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We formulate the statistical bootstrap model of hadrons so that it includes angular momen-
tum. Several types of solutions that the bootstrap admits are studied. One self-consistent
solution, which has a strong physical motivation founded within the model, has a spin (J)
distribution of resonances at mass m in which most resonances occur below a J proportional
to Vm, the constant of proportionality being bounded by the other parameters of the model.
There is then a whole set of solutions, that have J proportional to «/m)Y, where v lies be-
tween 0 and 1. This set of solutions cannot be excluded within the accuracy to which we can
work. We also find a third class of solutions, very similar to the resonance spin spectrum
of the Veneziano model, in which most resonances occur below a spin proportional to m.
Finally, we have discovered a second solution to the bootstrap of the total level density.

I. INTRODUCTION

There is a remarkable coincidence between the
predictions of the statistical bootstrap model of
hadrons!*? and the dual-resonance model.® For,
both of these apparently quite different models give
the total level density, n(m), of hadrons at mass
m in the form

n(m)dm~const m®e®™ as m -, (1.1)

where, in the Veneziano model,*-®

_o (Da’\'? __D+1
b—2ﬂ( 6> and g=- 3

and D=4 in the usual simple model, but may be a
larger integer, to include different trajectory
intercepts,® in which case

D=5 giving a=-3
could be favored.”** More generally, we have for
D=4,5,8,...,
a=-%,-3,-%,...,
b-1=180,174,159,... MeV (for a’=1 GeV-2),
The statistical model gives®*®
b~1~160 MeV
and?
a<-3,

but again a more exact treatment actually pre-
fers®:°
a=-3.

Further, for every extra internal quantum number
(like charge) included, the value of q is effectively
decreased in steps of 3, if all exotic states are
counted.®

This agreement between such conceptually dis-
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parate models is remarkable, but they have further
results in common as well:

(i) Resonances couple and decay through two-
particle channels;

(ii) The predominant (two-body) decay mode
of a high-mass resonance is into one high-mass
and one low-mass particle;

(iii) Both models rely upon the narrow-reso-
nance approximation.

Result (i) is of course exact in the dual-reso-
nance model, by construction: The scattering am-
plitude can always be decomposed completely into
tree diagrams. In the statistical model, it is the
predominant coupling,? accounting for = 70% of de-
cays. Infact, this model provides the first deduc-
tive argument? for the usual theoretical assump-
tion of this result. The second result, (ii), is
true in the statistical model, where it plays an
important part in the self-consistency argument
that leads to a < —3.2 It has also been found to be
true in the Veneziano model,!! at least for the res-
onances on the leading few trajectories. The situ-
ation for low-lying resonances is, however, un-
certain.

The general agreement of the two models on
these problems may suggest that the general pre-
dictions of the Veneziano model follow from weaker
assumptions than those embodied in the full model,
and, in particular, from the limited number of
assumptions that it does share with the statistical
model. Indeed, a rapidly growing level density
like Eq. (1.1) follows from local duality alone.'?

As we shall indicate below, there is an analogous
assumption in the statistical model, involving res-
onance saturation.

To test this conjecture further, we compare the
predictions of the two models for the distribution
of spins over the resonances that occur at a high
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mass (m). We have previously calculated this for

the Veneziano model,'* and found that the fraction

of resonances at mass »; with spin J is given by
4¢* sinh(cd)

Puld) =—5

_ - 1.2
m? cosh3(ch) as m =<, (1.2)

where b is the impact parameter (5 ~ 2J/m) and™

7/ D\'?
=5 (5e)

- b
8a

The distribution of z component of spin, J,, from
which Eq. (1.2) follows, is

onld,)= < sech?(ch). (1.3)
m

Our aim in this paper is to set up the formalism
of the statistical bootstrap when spin is taken into
account, and to explore the types of solutions it
may admit. In Sec. II we outline the main as-
sumptions of the model, and establish the spin for-
malism. For this, we need to undertake the neces-
sary preliminary of a quantum-mechanical calcu-
lation of the orbital-angular-momentum z-compo-
nent projection of two-body phase space, using an
elegant method of Cerulus,'® based upon group the-
ory. In Sec. III, we deal in detail with one approx-
imate trial solution, motivated by a physical argu-
ment,'® and discuss some aspects of its uniqueness.
This solution has most resonances occurring below
spin J« vm, and is discussed in Sec. IV. In Sec.
V, we give a mainly qualitative discussion of the
effects of the many-body terms, arguing that they
have very little influence on the achievement of
self-consistency, or on the main features of the
spin spectrum. Then in Sec. VI we investigate
some other types of solutions, which, like the Ve-
neziano model, have most resonances below J cn;.
It is found that this kind of solution is also allowed,
at least to the accuracy to which one can work.

We also show that, with this accuracy, solutions
like that of Sec. III but with J« (V)7 (0 <y <1) can-
not be excluded. The situation is summarized in
the discussion of Sec. VII.

In our treatment, we do not include charge (Q),
or other internal quantum numbers, but these are
easily allowed for®: If no restriction on exotic
resonances is made, all level densities should be
multiplied by

7\1/2
<71d—m> e~?'P/m  gr=const

::2;«;11r

for each such quantum number.® This effectively
reduces a by ; for each quantum number, exactly

like increasing D in the Veneziano model in order
to include each additional different trajectory inter-
cept.®

II. THE STATISTICAL BOOTSTRAP WITH SPIN
A. Assumptions of the Model

The model reflects the ideas of hadrons being
composites of one another, and of resonance
dominance of hadron interactions. Explicitly, one
assumes that!'?

(i) resonances continue (indefinitely) to high
mass;

(ii) hadrons are composites, built from each
other self-consistently (bootstrap principle);

(iii) the mutual interactions of the hadron con-
stituents can be completely represented by reso-
nance formation;

(iv) the only other effect of interactions is to
confine the constituents within a characteristic
volume (V).

Here, (i) to (iii) are also assumed in the dual-res-
onance model, where the bootstrap condition is
duality and Regge behavior. But the interaction
radius [(iv)] has a different meaning.

It then follows that the constituent hadrons can
be treated as free particles, provided that all res-
onance excitations are also included. The density
of hadron energy levels is then determined by the
free-particle phase space available. According to
a theorem of Beth and Uhlenbeck,'” this counting
is exact for zero-width resonances: Attractive
interaction gives a positive phase shift, 6,(p);
when this reaches 7, one extra state can be in-
corporated into the phase space. Each narrow res-
onance would provide such a shift, so the effect of
two-body interactions can be represented by ignor-
ing the direct effects of the force, and then feeding
in all the resonances needed to saturate it, and
counting their free-particle phase space as well.
The connection is that the level density (as a func-
tion of center-of-mass momentum p, at fixed spin
! in an enclosure of radius R) is

an(p, 1) _ 1 35,(p)
op 'n(’“ op )

A decreasing phase shift cannot make this nega-
tive, since Wigner’s theorem,'® based upon causal-
ity, does not permit a phase shift to decrease
faster than R.

Before turning to the detailed formulation of the
model, we mention a physically interesting inter-
pretation of it.? The bootstrap equation [Eq. (2.1)
below] may be interpreted to say that there is a
matching between the resonance level density, and
the number of decay channels of that resonance



3186 C. B. CHIU AND R. L. HEIMANN 4

into lighter ones. Roughly, there should be one
resonance for each decay channel. So the supply
of resonances available at any mass must increase
with mass at just the right rate to fill up all of the
open decay channels available. This relationship
is also implied by duality.’? This matching is ex-

act if we count different momentum states of the
same decay products as constituting different
channels (which is not, of course, the normal prac-
tice). The effect of the phase space is to reduce a
by 2.

