for the case of relativis-
tic scattering. Further work along these li:nes has
been carried out recently' in connection with the
unitarization of Regge parameters. In the well-
studied relativistic model of scalar-scalar scat-
tering via the exchange of another scalar particle
in the ladder approximation, this result has been
confirmed by Polkinghorne' using the Mellin trans-
form of the scattering amplitude. As part of their
detailed program on the high-energy behavior of

field-theoretic models, Cheng and Wu' have worked
out carefully the asymptotic behavior (t- ~) at,
near, and away from threshold (s =4rrP) of the box
diagram and the three-rung (sixth-order) ladder
diagram in this (gy') theory They h. ave also ob-
tained some results on the behavior of higher-or-
der ladder diagrams, and have shown the corre-
spondence between this model near the threshold
and potential scattering (which they have also
studied separately' in this context). Such work on
this "accumulation" and the related "promotion"
phenomenon is of considerable interest both exper-
imentally and theoretically. '

The treatments of the relativistic case referred
to above"' are perturbation-theoretic in nature,
and are carried out in terms of the Mellin-trans-
formed amplitudes. [The advantages of the use of
Mellin transforms in the study of the asymptotic
behavior of certain types of Feynman diagrams
have been adequately stated in the literature (e.g. ,
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Ref. 8).] Since the usual perturbation series (for,
say, the trajectory function) diverges term by
term at the threshold (s =4m'), one has to go back
and take the threshold limit carefully before find-
ing the asymptotic (t- ~) behavior. To begin an-
swering the question of whether the sum of the as-
ymptotic expressions for the individual diagrams
is the asymptotic behavior of the sum of the in-
dividual amplitudes, of course, a complete sum-
mation of terms of all orders in t ' has to be done. '
Near the threshold, this problem has not been
solved with "full rigor" owing to the formidable
difficulties encountered in the higher-order dia-
grams, as emphasized in Ref. 5.

An "alternative" method that has also been used
extensively in the field is the study of the (analyt-
ically continued} partial-wave Bethe-Salpeter equa-
tion. Indeed, the original paper' on Regge behav-
ior in field theory is based on this approach. A

method of (stripwise) analytic continuation to the
left half plane (Ref & --, ) of the integral equation
has also been given, "and information on "second-
ary" Regge poles can be obtained"'" using certain
operator identities and theorems' on the resolvent
of an operator that is meromorphic in a parameter
(l, in this case}. At the point s=0, the O(4} sym-
metry of the integral equation enables one to de-
duce the existence of daughter sequences. " The
ladder model referred to above can be explicitly
studied in this context and results obtained'~" on
the secondary-pole spectrum. "

It would thus appear to be natural and desirable
to reconsider also the threshold behavior of the
trajectories in gy' theory, in the ladder approxi-
mation, directly in the complex l plane. In Sec. II,

we give a brief pinch analysis to indicate how the
various threshold singularities arise in the trajec-
tory function. This analysis, already hinted at in
Ref. 9, is merely carried out explicitly here. We

then point out how the fact" that certain thresholds
are absent in some of the trajectory functions can
be derived quite simply in our approach; some
statements are then made regarding the unequal-
mass situation. In Sec. III, we begin directly with

the eigenvalue equation concerned, the homoge-
neous (partial-wave) Bethe-Salpeter equation. It
turns out that the "accumulation" phenomenon can
be analyzed in a compact and straightforward man-
ner in terms of this eigenvalue equation. After
studying how the singularity of the kernel at s =4m'
arises, we write the kernel as the sum of a sep-
arable (but "singular "}part and a nondegenerate
(but "regular" ) part (as is done, for instance, in
Ref. 10 in a different context} and obtain an eigen-
value equation for the singularities of interest in
the / plane. From this we easily find the position
of the leading Regge pole when s =4m', to lowest
order in the coupling constant"; we also get an
implicit equation for the Regge poles that "accu-
mulate" near l = -& as s- 4m'. This equation is
identical in form to that obtained in potential scat-
tering' or from elastic unitarity. " The similar-
ity with the potential-scattering result is of course
well known. ' ' We make a few remarks on the de-
tailed behavior of the poles for s near 4m', and
conclude with some comments on the situation
when the exchanged mass is zero, and on the ques-
tion of the "accumulation" of poles when s ap-
proaches one of the inelastic thresholds.

