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In this paper we apply the approximation procedure of paper I to the case of certain sim-
ple ideal particles located in an isolated region of space-time and find the equations of
motion satisfied by the ideal particles to certain low orders of approximation. We also
find the equations of change satisfied by those quantities which characterize the structure
of the particles and the field equations satisfied by the external field which acts on each
particle. We find that there are simple ideal particles which, in a finite region of space-
time, interact with each other, to a good approximation, according to the laws of Maxwell-
Lorentz electrodynamics. In a higher order of approximation we find an additional inter-
action among the particles which can be looked upon as a Lorentz-covariant generaliza-
tion of the interaction given by Newton's gravitational theory.

I. SIMPLE IDEAL PARTICLES

A. Equations of Charge, Mass, Motion, pnd Spin

In this section we shall use the methods devel-
oped in paper I' to find the first-order equations
of charge and the second-order equations of mass,
motion, and spin satisfied by N simple ideal par-
ticles located in a perfectly isolated region of the
continuum. In addition to finding these equations
we shall also find the fourth-order equations of
mass, motion, and spin satisfied by N interacting
simple ideal particles in the special case where
the interacting particles are, to second order, neu-
tral and spinless.

We have as the solution to the homogeneous equa-
tions (15.6) over a region of the continuum contain-
ing only simple ideal particles
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~ S„,in (1.7)-(1.9) depend on the pa, ra.meter it

introduced earlier and can be expanded in a power
series in K. We have
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From the structure of the field equations it fol-
lows that any of the quantities (,)e, (,) e~, (,) e",
&,)ypz~, and (,)5„,can be taken to be zero. For con-
venience we shall assume that the region we are
investigating contains only particles for which

(,)m =0 and(l)Sp =0. This assumption is a re-
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striction on the structure of the simple ideal par-
ticles in the region we are investigating only in the
sense that it determines the order in which various
interaction terms appear in our approximation pro-
cedure. This assumption wil1. mean that an elec-
tromagnetic interaction among the particles can
appear in second order, while a gravitational in-
teraction among the particles can only appear in
fourth or higher order.

Making the assumption mentioned above, we find
from (1.7)-(1.9) that
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Equations (I5.7c) to first order take the form

p [r] ] 2
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From (1.11)and (1.22) we see that the solutions to
Eqs. (1.25) can be put in the form
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Since this means

Equations (1.27) are easily solved. We find as their
solutions

(P) H
[j.] &(p~ (1.13)

fi) v
I,vv 0 (1.30)

so that

(p) .u (p)
fj.]2p ret(adv) ret(adv) . ~Re / C ~ jk +& iret(adv)s

we see that

(P) HEI pfi) (1.31)

(P) H
[il &(p8

and thus

(» ODH (» 'D/ 2[2
[i)

(» CDII =(»es/ca (»O"II =(»e"/ca[z] ~ fj]

i) v ~ [i] [p~)—
P) H (P) H

(1.16)

(1.17)

(1.18)

(1.19)

We must next investigate the solutions to the in-
homogeneous equations (I5.7).

Since
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we find that Eqs. (I5.7a) to first order take the form
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To first order the localized electric charger acting
on each particle is zero, and the first-order equa-
tions of localized electric and magnetic charge are

(p) e& p
Since

f~) p~

(p) 'N
p (1.32)

(1.33)

Eqs. (I5.7g) to first order take the form
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There are no first-order equations of mass, mo-
tion, and spin.

In summary, the first-order solutions to the field
equations take the form

p' [,] jI„=O()(2) .

The solutions to (1.21) are
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To first order, the diffuse electric charger acting
on each particle is therefore zero, and the first-
order equations of diffuse electric charge are

N
N ~(p)

[ l&[u ]=~[ )&fu )

[&]~(p8

where
(P) E .p[ ) &fu ]-~p p fi]&

(p) &, (p) ~ (p)
[x]&[pi') fx) & &, p fx] & p, »

(1.38)

(1.39)

(1.40)



320 COA TE S R. JOHN SON
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To this order, the equations of charge associated
with the Pth particle are

(P) @ 0 (P) 'N 0 (1.44)

There are no first-order equations of mass, mo-
tion, and spin.

We now seek the equations of mass, motion, and
spin to second order. To find these equations we
will have to study the structure off»y(p, ) in suffi-
cient detail to determine [»y('»&' to second order.
We will not need to know [» y [»], nor will we need
to know any of the equations of charge beyond the
first order.

From (I2.2), (I2.3), {I4.14), (I4.19), (I4.24), and
(I5.7g) we find that [,] y('„„satisfies the equations
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Equations (1.45) have been studied in Appendix A and there we show that they have a second-order solution
for which
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and the spin torque is zero. The second-order
equations of mass, motion, and spin take the form
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The fields [(P)] y[*„',"]' and [(P)] y['„"„'] in (1.48) are under-
stood as evaluated at the position of the pth parti-
cle.

From (I6.3) and (1.47)-(1.50) we find that the
force to second order acting on the Pth particle is
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The second-order equations of mass and motion
satisfied by the particles are

I

(p)(mau )=0 (p)m'=0. (1.62)

in (1.52). From (1.52)-(1.57) we find that
(') ~'=0 {1.58}

We now seek the fourth-order equations of mo-
tion in the special case where the interacting sim-
ple ideal particles we are investigating are neutral
and spinless to second order. In this case [» y(p&
is given by
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There are no equations of spin to this order.
From (I2.2), (I2.3), (I4.14), (I4.19), (I4.24), and (I5.7g), we find that «]y['„,] must satisfy the equations
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The fields [[P]]y['„",'] in (1.66) are understood to be evaluated at the position of the Pth particle.
From (I6.3) and (1.65)-(1.67) we find that the force to fourth order acting on the pth particle is
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Generalized Maxzvellian particles. In this sub-
section we shall consider only simple ideal par-
ticles which possess no magnetic charge, that is,
particles for which

I
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The condition (1.74) must be satisfied if a simple
ideal particle is to approximate, at distances suf-
ficiently far from its center, a nonsingular solu-
tion to Einsteins's field equations.