B. The Bootstrap Equation with Spin

The equation’'? that implements these ideas is that, as m -,

n(m)”i: % ({-g)”-l ﬁ dapijdmi n(m,-)é(g)(zi) f))O(Z') E, —m> . (2.1)

N=2 i=1

This is only required as m —«, as the low-mass spectrum cannot be correctly represented by these
rough concepts. The general term (N) comes from N-particle contributions to the level density, and the
1/N! factor gives some allowance for Bose statistics, and for double counting.?

If now o(m, Jz) is the number of resonances at mass m with spin component J,, the bootstrap equation

for resonances of definite J, is

1
o(m ’ Jz) - _2? fdlefdmla( my, le)f dJszdmzo(mZ? Jzz)fdlz¢(ml’ Mmasm; lz)a(Jz - le - Jzz - lz)

+ (terms with N = 3), (2.2)
where ¢ (m,, m,;m;l,) is that projection of the two-body phase-space integral
@ml'w(m)=J;d371j;d372fd3p1_[d3p26(3)(_R'C'"")é(”(f)l+§2)6(E1+E2—m), (2.3)

which ensures that the two particles (m, and m,)
have z component [, of their orbital angular mo-
mentum in their center-of-mass frame.

For the present we shall drop the multiparticle
(N =3) terms in Eq. (2.2). We only treat the two-
body term explicitly, but this cannot be expected
to influence the main details of the solution, since
it does not do so® in Eq. (2.1), which includes all
J,: If all J, states couple strongest to two-body
channels, this must also be true of almost all of
the individual J, states. We shall discuss the N-
body terms in Sec. V.

To treat Eq. (2.2) conveniently, we take its Four-
ier transform with respect to J,, writing

b(Jz =Jiz= o= lz)

L -

5 [ darexplia’t,+ gy -2,
6(m,a)=f dd,et*z0(m,d,), (2.4)
Bmymaim;c)= [ dl e egimymymiL), (2.5)

giving our basic bootstrap equation: As m -,

—

1 m-p . me=my=p ~
6(m,a)~2—haf dmzo(mg,a)f dm,5(my, @)
u K

X (my, my;m; ),

(2.6)

where p is the lowest-mass state.

This simple form most clearly reflects the under-
lying physics: ¢ describes the free-particle orbital
motion, and the m, and m, integrals describe the
effects from resonance excitation. ¢ must be cal-
culated from Eq. (2.3). At @ =0, Egs. (2.4) and
(2.5) show that our bootstrap equation (2.6) becomes
the original one of Frautschi, (2.1); in particular,

G(m,0)=n(m). (2.7)

It is evident that this formulation for including spin
leads to a bootstrap problem very similar to that
of Frautschi,? except that we have to bootstrap both
the m and o dependences, and that these are cou-
pled by the phase-space factor. We shall first
imagine imposing the bootstrap in the sense that
the fractional difference of the two sides of Eq.

(26) is only of order 1/m as m —«. This will be
relaxed later.

C. Angular Momentum Content of
Two - Body Phase Space

We need to project the phase-space integral &,
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Eq. (2.3), so that it counts only those states with

orbital angular momentum z component I,. With-
out such a projection, the space integrals in

Eq. (2.6) are uncoupled from the momentum inte-
grals, and one has

<I>ml,m2(m)=Vf d*po(E + E,—m)

=47V (E,E,p/m) ,
where (2.8)

E\p)+E,(p)=m; E,(p)=(pP+m>'/?.

Here, V is the integral fv d3r over the relative
coordinate of the particles. It is determined by
the kind of spatial cutoff assumed, but such details
do not affect the problem at all when spin is not
explicitly projected out. For particles in a box,’*?
V is the volume of the box; if we have a less sharp
cutoff, such as a Gaussian, then

f d3r | d% o~ /R
4

= (VARY, (2.9)

which may be defined to be V.

But when angular momentum i=7 XD is projected
out, there is a coupling of the ¥ and P dependences,
and in this case the answer does depend upon the
nature of the volume cutoff. But when this is sharp,
only the very high-spin states (of which there are
very few) show much sensitivity to the detailed
cutoff, and, for purely technical reasons, we shall
use the Gaussian, Eq. (2.9). A box, and a Yukawa,
cutoff yield similar results.

The phase-space integral ¢ is a count of momen-
tum eigenstates inside the enclosure, weighted by
their (uniform) spatial distribution upon perform-
ing the space integrals. Equation (2.3) gives

@ ()= [ @[ @2p00m = E,(p) = Eo(p)
v

x[eiBTeifeT) | (2.10)

When only states with a definite /, are to be count-
ed, their spatial distribution is no longer uniform,
and is obtained, following Cerulus,® by projecting
l, eigenstates from the momentum eigenstate
¢i?'" Then from Eq. (2.10)

¢(m1,m2;m;l)=J;d37' d®p 6(m—E (p) = E,(p))

> >

x[em e, 7], (2.11)
where (P,z is the projection operator onto a state of
definite 7,. It is'®

1 (7 .
“’zfz_ﬁf., dg ettt (2.12)

where L,=-i8/8¢ is the operator for the z compo-
nent of orbital angular momentum. This procedure
is essentially a partial-wave analysis. Equation
(2.12) follows from the general Wigner method

for constructing projection operators. It is based
on the orthogonality properties of group represen-
tations, but in our simple case, its form is self-
evident. In particular, e?®‘:is the transformation
operator for a rotation of —¢ about the z axis, and
(1/27r)ff,, d¢ is a summation over this two-dimen-
sional subgroup of O(3), normalized to the total
“number” of transformations.

At this point, we must make a mathematical
comment. In our formulation, we have used con-
tinuous [, values, rather than the discrete (phys-
ical) I, spectrum. Thus Eq. (2.2) has fdlz rather
than 3} 1,s and a Dirac rather than a Kronecker 6.
To account for this, and ensure that Eq. (2.12) pro-
jects out definite continuous Z,,' we should replace

Tde (T de

- 21 J-w27m

whenever the [, spectrum is a continuum.
Now if P’ is the vector J rotated by an angle —¢
about the z axis (unit vector 2),
K(¢)=p'-P
=(Px 2)sing+ (Px 2)x 2(1-cosp)  (2.13)

and

ié 27 3.7
et LZezp =etp y

SO

[e-iﬁ'?emz,z@iﬁ-?]:eﬂz(da)-? )

So we have
¢(ml,m2;m;l,)=fd37 d*p 6(m—E,(p) - E,(p))
\ 4

cdb . s
Xf 59 emiledgik(@) i
- 4T

which is already a Fourier integral. So the trans-
form is

é(mlymz;m;a)
:f d37.fd3p6(m_El(p)_Ez(p))eﬂz(d)'; .
14

(2.14)

The space integral is understood in the sense of
Eq. (2.9); it gives

f dr eii(a)'?-jd:’re'? 2/R2 ,ik(a) T
v
- (,”Rz)a/z e-RZIZZ(a\/«i
— -RZK2
= Ve (o)/a s

and Eq. (2.13) gives
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K2%(a)=4p,%C(a),
where

C(a)=3(1-cosa) (2.15)

and P, is the component of P normal to 2. We find
S(my,maym; a)

= Vfd3i)6(m—E1(p)_ Ez(p)) e_Rzﬁlzc(a)

= 47 V(E ,E,p/m) f ' dz exp[- R?p*C(a)(1 - 2?)].