II. THRESHOLDS OF THE TRAJECTORY FUNCTION

Let us first introduce some notation. A typical ladder diagram is shown in Fig. 1. The mass of the scat-
tering particles is m, that of the exchanged particle is M. The reduced, on-shell partial-wave amplitude
corresponding to the n-rung ladder diagram may be written as'"

00 00 00

x dx, dy, dx„, dX„)P(x„„y„,}Q,(z„» „))Q,(z„) ()),
0 ~ OQ 0 ~ 00

where A. is related to the coupling constant g of the m-M-m vertex by X=g'/8M'v'. The variables x and y
refer to the relative momentum and energy, scaled out with respect to M. The product of the two propaga-
tors corresponding to the internal lines on the sides of the ladder is denoted by P(x, y) and is given by

p(x, y) =([x'+y'+(4m' —s)/4M'] +sy'/M')

Finally, the cosines zpl zg2 etc. , are given by

I+x»'+x, '+(X» —y, )' eh~

2xgxj 2xpxj

with (for equal masses m, m on the sides of the ladder) x,'= (s —4m')/4M, y0= 0.
The representation (1) for F„(l, s, A.) is valid, as is well known, » in the region Rel& --,'. The full partial-
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wave amplitude F(f, s, A) has a Regge pole in this region; its position is given by the solution of the implicit

equation' "
i+1 —AL(l, s, A.) =0,

where

y„(l, ) =. d*, dy, p( „y,) d*, dy, p(*„y,)n, (*„) f d „„f dy p„l„*y„„,)2„„(*„,„„),
p oo p oo

(4)

L,(s) = dx dyp(x, y}.
p OQ

Here R, (z„}stands for the "regular" part of the "kernel, " i.e., R, (z) =Q, (z) —(l+1) '. Equation (4) may be

solved iteratively for l, to give a solution of the form

f = n (s, X) = -1+XQ X"A„(s),
n=p

with

A =Lp p Ay= L L y+Ly p etc. ,

where

Ln, r =

The coefficients in (5) involve integrals of the type

tdn OO oo oo oo OO oo

f (fy s) (
dfx1 dyl P(x1 yl) dx2 (fy2 P(x2 y2)@)(z12} dxn+1 yn+1 P(xn+1y yn+1)Q) (zn, n+1)

p p OQ

For given values of s and x2, the poles of P(x2, y2)
in the y, plane are at y, =*y,' and + y, , where

2y +2iv s/M+2i(x2'+ m'/M2)' '.
%e have taken s to be on the positive real axis, be-
low 4m'; 1)s then stands for ~s~'". As s approach-
es 4m', the poles at y„and -y, move towards the
real y, axis (the contour of integration in this vari-
able) from opposite sides. They pinch the contour
at y, =0 when x2 =0 (end point in x,) and s = 4m'.
Each L„(l, s) is singular at s =4m', Q o A"L„(l,s).
diverges, and the usual perturbation theory in

fA~ m

FIG. l. A typical Feynxnan diagram in the set consid-
ered; m and M are the masses of the scattering and
exchanged particles, respectively. The dashed line in-
dicates a many-particle intermediate state in the s chan-
nel.

powers of A. breaks down at this point.
Let us now see how the inelastic thresholds at

s =(2m+ nM}2 could arise. We continue past
s = 4m by going around this point from above. The
v, contour must now be distorted, since the pole
.t -y„- crosses the real axis from below and that

at +y,- crosses it from above, as we continue in s.
Once the contour runs over complex values of y„
there is the possibility that it may encounter the
images of the singularities of Q, (z») at z» =+ 1.
Now the threshold at s = (2m+ 21 M)2 in the scatter
ing amplitude arises from an intermediate state in
the s channel in which two lines on opposite sides
of the ladder, as well as the n rungs of the ladder
between these two lines, are put on their mass
shells (see Fig. 1). This singularity must there-
fore be reflected in f„(f, s) as follows: (i) The two
"propagator" factors P(x„y,) and P(x„„,y„„)be-
come singular, i.e., y, =y; and y„„=-y„-„(or
y, =-y, and y„„=y„„).(ii) There occur end-point
singularities in all the x~ integrals, i.e., x~ =0,
0 = 1, 2, . . . , n+ l. (iii) z„„„=+1 pinches the y„„
contour with the pole at -y„-„; the resulting singu-
larity pinches the y„contour with z„,„=+1; and so
on, all the cosines z»„being equal to +1. (i), (ii),
and (iii) give 2, n+1, and 22 conditions, respective-
ly, a total of 2n+3 constraints on the 2n+2 inte-
gration variables x, , y, in I„(f,s}. The result of
eliminating all the variables will be a consistency
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condition on s, which will give the position of the
singularity of I„(l,s). Using (i) and (ii) above, (iii)
becomes

1+(y3„—y3)'=0, 1 &k &n

where

y, = -y„„=i(2m —v s )/2M.