From (1.51)-(1.58) we see that there are two
conditions which must be satisfied if simple ideal

and the spin torque is zero. The fourth-order
equations of mass, motion, and spin satisfied by
simple ideal particles which are neutral and spin-
less to second order are'

(1.75)

Second, in the lowest order of approximation the
coefficient of diffuse electric charge character-
izing each particle must be proportional to, and
of opposite sign to, the localized electric charge
associated with the same particle. If the propor-
tionality constant is absorbed into l, this second
requirement is equivalent to

(p) ~ (p)
(x) (z) (1.76)

A set of simple ideal particles which satisfies
(1.74) and the two conditions mentioned above will
be known as a set of generalized Maxwellian par-
ticles.

In investigating the interaction among general-
ized Maxwellain particles in a perfectly isolated
region of the continuum we shall find it convenient
to introduce practical units. We shall define the

particles possessing no magnetic charge are to
appear spinless and are to interact among them-
selves in the lowest order of approximation
through forces which are proportional to the local-
ized electric charge on each particle and repul-
sive, at least over a certain range of distances,
when acting between like particles. First, the
spin associated with each particle must vanish to
second order, that is,
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electromagnetic field F[„,] in practical units
through the equations

F&„,) =(c'/8tre, l'G)' 'y&*„,t, (1.77)

where ep is the permittivity of free space and G is
the gravitational constant. We shall define the
mass P m and the electric charge e in practical
units through the equations
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where

In addition to the introduction of practical units
we shall find it convenient to assume that (1.76)
applies to the generalized Maxwellian particles in
the region we are investigating. This involves no
loss in generality, but does mean that the magni-
tude of l in our equations must from now on be con-
sidered a property of the generalized Maxwellian
particles we are investigating.

In the practical units defined above, and using
(1.76), the second-order equations of motion sat-
isfied by interacting generalized Maxwellian par-
ticles in a perfectly isolated region of the contin-
uum take the form
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We are using the symbol 6(x'-~~' $') to denote the
four-dimensional Dirac 6 function centered at the
point P

$ . Note that electromagnetic disturbances
(light) propagate in empty space with the velocity
C.

Equation (1.80) for the force acting on a particle
can be put into a more easily analyzable form if
we make use of the fact that to first order,
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in (1.91) is the electromagnetic
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with the Pth particle will be denoted by E [„v].
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In these equations the external electromagnetic
field P E[p,'] is understood to be evaluated at the
position of the Pth particle. This field to first or-
der can be written in the form
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where 'F[p, ] is the electromagnetic field produced
by the Pth particle. The electromagnetic field pro-
duced by the /th particle is given by
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Making use of (1.91) and (1.92)-(1.94), we find that
the equations of motion (1.79)-(1.80) can be writ-
ten in the form
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This field satisfies the electromagnetic field equa-
tions

~adv ret (1.98)

The fields Ff„&' and a F f„„'&'in (1.96) are under-
stood to be evaluated at the position of the pth par-
ticle.

From the work above we see that a generalized
Maxwellian particle can be regarded as a localized
electric charge surrounded by a diffuse electric
charge of opposite sign. The charge structure fol-
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lows from (1.87)-(1.90). The current associated
with the localized electric charge of the Pth par-
ticle is given by P'J~~ and that associated with the
diffuse electric charge is given by P J&. For an
isolated particle at rest, the density of the diffuse
electric charge associated with a particle is in-
versely proportional to the distance from the cen-
ter of the particle. The length l in (1.90) can be
regarded as the distance from the center of the
particle within which one finds an amount of dif-
fuse electric charge equal in magnitude to one half
the localized electric charge. From (1.96) it fol-
lows that the field produced by the diffuse electric
charge associated with a particle is only half as
effective in producing an acceleration on another
particle as-is the field produced by the localized
electric charge.

If we assume that all interparticle distances with-
in the perfectly isolated region we are investiga-
ting are negligible' in comparison to l, then the
second term of 'A„„, or 'A„,d, in (1.85) can be
neglected in comparison with the first, the current
P J~ can be neglected in comparison with P J~,
and {P F ~„,& can be neglected in comparison with
P F &»&. In such a region, with a negligible loss in

accuracy, the second-order equations of motion
for interacting generalized Maxwellian particles
take the form

() () ()F (1.99)
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as Maxwellian particles. 4

Genemlized Nesetonian particles. Generalized
Maxwellian particles for which
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will be known as generalized Newtonian particles.
Generalized Newtonian particles are thus general-
ized Maxwellian particles which are neutral to sec-
ond order and spinless to fourth order. Introduc-
ing the gravitational field F(„,) in practical units
through the equations

2
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In (1.109) the external gravitational field (~) F{P)
can be written

we find from (1.68}-(1.73}that the fourth-order
equations of motion satisfied by interacting gener-
alized Newtonian particles in a perfectly isolated
region of the continuum take the form'
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where the electromagnetic field produced by each
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where P'F(„,) is the gravitational field produced by
the Pth particle. This field is given by
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Equations (1.99)-(1.104) are the equations of mo-
tion and the electromagnetic field equations of Max-
well-Lorentz electrodynamics. Particles whose in-
teraction is described through such equations will
be known as Maxwellian particles. We see that
Einstein's relativistic field theory admits simple
ideal particles which, in a finite and perfectly iso-
lated region of the space-time continuum, interact
among themselves, to a high degree of accuracy,