(2.16)

The one integral remaining in Eq. (2.16) is the
z =cosf integral from the momentum phase space.
It leads to an error-function expression for ¢, but
it is more convenient to leave the integral as it
stands. As -0, ¢~ &, as required.

It is interesting to compare this quantal calcula-
tion with the corresponding classical one. The
distribution of / (not ,) is classically a Gaussian,?®
and very nearly so in the quantum theory%-!;

E.E

-12/(@2p2R2)
0 oy ms D=4z (BE0) €2

S (2.17)

classically, but in the quantum theory,

1/2 ,-p2R?

=471V <—“‘—2—E :;‘ P) em— U ; Ez);é(zpzﬂ

1y2
x (1-(51;;}22) if1<1pR?. (2.18)

They differ only in the tail (1= pR), where Eq.
(2.18) decreases less fast than the Gaussian. The
classical form (2.17) leads to an [, distribution
whose Fourier transform is identical to the quantal
case, Eq. (2.16), except that classically

Cla)=35a2,
rather than the quantal case,

Cla)=%(1-cosa)

~3a® for a <«1. (2.15")

Quantum effects are therefore important only for
large ! (I = pR), where the total number of phase-
space states is very small, and where these cal-
culations are unreliable in any case.

With the phase-space projection ¢ [Eq. (2.16)],
we can now attempt to solve for ¢ in the nonlinear
bootstrap equation (2.6).

| >

III. A SOLUTION OF THE
BOOTSTRAP EQUATION

We shall discuss in detail one solution of the boot-
strap equation (2.6). The form of this solution was
suggested by mathematical arguments, but it is
more plausible to motivate it by an intuitive argu-
ment due to Frautschi.’® This argument reflects
the main physical effects that are operating; al-
though it is very approximate, our more detailed
calculations show that the corrections needed are
insignificant.

First we outline this physical reasoning which is
essentially the same as that used for the distribu-
tion of charge,® and then write down the general
form of our trial solution. Simple generalizations
of this would also appear to be equally satisfactory,
so we then present arguments that systematically
eliminate all of these generalizations. Finally we
give our detailed calculations that confirm these
assertions.

A. Intuitive Argument of the Trial Solution

In the bootstrap not specifying spin® [Eq. (2.1),
where we keep only the N=2 term*], the dominant
contribution comes from one heavy and one light
particle:

mEm= |,
(3.1)
Mo = Uy
and vice versa. The light particle has limited kinet-
ic energy (of order u). These results follow from
a<-% and b~1/y in Eq. (1.1).

That o <- § rather than <-1 comes from the
phase-space factor (E,E,p/m), Eq. (2.8), and it is
this condition that enables the bootstrap to be sat-
isfied to leading order of m.

Because of the relatively low kinetic energy of
the two constituents in the most important mass
configuration, the orbital angular momentum is
limited, so there are mainly S and P waves, say.
This picture is confirmed by numerical studies,®
where it is found that, on average (with radius R
=1/p),

ma = Ly
kinetic energy=~1.54,
(som =-m,=2.5u).

So a resonance of mass m is mainly built by suc-
cessive additions of masses u with kinetic energy
o« u, and orbital angular momentum component

I,~+1. To achieve mass m, we need v additions,
where

3
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and the spin component (J,) of the resonances is
built by a random-walk addition of the orbital angu-
lar momentum. Then J, has a distribution

exp[-J,%/2(m/1.5)x]
[27(m/1.5p)x]' 7~

Here, x=1 if there is only /,=+1, but as /,=0 also
(S and P waves), we expect that 0 <x<1, some
steps (1,=0) being ineffective in building up reso-
nance spin J,. Of course, there will be D, F, ...
waves as well (possibly suppressed), but their ef-
fect on Eq. (3.2) and x may be small.

Equation (3.2) suggests that we take the Fourier
transform of o(m,J,) to have the form

&(m, a) =n(me-*m? (3.3)

o(m, J,) =n(m) (3.2)

but we prefer to use [c.f. Eq. (2.15)]
6(m, @) =n(m)e- "2 (3.4)

although the difference is not actually significant.
Here d is a constant, and from Eq. (3.2), one ex-
pects that

0<d<0(1/p). (3.5)

Our later calculations show that Eq. (3.4) does
reproduce itself through the bootstrap equation,
but only to within an over-all function of @, so our
trial solution is

6(m, a)=n(m) f(a)e=mc(@? (3.6)

and where f(a) is a function determined by the
bootstrap. It later emerges that there is no sig-
nificant difference between the cases f(a)=1 and
the f(a) produced by Eq. (2.6), so the above intu-
itive argument is confirmed.

B. Elimination of Some Generalizations

The form (3.6) suggests that we should also con-
sider more general functions of the type

6(m, a)=n(m) f(a)exp[-m** *C(a)*'d]. (3.7

We now present arguments that eliminate each of
the following cases:

v # integer. Here, G(m,a) is not even in @, so
that the Fourier transform, o(m,J,), is com-
plex.2® This is not allowed physically.

r=1,2,3,.... Numerical calculation shows that
o(m, J,) oscillates with J,, and has negative re-
gions. This is shown in Fig. 1. Although we have
no general argument for this phenomenon, it can
be understood qualitatively by considering the
dominant region of integration of the Fourier trans-
form, and it evidently eliminates these cases.

r==1. The whole @ dependence now disappears,
apart from f(a), which is now linear in C(a)
[shown by our later calculation with d=0; see Eq.

0.8
0.6t
04

0.2

a(m, J;) for different r’s

Jz

FIG. 1. The spectrum o(m, J,) as a function of spin

component J,, at constant mass, corresponding to

= pl—dmc(e)T+1]
Fourier transforms of the form d(m, a)=¢ .
Shown are =0, 1, 2, 4, with dm=150 (m~21 GeV if
d=1/m,). The curves are normalized to unity at J, =0.
The exact function and Gaussian approximation fall on
top of each other in the range plotted.

(3.13)]. Then o(m,J,) is a sum of 6, , and &, ,

which is unphysical. For example, it violates
strict conservation of angular momentum. So it is
also eliminated.

r==2,-3,-4,... . As a~0, these cases give

G(m,0)~0 for d>0
- for d<0,

so contradicting the normalization requirement,
Eq. (2.7).

These cases exhaust all except for »=0, Eq.
(3.6).

g >0. The peaking effect, Eq. (3.1), enables us
to write?

q+1

m Mt Eam =g+ Dum,

e+l q+l

m, 2

and the two sides of the bootstrap equation are now
unbalanced by a factor of

exp{ [dC(a)(g+1)u]m?} (3.8)

as m —-~. For ¢>0, this is manifestly impermis-
sible. Further, it would destroy the peaking to-
wards low kinetic energy, that is necessary for
self-consistency, when d>0, as it must be phys-
ically (Sec. IV).

—1<g<0. The lack of balance is the factor,
Eq. (3.8), which as s - = is now

=1+ [duCla)g+1)]m*~1+0(m?).