(9)

The only consistent sets of solution of (9) are
y~+, = y~ + i and yjj,,+,

——y~ —i, giving y„+, = y, + ni .
Note that a solution of the type y, , = y„, is not
allowed since the y, contour is then no longer
pinched. Thus the singularities in s occur at s
=(2m+nM)3 and s =(2m —nM)', corresponding to
the threshold and pseudothreshold, respectively.
Proving that the pinches do occur as stated and
that s = (2m- nM)3 is not a singularity on the phys-
ical sheet involves a more detailed analysis of the
integral I„(l, s), which we do not give here

Before concluding this section, we may point out
how some of the trajectories of the model may not
have certain thresholds. In particular, the first
daughter of the leading trajectory isolated in (4)
does not have the two-particle (elastic) threshold
at s =4m'. This was first pointed out by Swift, "
who also gave a Feynman-diagrammatic illustra-
tion of the reason for this peculiarity. We may
show this result to be true very simply as follows:
To isolate the particular Regge pole under con-
sideration, the kernel Q, (z») of the Bethe-Salpeter
equation concerned may be broken up into parts
Q,"(z») and Q, (z») that are, respectively, odd and
even in y, (and thus simultaneously in y, )." The
odd part may be analytically continued to the left
of Rel=-&, into the region Rel&-2, simply by
converting the x~ integrals to contour integrals, "

each contour being a "hairpin" contour enclosing
the positive real axis. This avoids the divergence
at Rel=--3' arising from the behavior of Q, (z»)
near x, =0. (Such a simple method of continuation
does not work for the even part of the kernel. )
Once this is done, we may isolate the Regge pole
of the full partial-wave amplitude that is generated
by the pole of the Born term at l = -2, since the
residue -y„y; /x, x, of Q,"(z») at l= -2 is separable
(of finite rank). However, since the kernel is an
odd function of y„and is proportional to y, near
y, =0, the singularity of P(x„y,) as s- 4m' and
x„-0 is canceled, and there is no pinch of the y,
contour. The corresponding trajectory function
does not have a threshold at s = 4m'.

This conclusion is not valid when we consider
unequal-mass scattering. The masses on the sides
of the ladders are then m, and m, with my + m2 Z
andm, 3-m, 3=6 (we may take m, & m, ). The prop-
agator factor P(x, y) is no longer given by (2). It
becomes

2Z —s' s
'M' ~ a sr~)

(1o)

which is not an even or odd function of y; the sep-
aration of Q, into Q", and Q, no longer decouples
the partial-wave Bethe-Salpeter equation into two
parts. The three trajectories" "that approach
l = -2 in the zero-coupling limit have to be isolated
together in this case, after an involved process of
analytic continuation. In the weak-coupling limit,
we get a cubic equation (first derived by Swift" )
for the positions of these poles. In our notation we
find"

(l+2)3 —X(1+2)3(c»—2c»)+ A3(l+2)(c»3 —C»c» —2c»c»+2c»c»)
x3/o 2 2 2+ (2C»C»C33 CJJC33 C33C» +Cffc33C33 —C» C33) = 0 t

where c» stands for the "inner product"

dx dy(e '"'/4 cossl)p(x, y)y3(x, y)y;(x, y) .
C

C is a hairpin contour enclosing the positive real
axis in the clockwise sense. The "vectors" y,
(k = 1, 2, 3) are given by

+3=i%2 yx

All the inner products in (11) stand for their values
at l=-2. In some cases the integrals have first to

be evaluated and the results explicitly continued
analytically to l= -2. In any case, we see that two
of the poles of the factor p(x, y) pinch the y contour
at y =n. /2Mi Ws when x = 0 and s = (m, + m )3, i.e.,
at y=-l(m, —m3)/2M. (The y contour has already
been distorted away from the real axis to avoid a
pole of p as s crosses 4m, 3.) Thus the coefficients
in the cubic equation become singular at the two-
particle threshold s=(m, +m, )'. We can show that
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at least two of the roots of the equation must have

the two-particle threshold, even if m, = m„and that
the third root must also have a branch point at
s=(m, +m, ) excePt in the

casern,

=m, when its
discontinuity across the associated cut vanishes
identically. This root then decouples from the oth-
er two and becomes, as is well known, "

I+ 2 = sXM2/2m2 =g2/162'm2,

which is independent of s. This is the daughter of
the leading pole of the model. Its position of course
becomes s-dependent in the higher orders in g'.