(1.115)

If the velocities of each of the interacting par-
ticles are very much less than the vejocity of light,
we can, if the quantities in the equations are ex-
pressed as functions of t instead of P'v. or x', ex-
pand both sides of (1.108)-(1.113) in power series
in c ' and keep, with a negligible loss in accuracy,
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()F ()@ ()T ()p(44) 9 ~ 44 (1.116)

we find as the equations of motion for interacting
generalized Newtonian particles in a perfectly iso-
lated region of the continuum,

) m d ( $,)/dt' = 2 Ii '

(P) F / (P) {II)) extS,S

(1.117)
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only the lowest-order terms in c '. Doing this and
making use of the notation
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(1.126)

(f'+P')5" n5 2
w'

n
4 2 r 2 2 l~ ~ y 5+

mg +I3 e
(1.126)

with

where
6 =e". (1.127)

d((2) m)/dt= 0. (1.119)

In this approximation the external gravitational
potential 'y"' takes the form

(2)~ex& g (2')~
P 'ver

(1.120)

(&)q7 G (&) m(&)
j r )-& (1.121)

and satisfies the gravitational field equations

~2 (~)@ 4„G (~)
p (1.122)

where ~ y is the gravitational potential produced
by the Pth particle. This potential is given by

The variable x in (1.127) is to be regarded as an
arbitrary function of ~r ~

where

~
r

~
(xsx )z/2 (1.128)

x'= (r[sin6cosy, x = (r[sin8siny, x2= )r)cos().

(1.129)

The quantity 5' in (1.126) is the derivative of 5
with respect to ~r

~
. The quantity as is a complex

constant. The quantities m~, h~, c~, and L~ are
real constants. If the boundary conditions

where
n-1, p-~, y-l, as Irl- (1.130)

(2) (2) 6( s (2) ]s) (1.123)
are to be satisfied, the quantity a~ must satisfy
the equation

We are using the symbol 5(x' —(2) $') to denote the
three-dimensional Dirac 5 function centered at the
point (~) ('.

Equations (1;117)-(1.123) are the equations of
motion and the field equations of Newtonian gravi-
tational theory. ' Particles whose interaction is
described through such equations will be known as
Newtonian particles. We see that Einstein's rela-
tivistic field theory admits simple ideal particles
which, in a finite and perfectly isolated region of
the space-time continuum, interact among them-
selves, in the lowest order of approximation with
respect to an expansion in the parameter c ', as
Newtonian particles.

An isolated spinless simple ideal particle. In
1960 Bandyopadhyay, ' making use of the previous
work of Papapetrou' and Wyman, ' found the gener-
al static spherically symmetric solution to the
field equations of Einstein's relativistic field-the-
ory which represents a particle with finite mass.
The solution he found is singular and can be writ-
ten in the form

e =2c l~ c~,D 2 2

m~ = 4c'm„

e =-—,'c ma'h~, e =-c l~,E & 2 2 N 3

(1.133)

(1.134)

and expanding n, P, y, f, and w in a power series
in eD, ee, e", and mc, we find, using (1.131) and
(1.132), that

slnh a~ = —1 . (1.131)

If the coordinates x', x', and x are to be part
of a set of harmonic coordinates, then a, P, y,
f, and w must satisfy the equation

(f2 ~ P 2) 1/2 d y(f 2 + P 2)1/2

p(ny-w')'"dir) (ny-w')"'
(1.132)

If both (1.131) and (1.132) are satisfied, Bandyo-
padhyay's solution to Einstein's field equations
can be shown to represent a spinless simple ideal
particle isolated in space-time. Introducing the
notation

0 se

f sine 0

0

0 -P

0 -f sin6 - sPin260 (1.124)

n = I+(mc/2c2) (r
~

'+n",
P= [rP[1+(m /2c')(r) ']+P",
y= 1 —(m /2c') (r( '+y",

f =-(ee/c') —(e /2c'l')~r~'+ f",
w =-(e"/c') [r ~

'+ w".

(1.135)

(1.136)
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The quantities ct", ps, yN, f", and tc" in (1.135}
and (1.136}contain only terms nonlinear in eD, es,
e", and m~. In harmonic coordinates we find,
keeping only terms. linear in e, e, e", and m,

(1.137)

with

E 0

y4 =(e /c')lrl ' —(e /2c2l') lrl,
r."=o, r."=(e"/c')lrl ',

(1.143)

(1.144)

1 Q 1 g
+(gt) i 2~gg r y g(4» = o, g(44~

= & —2r

(1.138)
where

r' =(e'/c')
I r I

' (e'-/2c'I') Ir I,

r"=(e"/c')lr I
', (1.139)

E + N
[iv) = 'Y [pvl 7 [pv

where

(1.141)

E EaP N N N
y [») =e»&~y ', y[»] ——y ~ &

—y2 „, (1.142)

y c (mc/c ')
I r I

' . (1.140)

This means, in a harmonic coordinate system,
keeping only terms linear in e, eE, e", and m~,

that

and that

~(4.) = ~( 4) 0 ~( t) =

y«4] =(m'/") Ir I-'.
(1.145)

(1.146)
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%e see that Bandyopadhyay's solution to Einstein's
field equations does indeed, if the conditions
(1.131) and (1.132) are satisfied, represent a spin-
less simple ideal particle isolated in space-time.