The fractional difference between the sides of Eq.
(2.6) now dies slower than 1/, which is not per-
mitted if we work to 1/m accuracy. However, if
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the bootstrap cannot be satisfied to such accuracy,
this cannot be excluded.

g=-1. The exponential in Eq. (3.7) is now in-
dependent of m, so this can be factored out of the
mass integrals. Equation (2.6) is unbalanced by
e~9¢® g0 the bootstrap cannot be achieved.

g<-1. Asm -, Eq. (3.7) makes 6(m, a) inde-
pendent of , apart from f(a). This is just like
the case »=-1, and is thus rejected.

These arguments leave only the original form,
Eq. (3.6) (r=¢=0), as a possible solution, except
that the case —1<¢q <0 may also be allowed (less
accurately).

C. Detailed Calculations

The trial solution
5(m, a)=n(m) f(a)edmc(=) (3.6)

satisfies the bootstrap as a function of » and « al-
most exactly when f(a) is set equal to one. More
precisely, the two sides of Eq. (2.6) differ by an
over-all function of o that is independent of »:.
This function determines the f(@) needed for self-
consistency. So we insert Eq. (3.6) into Eq. (2.6),
show the consistency in m, and perform the re-
maining integrals to find f(a).

We have

1 (e
a(m,a)=ﬁf dm,6(m,, @)
o

xfm-mxdmzc'r(mz,a)é(pz;a), (2.67)
m

where

37 o) =4n v (BiE22) " dzexpl-RpC(@1- 2],
(2.167)

pz :2m2(77l—m2) )

(E B, p/m)= m{m=m,) 2 (2m,)/?

2 (m=my)?my(2m,) 2

l m=m—-m,
=my, .

(3.9)

J

K

KF(a)maebme—dmC(u) = (4“/)(

2
h;/_z)fZ(a)maebme-dmC(a)f

i

| >

m

FIG. 2. Picture illustrating the strong peaking of the
integrand (of the two-body term) towards m and m, equal
to u.

Equations (3.8) and (3.9) are the approximations
for the kinematic quantities®® when m ,~ m — pu,
m,~ L, which is one of the dominant regions of
integration. The other is m,~m~-pu, m,~ u, but
by the symmetry of Eq. (2.6), we may simply cut
off the m, integral at  (m— u) and double the an-
swer.?® We use this peaking effect [Eq. (3.1)] in
any approximations that follow. The peaking of
the integrand (at o =0) is shown in Fig. 2.

So Eq. (2.6) is, with m,°=m® and K the constant
of Eq. (1.1),

(m=p)/2 1 mep
dmzmz‘”a/zf dzf dm (m —m,)'/?
o m,

x exp{=(m = m,)[b - dC(a)+2m,R*(1~-2%)C(a)]} .
(3.10)

The exponential s dependence, and main C(a) dependence, cancel, so

KV2 (m-p)/2 1 m=g
1=417V( E >f(a)f dm, mz‘”a/zf dzJ. dm(m -m,)"?
) m,

n

x exp{~(m —m,)[b— dC(a)+2m,R*(1-2z*)C(a)]} . (3.11)
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The integrals are performed explicitly in the order of Eq. (3.11).

m integral. Put
(m=m,)[b=-dC(a)+2m,R*(1-2%)C(a)]=u.
The integral equals
k

m=m=-p

1
[b-dC(a)+2m,R*(1 - 22)C(a)]®?

z integral. This is

dz

du ux/ze-u -

VT
[b = dC(a)+2m,R*(1 - 2*)C(a)]

37z A4S m =,

ﬁf‘
2 J, [b-dC(a)+2m,R*C
where
A=b-dC(a)+B,
B=2m,R*C(a).
Put z =sin¢; the integral is then

3Vm 3V

A(A-B)Y? [b-dC(a)+2m,R*C(@)][b-dC(a)]*? °

m, integral. The final integral is

%ﬁ (m=p)/2
oxaoRd)

dmz m2a+3/2

b— dC(a)+m,[2R*C(a)]

VT

[
(a)(l_zz)]alz‘ 2 (A_Bzz):;/z ’

b= dC(a)][b- dC(a) + 2uR?C(a)]

J'(m- w/2
u

From Eq. (3.11) we obtain

~ 1 ﬁuus/z —Wius/z

“[1-(a/b)C(a)] ?[1 - (d/b - 2uR?/b)C(a)] 2b3’2[-(a'+§)][1+0((u) )] ’
(3.12)
(3.13)

fla)=[1-(a/b)C(a)]*/2[1~ Cla)d/b-2uR?/b)]

and

1
K=y

1/2 3 5

(G T E=A).
although the value of K is unreliable as it is deter-
mined by the spectrum at low mass which is not
correctly represented by the asymptotic form,
Eq. (1.1).

We summarize with some remarks about the
above calculation:

(i) It relies upon the particles having low kinetic
energy (p* <m,? and m,?), for all @. This damps
out large momenta, which is necessary for self-
consistency.? So the bootstrap requires d to be
bounded [Eq. (2.15)]:

da<b.

(i) We have actually assumed that this momen-
tum damping makes the motion nonrelativistic.

This is true if
b>1/y and b-d>1/pu.

Since®*® h~1/pu, this is not actually satisfied, but
the effect?® is just to change the value of K. Our
expression for p?, Eq. (3.8), comes from the non-
relativistic approximation

m=E,(p) + E,(p)
2my+my+ A1/ 2m+1/2m,)
so
m=my+p?/2m, as m,~m - p~o,

but we have estimated the resulting error to be
insignificant.

(iii) To ensure the peaking effect in the masses
Eq. (3.1),

’

5
a<-%.
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This is necessary to make only one particle have
mass of order m; otherwise, self-consistency is
again impossible? [see Eq. (3.12)].

(iv) The calculation is correct to a fractional
error of order 1/m, except for the very last step,
Eq. (3.12). This is also correct to this order, if

(3.14)

(v) Even though the value of K is unreliable, the
form of f(a) is reliable, provided that the mass-
peaking effect is operating. This is because the
form of f(a) in the integrand comes from the as-
ymptotic regions.

(vi) We show below that positivity of the level
density implies

7
a<-t.

a>0.

(vii) The treatment of the mass integrals closely
parallels that of Frautschi,? whose case is @ =0.
The (unreliable) value of K is the same, so we ex-
pect that

f(a)e-dmc(a)

should be normalized to unity at « =0. Equation
(3.13) shows that it is.

The solution of the bootstrap that we find is thus
&(m,a) [ d ]’/2[ (d 2p.R2):I
— = |1-= 1~ Al ol 2 -dmC(a)
5(m, 0) bC(a) C(a) b G R

(3.15)

where 0<d<b and 6(m,0) = n(m), Eq. (1.1).

From this, we now calculate the spin distribu-
tion, and show it to differ insignificantly from the
intuitive form, Eq. (3.2).

IV. THE SPIN DISTRIBUTION

To find o(m,J,), we perform the Fourier trans-
form of G(m,a), Eq. (3.15). Since this is periodic
in a, the J, spectrum is discrete, and so [recall-
ing the remarks before Eq. (2.13)]

1 (" .
o(m,Jz)=2—f dae *25(m,a).
7=

This is evaluated by expanding the algebraic factor
f(a) multiplying the exponential in Eq. (3.15) in
powers of C(a). This is valid, since

0<(d/b)<1 and 0<C(a)<1.