III. "ACCUMULATION" NEAR / = —g

Having seen that the usual perturbation series in
powers of g' is not valid as s-4m', let us turn to
the homogeneous Bethe-Salpeter equation itself.
This reads, in our notation,

g(x„y,) =A. dx, t dy2P(x2, y2)
0 w 222

xQ (z,.) 4(x., y.). (»)
The kernel is square-integrable in Rel & --, (apart
from the simple pole at I = -1), and the vanishing
of its Fredholm denominator D(l, s, A) gives the
positions of the Regge poles in this region. ' For
X sufficiently small and s away from the threshold
at 4m', there is only one Regge pole in this region.
near I=-1. As s- 4m, the right-hand side in (12)
approaches a singularity. By studying the way in
which this singularity arises, we shall be able to
write the kernel as the sum of a separable (but

Q, (z)=c, (2z) ' '+(z '),
where c, =B(—,', I+ 1) and E(z ') stands for

+,(-,'(I + 1), —,'(I + 2); —,'(2 1 + 2); 1/z'),

(12) becomes

(14)

oo OO l+y

g(x„y,) = Ac, dx, dy, p(x„y2)
0 - ~12

~ &(z ')e(x.y.) (»)
Distorting the y, contour to pick up the contribution
from the pole of p(x2, y2) at y, =y, , the right-hand
side of Eq. (15) becomes the sum of two terms: the
pole contribution, plus an integral over the distort-
ed contour. " It is the former that must become
singular at s =4m'. This term is

"singular" ) part and a nonseparable (but "regular" )

part, and then obtain an approximate equation for
the eigenvalues of (12) near s =4m'. This will be
an equation of the form

l=O((lnv)'}+O((inv) ')+

where v= (4m' —s)/M', and the coefficients of the
powers of (lnv) ' on the right-hand side involve k,
although the term O((lnv)') will turn out to be a
constant, -&. We shall in fact obtain an infinite
number of Regge poles that approach this point in
the / plane as v- 0. In addition, there will be a
pole (the leading pole} to the right of the line
Rel=-&,' we shall give the position of this pole to
first order in A, when s=4nP.

Using the identity"

(x1x2) [012 ( 12 )0( 21 y2)](22=22 )"'
Ws J, "

(x '+ m'/M')"'[2(x, '+ nP/M'}'" —(~s/M)]"' (16}

When s = 4m', the integrand in (16}behaves like
x," near the origin. The integral therefore di-
verges for Rel & -& because of the lower limit of
integration. We may expect the function defined by
the integral (in the region where it converges) to
be singular at I= —2, when s =4m . This singular-
ity comes from the behavior of the integrand in (16)
in the region near y, = 0, x, = 0. When y, =0, x, = 0,
the quantity 1I»

' 'E(z» '} reduces to (1+x,'
+y,2) ' '. In a symmetric form, we could write
instead of this the expression [(1+x,'+ y, ')(1+x,'
+y,')] ' ', which also reduces to the same thing.
This latter expression has the advantage that the
large x„y, behavior of the original expression is
not altered (thus preventing the introduction of
spurious divergences at the upper limits of inte-
gration}. This last expression is thus a logical

candidate for the separab1e part of the kerne1.
Let us write (15) symbolically as

(17}

where

f(x, y) =(c,)'"x"'(1+x'+y') ' '. (18)

Then the following formal manipulations may be
carried out: Eq. (17) becomes

where K, is an integral operator with the kernel

EI(x1 y11 x2$ y2) c1(x1x2) /12
' +(z» '),

and the variables are in the region 0 ~ x& ~,
-~ &y&~. The measure of integration is p(x, y).
We define the operator II, by
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lg&=&&f Ik& (I-~i) 'If),
which gives the eigenvalue condition

1 = A.&f I(1 —Rag ) '
If) .