APPENDIX A: ON SOLUTIONS TO THE FIELD EQUATIONS & [ ]r[21]—
f ] t&„O+(K }

We shall study the solutions to Eqs. (1.45) for which [» y['&„]' takes form (I5.59). If all quantities in the
equations are expressed as functions of t instead of as functions of ( T or x4, we can expand both sides of
Eqs. (1.45} in a power series in c ' and solve the field equations step by step with respect to powers of
c '. Proceeding in this manner we find, in the neighborhood of the Pth particle,

[,) y('„) =('"e /c')e„„'"[4'(]trl)'[,) y[„)„,——2'(krl)'$"' [,) y[„)„
&I %0 iI r

[1)r[ t],2 +4(~) [1]'Y[ t],44 (~) [1]r[,4) «.
+4(]2rl)'h"" h"' I,] rf, t] 4(tt)'&"-"(""f,]rf4t)+ 2(r) 5 5 [1]rf„]

2(~) $ fl] r[.4) -(&)'5'" ll] y[.4).4 + 2(~) [1)r[ t],

+ 2 I r I [1]Yf t], 422(~) h [1]r[ t) + (~r} 5 [1]r[.4].,

+(]'tr) '$'"[1)r[,4), t
—2lrl &" [1]y[ t] 4(~r) &'"&'"[1]r[.4) -2(~} '&""&"fl)r[. )

2(I2ri) 5 k [1]rf t] + 2(~) ~ ~ [1]rf.t] + 2(~} '&"[1]r[.4]i

+('"e /c'l')» '"[-'(]'2)' y ]+{'"e/c')'"[--'(str)' r 4) t,

+(rst)'5"" f1]rf„],, —(s)'k"' [,]rf:),+ (t)'('" [.4],1

+ i2(s) [1] V[44] 44 2(srl) 5 5 [1]r[ 4] + 2(s) 5 ( [1]r[.4)

-3(r)'$""t'"[,)rf„)+2(s)'5'"'[1]rf 1]+2(s) 5 [1]rf t]4 —(st) fl] Y[4), t

(sr) '5" f,)r-f„),„+(sr) '&""f,)r[,4)-(

+ Ir I
'&'" [1]rf. ]+4('r) '&'" &'" I» r[,t]+2(sr)

+3(«t) '5'" 5" [1]y[.4) —(s) '$'" ('"[.) r[.4) —2(s) 'k" [1)rf.t)l+[.")y(:.) +O(~'), (A1a)
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t(P) s t 2 (p) I x 0 — 3 0 o — o[»r[..7=( s l~ )8, tk [8(m]tr) []Y[ ], +8(m) [1]Y[t},k4 8(k) [1]y[„} 4
—(6k (r) [»y[„}„,

—'( ~)'[1}r[.4],t. --'(t)'[.}r["},1-+46k-(r)'[1}r["J.t. —4(m~)'5"'" [» r[.t 3-4(m)'&""[»r[.,}

8(m~) 4 [1]'Y[ t].4 3(m) ~ [ll 3'[ l].4 + ( ) ~ [1]r[ tl 4 6k ( ) ~ [1}r[.t},4

+ 4(m]«) 5 [13r[,4}.1 + 4(m)'5'" [,}r[.4},t 4—(&)'(" [,}r[.4},+,-,'6km(r)'( ""
[» r[„,

+ 2(mttr)'( '"[,}y[„]„—4 6, (t)'( ""[,]y[,4] „-,' 6,-(r)'& ' "[,3 y[,4} „

+-'(&)'$'" [,}r[,4}, —26k (t)' [1}r[.4}44 —
,
2(m]tr)'&"" 5'" [1}r[.4}

+86k («[)'5""('" [1}r[.47+2( )'5'" 5" [1]r[.4]- 6k (t)'(""5""[l}r[.4}

+46k ( r)'h'" $"'[13r[24]+4'(mitrt) $ [1] [ytk], r 4(m]'t) h [1]Y[st],r

4(m ) k [1]Y[st J, r 4(~r) k [1]r[st] r4.(~) h [1]r[st], m

46k (r[) h [1]r[.t}„+l(m&) [1]y[ t],4 2(m~) [l]r[,4].t

—211'I '(' [»y[„},, —-'I&l '("[1}r[,t}, +46k Il I '('"[»r[,t}.,
+!6k.PI '[,]r[„74 26,kl -1I '[,) Y[43, t 0'(m~rt) ( 0 [1}r[t]

+ ,'(mu) '—&'"&""[,] y[„} g(mr-) '&'" &'" [,] y[„]+,'(mr) '$—""$"[,] y[„]

+ l(~r) '('" ('"[,}r[.t 3+-'(]'r) '5""&"[1]r[.t3+(m&) '&'" [1]y[ 4]

—26k («) '$""[,}r[.4] —6k («) 'h'"[1]r[.4],4+4 I&l '5" 5" [1]r[.t}

+ 2 I~ I
'('" (' [,}Y[ t] 26k I ~i '('" [1]r[.43

—6k. l &I '&" [1}r[.4],4

+ 2(m]2r) 'k '" [,}r[, t}—2(m) '5" [1}r[ t]+ 6k (t) [1]r[ 47

+~(mt ) '('"("[,}r[.4] 26k ( t)rt~ ~ [llr[.4}-(~) '&" &"[1Jr[.4}

+ 26k.(t) 'h'" 5'" [» r[,43]+('"s"/~')'"[2(s)'[,
3 &[ 4}.,

+ 2(s)' [,}r[„},mt +-.'( ms)'r$"'" [,7 r[„J+2( )'mh"" [1}r[,4}

+ 2( msr)'[" [1]r[ 4],4 + 2(s) 5 [1}Y[&43,4 + 2(s) 5 [1]r[ 4]4,
2(msr) $ [1]r[.t]., —(s)'k ""[,7 r[. }„+2'(msr)'5"" h"' [,}r[„}