Formally, we have [with only the first term (1)
eventually significant]

6(m,a)=6(m,0)<1 +%%)1/2

4
1 ZuRz)i] —ame(e)
x[1+<b bvd ) om)®
- . 8k
=G 0 [1 —} -dmC(a)
(m, ) +;ak8mk e o
giving, with Eq. (2.15),
_ 19 1/2
olm, 1) =00m, 01+ =)
1 2uR?\ o
x[l +%——‘Z§ >%]1J‘ (%dm)e‘(d/”’"
(4.1)
upon using?®®
e* =1 (x)+2 7, cos(la)I(x). (4.2)
=1
Here, I, (x) is the modified Bessel function:
I (x) =i~ 'J, (ix) .
Now for J, <3dm,
1 2 J 2 )
-@/2)m 1 ~ ~J % fam(1 _ Y2 ..,
e IJz(zdm) We <1 Frpw
(4.3)

showing that all of the derivative terms in Eq. (4.1)
are suppressed by some power of s, in the region
J,<<3dm as m —=. In the accuracy to which we
can work, these terms are not significant, and so

1 _ JZ2
U(M,J,)zn(m)me "zz/""'(l-;z—;? . >

for J,<zdm. (4.4)

This is our main result, and confirms the intu-
ition, Eq. (3.2). It is essentially a Gaussian, of
width (standard deviation)

AT =(3d)? vim,

where 0 <d<b. That d>0 follows from Eq. (4.1),
and the property [apparent from Eq. (4.2)] that?’

L(=x)=e'""1,(x),

which makes o(m,J,) negative at alternate physi-
cal J, values unless d > 0.

We note that the approximation, Eq. (4.4), holds
well into the Gaussian tail (well beyond J, < vm)
and so up to a point where o(m, J,) is very small.
Beyond this point, our function o(m,J,) decreases
slower than a Gaussian?®:

'IZ
eI, (Lam) ~(27le?’5 e-(.z/z)»:(%‘%ﬂ_)

for J.2 > (3dm)*.

In this region (J,>mR), the result is sensitive to
the volume cutoff used. Apart from the fact that
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&(m,J,) is very small and continues to decrease
with increasing J,, our calculation has no reliabil-
ity here.

The physical interpretation of our result has al-
ready been discussed in Sec. III A, in terms of the
full spin being built up as a random walk. In par-
ticular, we have the characteristics

Ad, =(3d)"? vm
and
d<b=1/p.

It appears that the configuration of one massive
and one light particle, with a small, limited, ki-
netic energy, is so dominant that it provides the
overwhelming physical mechanism for building
composite states.

The number of resonances, p(m,J), with spin J
at mass m is easily found from the J, distribution.
For o(m,J,) has contributions from all resonances
whose spin J > J,, so that, with

olm,d,)=o(m, -J,),
a(m,d,) = dJ'o(m,J’),
!

or

Bm, ) == 221D

ad,

Jp=J

Equation (4.4) yields

-J2/dm

_ 2
p(m,J)zn(m)[n(d—m)s]T; Je

for J <3dm (4.5)

which has a linear suppression for low spin [J
< (3dm)*/?] and a Gaussian cutoff for high spins,
J > (5dm)*/2.

The average spin of the resonances at mass m
is
<J>=f dJQ2J+1)p(m,J)
o
4.6
~ 2(dm/7m)*? 4.6)
using the approximation, Eq. (4.5). Similarly,
(D =3dm
so that the spin distribution has standard deviation
AJ = 0.48 (dm)*/?. (4.7

So most resonances occur in a band of width ~ vin
centered about the mean value also ~ vi.

In Fig. 1 we show the form of o(m,J,), and in
Fig. 3 the distribution of number of resonances
p(m,J), and also the total number of states,

0.09 T T T T T T

0.08f N
0.07f b
0.06} A
0.05f b

p(m,J)
0.041 b

Spin Distributions

0.03f 7 (my)

0.021 .

0.Q1 .

0 1 1 1 L 1
[¢] ) 10 15 20 25 30 35

FIG. 3. The density of resonances p(m, J) as a function
of spin J at fixed mass m, and the total density of spin—/
states p(m, J) =(2J +1) p(m, J), both normalized to unit
total number. Here dm=150 (m ~21 GeV if d=1/m,).
The exact curves and Gaussian approximations are in-
distinguishable in the range shown.

plm, ) =2 J+ 1)p(m, J) .

Both of these latter curves are so normalized to
make the integrated areas equal to unity.

It must be remarked that this solution is totally
different from the Veneziano-model spin spec-
trum!® [Eqgs. (1.2) and (1.3)], where J, (or J)
scales like

J, <m

so making the spectrum (apart from its normaliza-
tion) a function of impact parameter alone. Also,
for J > m, the Veneziano spectrum falls exponen-
tially, and not as a Gaussian. The only common
feature is the linear suppression of very low-spin
resonances. But this is a largely kinematic effect,
following from o(m,J,) having zero slope and cur-
vature at J,=0 [see Egs. (1.3) and (4.3)]. As
o(m,J,) must be symmetric in J, by rotational
symmetry, such a flattening at J, =0 must be pres-
ent if o(m, J,) is to be smooth here.

V. MANY-PARTICLE CONSTITUENTS

In the bootstrap equation (2.6), we have actually
dropped all of those terms that arise from three
or more constituents. In the case when J, is inte-
grated out [Eq. (2.1)], these terms do not affect
the form of the solution, although they do assist in
eliminating some generalizations. Their treat-
ment proceeds as follows.? The dominant config-
uration is again one massive particle, and N- 1
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light ones (), with low total kinetic energy. These
latter are grouped together, and the level density
reproduces itself due to the contribution of the one
massive particle. The remaining N- 1 particles
give a contribution that is independent of m as m

~, and so determine the constant K. One ob-
tains the summable series®

1 =5:N "NT )
N=2

N!
Therefore,

1=¢"-1,
where

~(21T)3/2 KV uus/z
TR 03 —(a+ 3)’

giving one constraint on the parameters (q, b,K, V,
). This implies that multiparticle constituents
are strongly suppressed: They account for only
~30% of the hadron content, and the mean number
of constituents (=2.4) is hardly more than two.?

So, multiparticle couplings are expected to be very
small.

With orbital angular momentum included, this
suppression of multiparticle constituents should
still hold at most spins, since it does so for the sum
over all spins. So we again have N- 1 light parti-
cles, and one massive one, all with rather low en-
ergy and angular momentum relative to their cen-
ter of mass. We expect that the multi-body terms
do not affect the main features of the spin distri-
bution; the N -1 light particles collectively be-
have like a single object with rather low mass and
spin, as m —x.