Keeping X within the circle of convergence of the
Neumann series for the resolvent (1 —Xff, ) ', we
may write

aa a aiUaaV
TVVV R Y7I

2- plane

ltL4ka4XLaNNXNRK4XRa a a aA444
v v w v v vv v v v v v v v r v v Yww v v v v

I= ~&f1 f&+ ~Z ~" &f1(%)"If) (2o)

A typical term of the infinite sum on the right-hand
side in Eq. (20) is not singular at I= --,' when
s =4m', because H, (x„y„x„y,}vanishes when

x„y, =0 or xg yy 0 or both. We have in fact sub-
tracted out the singular part in defining H, . 0, is
square-integrable in the neighborhood of l = —s
even if s=4rrP, and the second term on the right-
hand side in (20) is regular in the neighborhood of
s=4m' and l=-&, for A. sufficiently small. " We
may expand it (near s =4nP) in the form

Z ~" &f l(%)"If) =c&Z h. v" (21)

The first term on the right-hand side in Eq. (20}
is

«21+2(I +«2+y2) 2t 2

dx dy [xs + y' + (4m —s)/4M'] + sy /M

(22)

The integral in (22) is divergent for Rel & --, when
s = 4m'. Imposing the condition (20) (keeping X

small) will then force I to approach a particular
value (--,) as s-4m'. To see how this comes
about, let us again isolate the contribution to (22)
from the pole of the integrand at y=y . This will
pinch the contour in y with the pole at y = -y when
x=0, s =4m'. We write the pole contribution as
X&flf&s. The rest of X&flf& will be regular at I=--,'
even for s =4m'. "

With a change of variables, we find

M
&f If&s =vc1

FIG. 2. The distorted contour of integration for the in-
tegral in Eq. (23). C& encircles the pole of the integrand
at z = —(2m -v s) /M. The branch cut of z'+ ~ runs along
the positive real axis.

For s&4nP, Eq. (23) converges in the region
Rel) --,'. When s = 4m', it converges in the region
Ref) --,." The form (23) makes the mechanism
clear. Let us write (23) as a contour integral, the
contour being the familiar hairpin contour around
the branch cut of z"'" from 0 to ~. This contour
may then be distorted to' the contour of Fig. 2. The
integral over C, is not singular at s =4m~. Its
value exactly at s = 4m' can in fact be found by put-
ting s = 4m in the integrand and reverting to a line
integral along the positive real axis. We find that,
in the neighborhood of v =0, the integral over C,
may be written as

M, sF, -l--,', I+-,'; l+-,';1—,[1+O(v)].4m I+-, 4m'

(24)

The integral over C, becomes singular at s =4m',
for then the contour is pinched between the pole it
encircles and the branch point at z = 0. The inte-
gral may be evaluated trivially to give

-(vc, M/4m)r(l+-)I'(-l+-, ')v""'[1+O(v)]. (25)

Therefore, the eigenvalue condition (20) be-
comes, using (21), (24), and (25),

s " '[s+(4m/M)' ']'" '[s+(2m-v s)/M] '
dz

(2+ (v s/M)[s+ (2m —vs )/M]]s'"

(23)

I = »ci(M/4m)(l+ s) ',E,(-l ——,', I+ s; 1+ s, 1 —M /4m')[ 1+O(v)]
-»c, (M/4m}r(l+-,')r(-1+-,'}v"'"[1+O(v)]+M, Q h„' v",

n=p

where the last term on the right-hand side represents

~ Z ~" (fl(Iffy)" If)+&flf& —(flf)s ~

(26)
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The right-hand side in (26) is of course not singular at I =--,' for ve0; the first two lines add up to X(fIf)s,
for which this property has been explicitly demonstrated.

Let us analyze Eq. (26). If we ask for solutions that are to the right of the line Ref= ——„ these are given,

exactly at s=4m', by

l=vke, (M/4m)(l+ ,') '—,F( I —-p, I+ —,'; I+ —'„'1 —M'/4m')+Ac, bp,

where

&(b,'= Z &" (fl(&()"If&+(flf& —(flf&s

The solution to the above equation is

I = —2+g'/(32vmM)+O(g'),

which gives the approximate position" of the leading Regge pole at s =4m'.
Equation (26) also has other solutions, located near I = --,'. The equation may be written in the form

C(()v'[I+(terms proportional to positive powers of v}]=1,

(27)