+8(srl)'$"" g'" [,]r[, ] —2(s)'$'" g" [» r[, t}—8(s)'$'" $""[» y

+ 4(r) 5 5 [1]r[4 ] 2(ms«) '$'" [1}r[.4},t + 2(sr) 5 [1]r[.,}

—
2 III '&'" [1}r[ 4],, —211'I '5" [» r[.4} + r(m«[) '0'" ('" [1}r[.43

——,'(ms) '5'" 0""[,}r[.4]+ 2(mr) ( 5 [1]7[4] 2(mr) ~ ~ [1]Y[ 4]

-(«) '&""5' [,}r[,43-2(sr) '5'" 0'™[,}r[,4}-(m') '&'" [»r[.t}

2(ms) 5 [1] [ rt],k4 2(sr) 5 [1]Y[sm} ~2( r) ~ [1]r[sm], 4
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—3(msr) '$ '" (,) y(,4) + (m) '$" (,) y(„)+ (s) '
(,) y(, )

—3(msr) '$'" 5'( ) y(, t] 2(sr() 'h'" 5" [1]y[, ]

+(s) '$" 5' [,]y[,t]+2(s) '5'"5'"(,]y(. )i+I,")y«)+o(tt'), (A lb)

[2]y( n) =( s &~ )sstk & 4(mn~() [1]y[st],rlr (u) E 2 (u) I 0

—+(mnk) V '
[» y(„]+ 1'[(mnr)' (» y(„],„—

~(metr�)'

[» y[„]„„
—m(nkr) [1]y[st]rm+, TPI]km(nrl) [1]y[st],rl+k5kn(mrl) [1]y[ ts], r I

Y mn()2r~) [1]Y[st J, rl + 8(m) [1]Y[st],kn + 8(n) [1]y[st], k m

[1]y[ t]. + h 6k (n)'V [1)y[ t) + 4 5k„(m)'V '
[» y[„]

t

+%' mn(~) [1]y[st]+ Tr ~km( ) [1]y[st], rn k~kn(r) [1]y[st], rm )(~mn(r) [1] [yts), rk

+)((mnkrl)'('" (,) y(„) „+)([mnk)'$ ""(,) y(„) „

+ 8(mnr) $
""

[1]y[„]„—8(mnr) $
""

[1]y[, t],k
—8 (m]tr) $

""
[1]y[„]

k(n~) h [1]y[st], r+ 8(m r) ~ [1]y[st1, n 8( ) ~ [1]y[st], m

—85k (nrl)'$'" (,) y[st), r 8(]k (mr() 5 [1]y[st], r

+Y~ (~r() ~ [1]y[ 1] ~
8(m) ~ [1]y[.t],.—J((n)'&'"(1)y( t].k

+ 8( ) ~ [1]y[ t], + 8( ) ~ [1Jy[ t). 8(~) ~ [1)y[.t]

8 (~) 5 [1] [yt]s, m 8 ~km(n) 5 [1]y[st], r 8 ~kn(m) 5 [1]y(st], r

( ) & (1)y( t), +V])k ( ) & (1)y( t), +J(()k(r) $ (i)y( t), +)[(] (r) h

+8~k (r) $ [1]Y[t], +8~k( ) ~ [1)y[ t],

——,'(J..(r)'5" [1]y[.,].k+ 8(mn() [1]y[ t),44 8 J)k (n) [1)y[ 11.44

8 ~kn(m) [1]y[st], 44 8 ~mn(~) [1]y[st], 44 TB (m ~ ) ~ ~ [1]y[st]

+ ~(mn&)'t"" h""[,]Y (.t) — (J(m«)'h"" $""[,] y(. t)+ J((m~)'("" $""[,] „y())(+(nitr)'k"" h" [,]y(„)

+ T'8 ()k («&)'h"" 5'" [,]Y(st)++(Jk (mr J)n'k"" k'" [,] y(st]

((tr() 5 $ [1]y(„)+ -', (m)'('" $" [1Jy(. t)

+ 8 ( )'h '"h" (1) y(, t) —g( )'$" 5""[1)y[, t) —k (]k (n)'h"" $
""

(1) y(. t)

—T')[ k.(m)'5"" (""(,) y(. )++1(] .(&)'h ""&""(1)y(. t) + v(]k-(r A""&""[1]y[.t] ' ~ k.(r)'&""&" (1) y(.t)

', (J .(r)'h""-$'"(,
) y(. )+-'(mn&)'h""( ) y[. )

—-' (n)'$""( ) y[, )

2 ~kn(m) 5 [1]Y[s4) + 2~ ( ) ~ [1]y[s4]

+ 2(mn~) 5 [1]y[ 4],4 2~k (n) ( [1]y(.4),4
—

2 ~k.(m)'('" (,) y(.4),4

+ 2~mn( ) ~ [1]y[84],4+ 2~km(t) $, [1]y[s4] 2~kn(t) ~ [1]y[84] ~km( ) ~ [1]y[84],4
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()'5" [,]v[84],4-f( ) '[,]y[s,] „+-,'(m ) 'fl]y[, t] 8-~(mk) '[1]y[,t] „—g(nk) 'f, ]y[

~+ 7~~ ~~+~ ~~~ ~I~~~, ~~ ~~~~
t ~~ ~~~)~, ~~k

76knl +I [1]y[st], m+ k'6mnl +I [1]y[st],k+ V(mn~) 5""[1]y[st]+ T(~) ('' [1]y[ t]