To the extent that all orbital motion is small, it
is possible to see that the N-body terms all repro-
duce the same exponentials that dominate 6(m, a);
only the unimportant function f(a) and constant K
are changed. The missing terms in Eq. (2.6) are
like

(5.1)

1 1
N W-Dfdml- < dmyG(m,, @)5(my, a): -+
X&(my, @)P(myy o ., my;m;a).
(5.2)

To find G,(m,, . ..,my;m;a), we need the spin
projection of the N-body phase space, which is
only known for equal masses. So we group the N
- 1 light particles together: all of

(5.3)

and treat these spinless particles as a single ob-
ject of mass

MoyMzy e oo sMy= L,

R. L. HEIMANN

| >

N
EEZ}ZE,.z(N— Dy,

i=
with spin distribution given by the N- 1 equal-par-
ticle phase-space projection. Only the asymptotic
limit (N> 1) is known. The derivation is nonrela-
tivistic and classical, with the Gaussian cutoff of
Eq. (2.9).3° It only has a convenient form for
small 73:

12 <NEuR*~N(E/u) if R=1/u, (5.4)

in which case the I, projection (not !) is a Gaus-
sian, which can most easily be understood in terms
of the classical random coupling of the 1 vectors®:

oy (s E;L)=e” "2/2”@%)—175 &y (u; E),
(5.5)
where
g=%R?=const
and

_ (3ﬂng)3(N'—1)/2

‘I’N’(M; E)= EN'ZI‘(%(N'— 1)

- V(N'_l)(2ﬂuE)3(N'-l)/2
EN"’T(3(N'-1))

~ ZﬂzegE)S(N’-l)/z 1 (ﬂ)l/z
N' = N’ EN'Z\ 27

(5.6)

is the total phase-space integral for N equal-mass
(p) particles at total energy E. In deriving Eq.
(5.5), we have used the [ (not l,) projection,:3!
and the fact that

, -3
bnr (s E; l)=y on(u; E;L,)
z

1,=1

z

and our normalization

f dal, oy (u; E; l,)=f mdl(21+ 1) ' (u; E; 1)
= 0

=&y (1 E).

A relativistic calculation, including the Lorentz
contraction of the volume,3® gives essentially the
same result. Since, for the N- 1 masses p,

E/N=[J.,

we see from Eq. (5.6) the factor (V p3/2)"=1) that
is expected from the momentum phase space of
the N-1 particles that have small mass.

These N -1 particles together then act like a
single mass-E object with spin distribution given
by Eq. (5.5). Its Fourier transform is
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&N-x(#;E}a):e-az!E/z @N_l(u.,E). (5.7) :[Kmaebme-dmc(a)f(a)][e-bﬁedﬁa2/4]
- -bm dma2/4
=(é e” e (5.8)
Now add in the massive particle m ,: [o(m, )] Iy
where
m,=m—Nu, m=m—m,
E,=m,. ~u(N-1).
It has a spin distribution, using Eq. (3.6), Its motion relative to the N— 1 masses u gives a
spin distribution described by the two-body phase
6(m,, a)=Kfla)m,® e’™e 4mCl space [Eq. (2.16)]:

J

1
a(m,,E,m;a)=4nv<§ﬁirﬁ-vﬁ)f dz exp[-R2p*La?(1- 22)]
0

1
<40V (i~ B)/*i (2EV/* [ d expl~tRa*(m - E)2E(1 - 2°)]
[

as only small o (the dominant region) is reliable.

In Eq. (5.8), the first bracket is the required function, so at least this main part does reproduce itself
term by term in the N-body series. The remaining integrals serve to determine f(a) and K. Canceling
off the 6(m,a) factor that does bootstrap, we are left with the remaining integral from Eq. (5.2): Very
roughly, it is®

N “MS/sz(a))(N-l)(‘qu(u’E)>J'm — 1/2 = -bm dma2/4,-gEa?/2
NI - dm(m — E)'/2me-"metmo" /4
N! (—(a+g)h3b3’2 =0z ) ) (

xfl dz exp|-2RPa® (i - E)2E(1 - %)) .

r

This can be evaluated by the general method of
Sec. IIIC. It leads to a series like Eq. (5.1), that VI. OTHER SOLUTIONS
determines K and f(a). Again, we can expand the

answer So far we have stressed the solution, Eq. (4.1),

which is most strongly suggested on physical
fla)= 1+i (%zf a, grounQS. But outside the arguments of Se.c. oIB
o=t (to which we shall shortly return), there is no ar-
gument for the uniqueness of this solution. Of
and the detailed nature of f(a) does not affect the particular interest is whether one can find a spec-
spin spectrum significantly for J,<dm, which is trum with
the region where there is little sensitivity to the

tail of the volume cutoff. But the important point AJxm
is that the spectrum is reproduced by the N-body as in the Veneziano model.’® It appears that boot-
terms. Although the argument is complex, the strap solutions with this characteristic are indeed
mechanism is simple: The phase-space angular possible. Although the precise Veneziano solution
momentum, being small, does not contribute to fails, there are very similar ones that succeed in
the spectrum in a substantial way. This is also bootstrapping themselves, to the leading order in
true in the two-body case, Sec. IIC. The situation m.
is thus really very close to the charge-distribution
case® (where the phase-space factor is not present). A. The Veneziano Solution
It follows that the spectrum is not dominated by the In this case,!3:¢
radius of the enclosure, except for very high-spin _

Gm,a) d'am

states which can only be built by relying upon high
orbital angular momentum (I > mR). It is worth
pointing out that the N-particle terms are in any with

case strongly suppressed by the N dependence ap- ' =(6a’/D)?
parent in Eq. (5.6), in accordance with the results
of Frautschi.? =const. (6.1)

G(m,0) ~ sinh(d’am)’
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This function [or Eq. (6.1) times f(a), where f(0)
=1] cannot reproduce itself in the bootstrap equa-
tion due to the « factor in the numerator. This is
easily seen by using the method of Sec. IIIC.

B. Veneziano - Type Solutions
We may try

gm,a) _ _fi(e)
G(m,0) cosh(d'am

) f(0)=1 (6.2)

_ @'m)f(a)

= Sinh(d’am) ’ fola)~aas a=0 (6.3)

or
where d’ is a constant.
As am— o, Eqgs. (6.2) and (6.3) behave like

P (6.4)

and so show the asymptotic m dependence which,
from Sec. III B, is sufficient to achieve the boot-
strap. Their significant feature is that they differ
from Eq. (3.6) in the region

lal< O(1/d'm), (6.5)

where there is no argument for requiring a partic-
ular form. This region of o dominates the Fourier
transform, which yields a J, (or J) distribution in
which J, (say) scales like

Jy~m

[as in the Veneziano case, Eq. (6.1), as is seen in
Eqgs. (1.2) and (1.3)].

In view of Eq. (6.4), one expects to be able to
achieve a bootstrap at least in the region ld’am|
>>1, so we first concentrate on this limit, and
then examine the more significant region, Eq.
(6.5). We shall refer explicitly to the first case,
Eq. (6.2); the second, Eq. (6.3), is closely analo-
gous.

To proceed, we turn back to Sec. IIIC, setd=0,
and insert into the integrand of Eq. (3.10) an addi-
tional factor of

1
cosh(d’am,)cosh(d’am,)

The peaking effect, Eq. (3.1), still holds, so this
factor becomes

1
~ cosh[d’alm — m)]cosh(d’am,) ’

where m - 1 eventually.
So we gain an extra factor of
1 1
cosh(d’am) cosh?(d’ap)[1- tanh(d’am)tanh(d’a 1))

1 1
~ cosh(d’am) cosh®(d'ap)[1-|tanh(d’ap)]

for |[d’am|>>1. The first term shows that 5(m, a)
reproduces itself within f,(a), which is determined
by the second term. With Eq. (3.13), one finds

Fi(@)= cosh®(dap)[1 —ltanh(d'au)u[l L2 c<a)].