(28)

where 8= l+&, and

C(()=B(1-E, I +g),F (~(, Q -1+ $;I M /4mm) — 3&» +
4m)1'(1+ () 4mghp

A.w Ml &+ P,

The point to note is that C(0) = 1. Equation (28) is
solved by an expansion for $ in inverse powers of
lnv. The parts involving powers of v higher than
$ will lead to terms -v'(lnv} ", e &0. These may
be neglected compared to terms proportional to
(lnv) ". As v-0, therefore, the equation to be
solved is of the form

C($)v' = I, (29)

with the property C(0) = 1. This is precisely of the
form found in potential scattering. ' We are con-
cerned here with the "0"type of Regge poles, "
i.e., those that approach )=0." The method of
solution of Eq. (29) is familiar. ' One writes
C(g)=+y„]", y, =l, and v~ =exp((lnv+2vn, i(),
where the integer n, must be taken to be zero on
the physical sheet in s. The solution sought is of
the type

lm I = 2 vn(lnl v
I )

' -2&ny, (lnl v
I ) '

+2vny, '(Inl vl) '+.

Ref = -2+4~'n'(y, ——,'y, ')(lnl v I) '+ ~ ~

(2) above threshold,

(30)

E=Q 5„(lnv) ",
n=p

where 5p must obviously be zero. As s- 4m' on
the real axis from the left, v- 0+ and lnv = lnl vl.
For s &4', lnv=lnl vl —iv just above the real axis.
We find the following expansions for the positions
of the Regge poles in the two cases:

(1) below threshold,

Im I = 2&n(lnl v
I ) ' —2vny, (lnl v

I )

+»n(y, ' —v')(h
I

v I) '+

Ref= -p —2& n(lnl v I) '+4&'n

x (y, + ny, ——,'ny, ')(lnl v
I ) '+

In (30) and (31), n = 0, +I, +2, . . . , with
&2l n

I
«

I ln
I
v

I I . We have used the fact that y„
y„etc., are real [because C(() is a real analytic
function of g]. The solution corresponding to n=0
is not a fixed pole at I= -p (our model has no such
pole). It must be understood as a possible Regge
pole which approaches l =-& according to l=-2
+O(v'/lnv), e & 0. We have not considered such
solutions of (28).

Equations (30) and (31) exhibit several features
that obtain in potential scattering. ' As v-0, n can
take on larger and larger values, and more and
more poles approach l= -2. Below threshold, Rel
begins to deviate from the value -2 only in third
order in (ln I v

I ) '. It may be shown from (30) and
(31) that the pole trajectories osculate the line
Rel = -2. To find out whether the poles osculate
this line from the left (as in potential scattering}
or from the right for s below threshold, we have
to know if yp-2y, &0, i.e., if [d'InC($)/dP]&=p ~0.
This would require an involved calculation which
we do not carry out here. ' ' Above threshold,
since 27m(In] vl) ' and -2vn(lnlvl) ' have the same
sign (that of -n), Regge poles approach I= - p from
above to the right of Rel = -& and from below to the
left of that line as v-0.

We conclude with a few general remarks. The
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"accumulation" of Regge poles near l=-& as
s - 4m' has been explained by Gribov and Pomer-
anchuk2' as follows: An infinite number of Landau
curves of the scattering amplitude F(s, t) have the
line s =4' as their common asymptote; as t- ~
(the region where the s-channel Regge poles domi-
nate), an infinite number of singularities of F(s, t)
approach s =4m'. We note that if the exchanged
mass M is equal to zero in our set of diagrams,
all the Landau curves become degenerate (all the
t-channel thresholds merge) and we do not expect
any "accumulation" to occur. Nor does it,"as a
study of the Regge-pole spectrum of this model
has shown. It does not occur in nonrelativistic
Coulomb scattering either, "as expected.

We have seen that inelastic thresholds at
s = (2m+ nM)' are also present in the trajectory
function. Once again, Gribov and Pomeranchuk"
have given arguments supporting the "accumula-

tion" of Regge poles near the line Rel= --,(3N- 5)
as s approaches an N-particle threshold. However,
our set of diagrams does not treat three- and
more-particle intermediate states very realistic-
ally. Specifically, the amplitudes for the set of
Feynman diagrams considered have no Landau
curves with s=(2m+ nM)', n~ l, as an asymptote;
all the Landau curves of the model have as their
only asymptote in s the two-particle threshold line
s =4m'. Therefore we do not expect the Regge
trajectories generated by this set of diagrams to
accumulate near f =-&(3N-5) as s approaches the
N-particle threshold at [2m+ (N 2)M]-, where
8& 3.
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