—~(mk) '&""fl]yf.t]- ~(nk) '&'"[1]y[ 1] ~58 (nr) ~ [llyf. t]

k„(rPgr) $ [1]yf 1] + ~6 „(k ) $ [1]y[ 1] + g(mnkr) $ [1]y[ 1] 4+ g(mn) g [1]y[ 1] 4

2(mk) 5 [1]y[st], 4
—2(nk) '$ ' [,J y[st]4 —v6k (~) '( '" f»y[. t],4

—k 6k.(~} '$ '"
[ll y[st]4,

+&6 „(kr) '$' [1Jyf„]4
—f(mnkr} '("[,]y[4] +2(mn) 'f' f»y[,4], +6k (nr) '$" f,]y[,4] „

+ 6k ( ) ( [1]y[ 4]8.r 26k ( } k [1]y[s4]. t 26kn(mr) 5 [1]y[s4], t 2 km( r) $ [1]y[s4], r

26k (lr) $ [1]Y[,4],+ 2 68, («) 'h '" [,J yf, ].+ 26,,.(«) 'h'" [,J y[.4]26, (kr) 5 [1]Y[ 4].,
+6 „(kr) '('"[»y[.4]t —p6,k„ll'I '6""f,]y[.t] —&6k. l&l '4" [,Jy[.t]+&6 .I&l '6" [1]y[ t]

l6,.l-l I
'0'"[,]y[.t]4 26k. ll'I '(' [,]y[ t]4+&5 , ll I

4' [1]yf.,],.+6, tl'I '('"[,]Y[„],t

+6k. I I
'0" f.]y[ss], t--'6mnl I '("fi]yfss], t-5k. ll'I '("[i]yfs4]n 6knl, l'—

I
'0"fi]yfs4]m,

+3(mnkr) $'"$'"[1Jy[4]+2(mnkr) '$""$" f,]yf, ]+2(mn) '$" g" f,]y[,4] —(mk) '$'"&'"f,]yf 4]

(nk) 5 5 [1]y[.4] —2(mk) '6"
h ""[,J y[.4] —2(nk) h 5 [1]y[84 J

—6, (nr) '$'" $'"[,]y[„]—6 „(mr) '$'"&'"[i]y[.4]+6..(kr) '&'"&" [l]y[ 4] 26k ( r} 5 ~ [1]y[ 4]

-25k.(mr) '&""&"fi]yf"]+ 6-.(kr} &""&' fl] y[.4]+6k (lr) '&'" &""fi]y[.4]+6k.(«) '('" 5" f»yf, ]

+ 26k («) '('" ( '" [,J yf„]+ 26k.(«) '&""&' [,J y[,4] —26k I & I
'0"0""

[ ]y[.14] —26k. l & I
'&" (" [,J yf.,]

+2'5k ll I 5 0 [1]Y[ 4'J+ 26k I~I 4 0 [1]Y[4]+26 I~I 5 6 [1]Y[4] 2(mnk} [1]y[ 1]

+ 268m( ) [1]Y[st] + 26kn(m) [1]Y[st] 26mn(k} fl] y[st]

4(m k l) '5'"f" [1]yf.t]-4(mnk) '5'"5'"[,]y[.t] —2(mkr) '5'"5' [1)y[ t] 2(nk } $ $ [1]Y[ t]

——,'5,„(nrl) '$'"g' flJy[„]—', 6„(mrl} '$-'"$" [»y[,t]+ ,'6„„(krl) 5'"-5'
f ]y[,t]+2(k) 5 ( [1J][ t]

+-,'6, (n) '5'" 5'" f, ] Y[.t]+Z'6k. (m) '&'" &'"[»yf.s]- ~6 .(k) '&'" &'"[,]yf. ,] —3(mnk) '&"f,]y[.4]

+6..(n) 'g" f.]y["]+6"(m) '&" ft]yf 4] 6 (k) $ ft]y[.4]-5k-(l) '&'"f »["]-'() '&' f.]yf"J]

+( ~ lc l )k tk l 8(mnk) [1] Y[ 1] 8 6k (n) fl] y[ t] 8 6k (m) [1]Y[ t] 8 6 (k) [1]y[ t]l

+( e"/c') I2(mnsrl) [,]y[„]„,+ T2(mns)'V'[, ]y[„]

1 / 'N 1 ']],0+mi~~&~ ~~~&~n4], sr+ 72~ ~~ I.X]~[m4],sr 12~~+j Il]~fs4], nr 72-~+ +~ Ij.]~is4],mr

[ lyl ] t+ (m} [ lyl ]+ ( } f Jyf J ~ (~) [' Jy[ J+~( } I Jyf
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+ 12 (S)' [,3 y[„4] m,
—~(S)' [,3 y(,4) mn

-4(mnSrl)'$"" [,] r[,4],

—«(mns)'&"" (,1 y[„J„-«(
—mnr)'$'" (,1 yf„] „+«(msr)'$""f» y[,4] „

+4(nsr) 5 [1] r[ 44]r4, ()mn(r t) k [1]Y[s4], t «mn( ) 5 [1] Y[s4].r 4 mn(r) 5 [1Jy[s4] r.
4(r) 5 [1)r[.4],.—«(r)'5"" [» r[ 4], (mns) [1]Y[ ),

1 I %0
4 mnk~) [y] Y[sg],qq + 4 (m&~ j [y] Y[sn], 4~ + a(+&~) [y] Y[sm], g~

+«(s) [1]y[nm] 4„+4(s) [1]r[sn], «m+ 8(mnsrl) g""g'" [1]Y[,4]