(6.6)
When |a|< O(1/d'm), Eq. (6.6) shows that the two
sides of the bootstrap equation (2.6) fail to match
by the factor

1-|tanh(d’ap)|
1-tanh(d’am)tanh(d’ap)

But in this region, one notices that this differs
from unity by terms that are only of order 1/m,
so that self -consistency is achieved here as well.

Since the Fourier transform is dominated by the
region [d’am|< 1, we may rather roughly replace
fi(a) by £,(0)=1, and obtain a J, spectrum by con-
tour integration:

1 ,~ dae'™:
olm, J;) =nim) 27 _/_-,o cosh(d’am)

_n(m) 1
"~ 2d'm cosh(nd, /2d'm)

fordJ, s dm.

As expected, AJ, < m, and the resonance spin
spectrum p(m,J) is easily obtained as before.

The same considerations apply to Eq. (6.3). One
finds

f»(a)=sinh(d’au)cosh(d'ap)
x[1-|tanh(d’ap)l][1 +(2pR?*/b)C(a)]
and

n(m) 1

a(m, Jz) = (4/7I)d'm COSh2(7TJ, /2d'm)’

Figures 4 and 5 show this o(m,Jz), and the corres-
ponding p(m,J) and p(m,J) distributions [c.f. Vene-
ziano case,'® Eqgs. (1.2) and (1.3)].

The Fourier transforms can be performed more
accurately by the following device. For example,
in Eq. (6.6), make the replacement

1-|tanh(d’ap )|~ 1~ tanh(d’ap tanh(d'am),

which never makes the error larger than of order
1/m. The second term contributes to (m, @) an
extra term

sinh(d'am)
~ (d', _
(o) cosh®(d’'am)
9 1

Y™ cosh(d’am) ’

and so to o(m,J,) a term

nJ,  sinh(wJ,/2d'm)

—nlm) 4d"*m? cosh¥(nJ, /2d'm)’
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FIG. 4. Distribution o(m, J,) for the Veneziano-type
solution of Sec. VIB, normalized to unity at J,=0. The
dashed curve is the exact Veneziano-model spectrum.
Here d'm =57 (m~ 8 GeV if d'~ 1/m,).

which is suppressed by an extra power of m when
J<<d'm.
Again for these solutions, there is a constraint

l@’|<b.

C. Solutions with AJ < m?’2, 0<y<1

In Sec. IIIB, we could only eliminate the case
50m, @) =fl@)e™™' e, 0<y<1 (6.7)

if the fractional error permitted in satisfying the
bootstrap is of order 1/m or less. Equation (6.7)
gives an error of order 1/m*~?, whereas the cal-
culation of Sec. IIIC has error 1/m?, where &
=min{l, -(a+2)}. So one would require a<-7%.
But the preferred value of a is®*'° -3, so it ap-
pears that such accuracy cannot be achieved.
Then Eq. (6.7) cannot strictly be ruled out, even
though it is less accurate a solution than Eq. (3.6)

It gives a spin distribution just like Eq. (4.3),
except that

(dm)~ (dm”)
and so [Eqs. (4.6) and (4.7)]

J)~ m7/2< O(mx/z)’
AT ~m"2< O(m*'?).

This solution has no constraint on the size of d
(except for d>0).

The distribution is narrower. In terms of the
physical picture of Sec. III A, which is well con-
firmed numerically,® the orbital angular momen-

FIG. 5. I is the number of resonances, p(n,J). The
full curve is the Veneziano-type solution, Eq. (6.2); the
dashed curve is the exact Veneziano-model spectrum.

II is the total number of spin states, p(m, J), for the
Veneziano-type solution. All are normalized to unit area
and are plotted as a function of impact parameter b=2J/m
at fixed mass m: d'm =57 m~ 8 GeV if d’'~ 1/m,).

tum of the light constituent decreases asm in-
creases as

1

a circumstance that is physically most unlikely.
This, and the fact that this solution actually repro-
duces itself less convincingly than Eq. (3.6), leads
us to believe that a more detailed analysis of Eq.
(2.2), analogous to the numerical treatment of Eq.
(2.1),° would fail to find Eq. (6.6) as the bootstrap
solution.

This ambiguity is similar to one that occurs in
the bootstrap of the total level density, Eq. (2.1).%"°
It is possible to bootstrap a form like

n(m) = constm®e®™e '™’ 0<y<1, b’'>0 (6.8)
with a fractional error of order

m—11_7- 0 as m— .

The condition b’ <0 is necessary to give the peak-
ing effect, Eq. (3.1), that is so essential for self-
consistency. Indeed it is a much stronger effect
than from m?® (with a<—-§), so that a is now uncon-
strained. Unless one tries to work to higher ac-
curacy (1/m), this case cannot be excluded. But
by going beyond the asymptotic bootstrap condi-
tion,? and requiring agreement at finite masses as
well, it can be excluded. This can be seen'®by
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using the method of Nahm,' and the fits of Hamer
and Frautschi® also argue strongly against this
form: They find that a definite value of a (@=-3)
is strongly favored on performing fits to numeri-
cal calculations over a very wide range of masses.
Similarly, a spin spectrum like Eq. (6.6) could
only be ruled out by working more accurately.
Although we believe that a solution like Eqs. (3.6)
and (4.1), with AJ,«Vm, is preferred, we cannot
at this stage exclude Eq. (6.6), with AJ, xm /2,
0<y<1, or the completely different type of solu-
tions of Sec. VIB, which have AJ, «m. One can
also look at the N-particle terms with these other
solutions. Because of the overwhelming ef{ect of
the dominance by N-1 light particles, these solu-
tions do reproduce themselves, although Eq. (6.7)
not as accurately as does Eq. (3.6). Much of this
ambiguity is associated with the fact that the con-
straints are asymptotic. Thus, a function exactly
like Eq. (6.4) for all o and m is impermissible:
It would not be even in .2 But we can have func-
tions that are even in « and yet behave asymptot-
ically like Eq. (6.4).

VII. DISCUSSION

We have found that the statistical bootstrap mod-
el permits a variety of spin distributions. These
solutions are like

1
A. olm, J.)~ nlm)e™ "= n iy | 0<d<h
1
B. o(m,Jz)Nn(m)e'Jzz/‘“"yW’ 0<y<1,0<d

n(m) 1
2d'm cosh(nJ, /2d'm)

C. alm,J,)~

N n(m) 1
= (4/m)d'm cosh®(nJ,/2d'm)’

and |d’|<b .

Of these, A has the strongest motivation in terms
of the physical picture of hadron structure that is
strongly suggested by the model.!'>"®* We shall
discuss this case first. Solutions B are implaus-
ible when viewed from this standpoint, but we can-
not rule them out. Solutions of type C are very
similar to the Veneziano model, and again we are
unable to eliminate them. Only more accurate
working (on the lines of Refs. 9 and 10) would en-
able one to see if all of these are really allowed.

Solution A corresponds to the physical picture
described in Sec. IIIA. This picture is confirmed
by numerical studies® of the bootstrap for n(m).

It leads to hadrons being composed predominantly
of only two constituents, whose masses are

m,—~m,
! (7.1)
Mo=~ L,

and vice versa, with average momentum® (when
R~1/u) of

Pr=3p
and average spacing between resonances of®
Am= % W

So the orbital angular momentum [ of m, and m, is
small:

(Iys{(p)R~ 3 uR

and as described in Sec. IITA, this makes the res-
onance spin spectrum a Gaussian, following from
the random -walk addition of the v orbital angular
momenta (I,), where

m
Am

~

V=

)3

This Gaussian will be reliable, if J, is much less
than the maximum physically possible:

J,<<{l,)v~ L uR o= (7.2)
B

or
J,<<mR.