—-'2(mnS)'$"" & (1]y[n4]+«( r) ~ "$" [1]y(44] —,'( m—S r)'$"" $""[1]y[n«] ——(nSr) $ $ [1]y[ 4]

', (mr-l)'$"" &'" [,3 y[„,J —-', (nr&)'$"" &'" [,)y[m4]+ -', ()mn(«()'5"" &'" [1]r[ 4] —4(m)'5'" 5""[1]r[44]

—«(n)'h'" h" [,3 r[,4] '+( )'sk" k""[,3 r[,.]+-'2(m)'h"" (""[1]r[.4]+-', (n)'&"" &""[,3 r[ 41

(s) 5 ( [1]r[..J
--'(r)'5"" 5" [1]r[ 4] (r) 5 5 [1]r[.4]+l()..( )'&""h'" [.1 r(.41

2(mns) ( [ ] [rtn] 2(m)'$"" [,3 r[n ] 2(n) ~ [1]r(..1

—25 „(S) ( [1]r[st]+ 2(S) g [1]1[sn]+ 2(S) g [1]r[sm] 2(mns) $ [1]r[nt), 4

—-'(mrs)'h ""
[» r[.„J,.—-'(nrs)'h ""[,3 rf..],, '(m)'h-'-"[,3 r[..]4- -'(n)', &

' "[,] r[ 3,4

2() (S) $ [1]r[ t],4+ &(s)'&" [i]r[-],4+~( )'&" [1]r[ 1.4

3/ l.+-. ~j [,] ~[s4],r + 2Umnk +j [z] X[sp], r + 2 I
~

I [z] ~[m&], n

+ 2 Ir I [1]Y[n4] m
—2(mnsr) g [l]y[44] 2(mn) '$'" [,]y[,4]

+ 2(ms) '5""[,
3 r[.4) + 2(ns) '5" fl]y[ 4]+ 2(mr) $ [1]r{ 4]

+ 2( ) ~ [1]r[ 4] ~2(3 „(sr) $" [1)r(n«) —2(mnsr) '$'" [,1 y[,41,

+ 2(ms) '5' [ ] Y[ ],4+ 2(ns) f [ ] r[, ],4+ 2(mr) '5'"[,) y[.4 4)

+ 2(nr) 5 [1]r[m«3. , 4 ~2()mn( r) $ [1]r[ 4],4

+ 2(mnsr) 5 [1] Y[ t], +2(ms) ~ [1]r[ ],t+ 2( ) ~ [1]r[ ], t 2 ( ) $ [1] f t],

+ 2(ms) [1]r[ ]4+ 2(ns) [ , ) Y[ ],4+ 2 I I

'('" [.Jr[.4)

+ 211'I '(""[» r[-4] - 2()-l 1 I
'g'" [,] rr" ]+21' I

'("[» r[ 4J4

+ 211' I-'('" [,3 r[.„,4 —211 I-'6" f,)r[..1,.—211 I
'6" [1]r[-J,-

- 3(mnsr) '("('"[,) r[.t) -k( r) '(""("[1)r(. t]+-'(m ) '&" &'" fi] r[.t) +-'(m') '&" &""[.
3 r[nt]

+ 2(ns) ( ( [i]r[ t]+(m ) ~ ~ [1]r[ t]+(" ) )t ~ [x]r[ t] (mr) ~ ~ ll] r(

—(«) 'h'" ('"(,) r(,„)—(] „(«) '5'" h'"
) [(. r)

—t2(mr) '5""&"(,) r(..)
—2( r) 't""$"[1)r[. )

2 (())sr'h"" 4" [» r[.,J+(sr) '('" 5" [» r[ ]

+(sr) $'"$"
( ]y[, ]+ ( r) ~ ~ [ ]y[-]+ ( r) ~ ~ [ ]y[. ]
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- k I r I
'h" ('"[,] y[..] - k I

r I
'5" 5

""
[1]y[..]+ 2 I

r I
'('" t'" [1]y[..]+ 2 I

r I
'5 '" ('"[)]y[..]

+ 2S..I r I
'&" &"'[i]y[,i] + 3(mns) [ ] y[ c] (m) [x] y[ 4]

—( ) '[,]y[~]+[] .(s) '[,]y["]—'2'(mns«) '5'"h" [|]y[.4]

+ s(mns) '
g

'" ( '" [,] y[,4] + 3(mrs) '
g

'"
g

'"
[»Y[,4]+ 3(nrs) '& '"

&
' [,] y [4 ]+ ,'(m—rl) '$ '" $" [» y[„4]

+ —', (nrl) '$'" ("[»y[,] —2[] „—(srl) 'g'" E" [»y[,~]
—2i(m) '$'" $'"[,]y[„4]——', (n) '$'"('"[»y[ 4]

+ 2[) js) 5 5 [ ] y[,.]
- (s) '$ '

h
'" [,]Y[.4] + (m) '&" [,]y[..]+(n) '5" [» y[ ] + S (s) 5 [y] y[.&]

+3(mns) '5" [|]y[.~]
—(s) '0' [i]y[..] —(s) '5'"[,]y[, ]]+[,"y]['. )+O( s). (A lc)

We are using the notation

'"(s,s." s~)" = lrf" "'(Irl., lr I.," Irl. ,),
[ ]IV-d([ )gP)/cd[ [&)g»P d ([P)~P)/c df [P)~ P d ([P)~v)/csdf (A2)

in (Al). The field I,')] y[„,] is the nonsingular part of [» y[„,] evaluated at the position of the Pth particle.
The field [[~)] y['„„) contains only those terms in [» y[1&,) which vanish as [~)

I r I
- 0 or whose form is such that

they will not contribute to [» y(„,) ' in a rest system of the Pth particle. We are grouping these terms to-
gether into the field [,3 y('„,) as a detailed knowledge of them is not needed in our analysis.