Our calculations give a Gaussian like A for [Eq.

(4.3)]
J,<<mid (7.3)

and since d<b, and also since b scales linearly
with R for u small® [and numerically, b~ 1/pu
when R~ 1/ (Ref. 9)], so that

b=R,

we see that Eqs. (7.2) and (7.3) are consistent, and
leads us to believe that solution A is reliable up
to

J, (or J)SmR. (7.4)

One can get as far as J, ~mR by just relying
upon small orbital angular momenta feeding the
resonance spin. This is the dominant configura-
tion. To get much further, one has to rely more
and more on higher orbital angular momenta,
which are kinematically suppressed. So, much
higher -spin resonances will be much more scarce.
But the precise high-spin distribution of reso-
nances will be determined by the precise volume
cutoff used, and as this is rather arbitrary, it is
not meaningful to go much beyond J~mR.

In this paper, we have used a Gaussian cutoff,

e~ Rz. We have also looked at a box cutoff, and a
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Yukawa form,
e -r/R"
r/R’ "

In the latter case, we have calculated the first cor-
rection to the distribution, by finding the coeffi-
cient of C(a) in f(a), and comparing with the Gaus-
sian case, Eq. (3.13). When R’ is fixed by requir-
ing the volumes to be equal, in the sense that

e’ 2 /2
3 _ 3, -r2 /R
fd'r———r/R,—fdre' ,

the coefficient of C(a) is the same in both cases,
within 1%. Thus, a cutoff with a larger tail does
not affect the spectrum for J<mR.

The above physical picture suggests that reso-
naices are, on average, evenly spaced in m, and
not in m2. This is in fact found numerically,®
where

Am=~ 3.

This can be seen analytically. For two fixed
masses, the total level density is [Egs. (2.1) and

(2.8)]

dNem) _ . 47V E E;p
am = m) = oo = (1.5)

where N(m) is the total number of resonances up to
mass m. In the dominant configuration, Eq. (7.1),

E,E,p/m =~ $u®= const,
so to increase N(m) by one, m must increase by
Am=const
~ h®/3mulv
«<1/R

which is expected for two particles confined to a
volume V.
Since this dominant effect has [Eq. (4.6)]

() <Vm
and
Am =const,

one may be concerned that the solution A does not
produce a leading linear Regge trajectory of reso-
nances —a sequence of resonances with spin up to

J~a'm? a'=const.

This is far outside the reliable range, Eq. (7.4),
and indeed our spin distribution, Eq. (4.1), for
this dominant configuration decreases rapidly with
m increasing on the lines J/m?=const. There is
no sign of a linear leading trajectory, whose exis-
tence must be expected to depend very sensitively
upon the precise volume cutoff (which may need to

be mass- and spin-dependent). We note that a
fixed volume is not relativistically invariant,
whereas linear trajectories are believed to reflect
relativistic phenomena.

We may use the above argument to inquire about
the average resonance spacing and spin distribu-
tion of resonances coming from nondominant con-
figurations [which our calculation of Sec. IIIC
misses altogether, on account of the approxima-
tions that it relies upon]. We consider two cases:

(i) Both constituents relativistic:

m, and m,<<m,
~ L
p~zm.

Most spin comes from the orbital motion, and not
from the spins of the constituents.

(E\E,p/m)~5m?,
so AN(m)=1 requires
Amax1/m? or Am?)ocl/m,
and by Eq. (2.18)
Py my 0, )X B m, (1, 1)

732y _m2R2
R me B4 sy p(m?s R?)

~
~

by expl=(L+ 1/ (m*RY/2)]

~

for [ <3m?R?.
(ii) Both constituents very massive and nonrela-
tivistic:
m, and m, = 3m,
p=const ~pu.

Most spin comes from the constituents, as the or-
bital motion is so small.

(Eszp/m)‘x m,
so A(m?)=const, with [Eq. (4.3)]
ﬁml'mz(m,J) ~ constm®/2Je ~47%/am

for J<gdm.

In neither case is there any sign of linear tra-
jectories, although of course neither is reliable
on such lines. Case (ii) does, however, have the
average resonance spaced evenly in m?2.

Again, we notice that in solution A, the reso-
nance spectrum has a mean impact parameter

J)
m
~4(d/m) 2 1/vm

that decreases with m. If it were assumed that
each spin couples with equal strength, it would

By =2
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give a near forward scattering amplitude whose
width (in #) expands in proportion to m=vs, and
which has fixed power (and not Regge) behavior.
So at least this assumption is wrong.

Solutions B are very similar to A, except that
the width of the Gaussian spectrum is

AJ, < (Vm)?

and so decreases with m. In terms of the physical
picture suggested by A and by numerical studies,®
the average orbital angular momentum of the
heavy and light constituent decreases with mass:

1
(Ip) Wm)yr >

which is physically most unexpected. This leads
us to believe that more accurate calculations
would rule out case B.

For our third solutions, C, the behavior of the
spectrum is identical to the Veneziano model, Eq.
(1.8):

A, xm

and is naturally parametrized by an impact param-
eter b: For class C,

nom)
m

f(ch),

a(m, J,) = const

where
¢’ =n/4d’

so that the “radius” is
(bycd’ and |d'|<b~R. (7.6)

In the Veneziano model, Eq. (1.3),
) ca’/b.

Equations (7.6) and (7.7) suggest that even in case
C, the two models may not be very close. As men-
tioned in Sec. IT A, this may be because “radius”
has a different meaning. The non-Gaussian form
of solutions C shows that the physical picture of
Sec. IIT A does not apply to them. In the Veneziano
case, the non-Gaussian form is a consequence of
the restrictions of Bose statistics® for the “con-
stituent” oscillators,* each carrying spin 0 and 1.

(7.7)
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This may be the physical origin of this type of so-
lution of the statistical bootstrap model: Ultimate-
ly, each hadron is dominated by v mass-u consti-
tuents, all with low energy and small, bounded or -
bital angular momentum. In the statistical model,

v (m/ ), (1.8)
whereas in the Veneziano model,*®
v~ Dm/m ) Intm/m ), (7.9)
where
my=m1(D/6a’)*/?
=(2/a'

so that in terms of “fundamental” constituents,
both models are similar.

The ambiguity between solutions A and B is of
the same nature as that which occurs in the case
of the total level density. There, we have found
that the original solution of the asymptotic boot-
strap, Eq. (1.1),

nim)=Km®e®™,

where a< -3, can always be multiplied by

e t'mY ,
where 0<y<1 and b’<0 [as in Eq. (6.8)]. In this
case, a is not constrained. Such ambiguities can
only be removed by requiring the bootstrap to hold
at large finite masses, as well as in the asymptotic
limit, m - .

The reason why we can find such a variety of
bootstrap solutions is probably that our calcula-
tions concentrate on the dominant configuration,
which has low orbital angular momentum, rather
independent of the geometrical “size” R of the had-
ron. Only by looking more accurately, particularly
at high resonance spins, would it be possible to
separate the various possibilities. But one sus-
pects that the model would be particularly unreli-
able at such high spins.
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