From the above solution to Egs. (1.45) we find, in a rest system of the Pth particle and keeping only
those terms which become infinite as [~) Ir I-0,

where

y' ' = ["C' [') Ir I
'+O(~') (A3)

(A4)

(p) I[,]CD=0,

I, ] C = -(I/c')e„[-—,'e '
[» y[„]——,'(e /l') [|]y[ i]]—(1/c') [(e"/c)CI'[|]y[o ]] .

We note here that the field II2)] y['~„) does not contribute to [[~'] C „. If we make use of the transformation
properties of the various terms in (A3) and (A4) and compare (A3) with (5.59), we find that in an arbitrary
inertial system,

[2] y[)t, )
' =g a„„[[2]C q(ru) ]re| +Z a,d, [[,] C&(ru) ],d, +O(2),

P=l p=x

where

I, ]C'„=-(1/c') [e 0'[,]y[*„„]u'+(e /1')y["„„]u' —(e"/c) '[,]y[„,]u",
(p) -+
[i]~ [PI ] 2 PI P& fi] ~

The field [,] y[„,] can be broken up as follows:

(p) — (p) - + (p) ext
[x]&[V ] [x] &[@ ]+[i]&[v ]

where [,lp[„,] is that part of, y[„,],
(p) (p) ~ + (p)
[X]~[PI ] [j.] [VI'] [Z] f VI ] ~

which is nonsingular along the world line of the Pth particle, and

(p) ex' ~ (p')
[i]&fr 3 ~ [i] &[a ] .

p '&p

The field [[~)] y[„,] in (A7) can itself be broken up into two parts,

(p) - (p) -e (p) -I
[x] [W&] fl] ~ [PI'] [1]~ [P ]

where [y3 p[p ] is that part of [y]yf»»

(AS)

(AS)

(A7)

(AS)

(A 9)

(A10)
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(p) e (p) sH +(p)
[y] y [pv] [y] y [pv] + [y] y [pv] &

(p) yEH ~ (p) @Ha, p[l] [pv] pvpa [1]y

(p) NH (p) NH (p) NH
[y]y[Vv] [i]y .V [i]yt,

which is nonsingular along the world line of the /th particle, and [(P] y[„,] is that part of [,] y [„,],
(p) I (p) sl + (p)
[i]y [Vvl

-
[~]y [Vv]+ [X]y [Vvl y

(p) sr (p) zi ~ p
[~] Y [pv] ~pvpa [y] Y

(p) ei (p) Jttli (p)
[X]y [Vvl

—[~l y v, u [i]y 11.

which is nonsingular along the world line of the Pth particle. Note that

(A 11)

(A12)

(A 13)

(A14)

(A15)(P)est2 2 (P) - (P)eD(P) —EH +O(~2}[x]y[uv] [i]y [V ]+
where [,]y[„"v]is the electric part of [,]y[„v]. The magnetic part will be denoted by [P]y[~], so we have

p) - e (p) -se + (p) -ue
»[v l [ ]y[~ ]+[ ]y[u ]

Note also that along the world line of the pth particle,

[pv] 3y
" = ,' P a-(—Pe /c')e 'P (u u' —u'u )+O(2')pvpcr

'" y ("„]= --', '"a('"e"/c') '"(II u, —u„u }+O(K'),

y („~]=O(~'),

where

(A16)

(A17)

(A 18)

() () , () (A 19)

Through the use of (A7)-(A19) we can put ((P) C'„ in a form which will prove to be more convenient than
that form given in (A6). Using (A7)-(A19) in A6) we find that

[2]
P C' = -(1/c') P [esp' y*«'u" +(e /I2) y*«'u" + 'a(ese / lc') (u ~+u uPu ) —(e"/c) y«t uP][I] [pv] [&] [pv] P P [&l [Vv]

(A20)
(p) g ext &

& (p) ext [p~]
[&]y [pvl 2 &'p'y[X] y

To the solution (Al} we can always add a term (» y(pp) of the form

(2] y(pp) ( ]pp ]vp +nvp]pp ]pv ]pa) (2] $ L

where

g
P =O(z2) .

Since the field [» y(„,) satisfies the equations

'(» y('„.) =O(~'} (» y('„.)
' =O(1('},

(A21)

(A22}

(A23)

it will not contribute to the equations of mass, motion, and spin to second order. The fact that we can al-
ways add a term of the form (A21) to the solution (A1) is related to the gauge invariance of the field equa-
tions.

APPENDIX B: ON SOLUTIONS TO THF FIELD EQUATIONS (z]y(P»)—- (4] t» +O(1(2)

We shall study the solutions to Eqs. (1.63) for which (,] y(„„)' takes the for)a (I5.59). In doing this we
shall be concerned only with fourth-order accuracy. If all quantities in the equations are expressed as
functions of t instead of as functions of 'P'T or x', we can expand both sides of Eqs. (1.63) in a power series
in c ' and solve the equations step by step with respect to powers of c '. We find, in the neighborhood of
the pth particle,
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[4]) (oo) ( m ~c ) [ ( sf) [2]]( t), + 8 ( ) [2]J(oo), + 8 (+) [2]]( ), 2( I) [2]Y( t)

+4 lr I '[2])'(oo)+4 lr I '[2]J'(ss) («) '('"[2]]'«.) +2lrl '(" [2]]'«»]+'['4]r('8 ) +O(t('),

(P) G Z 2 (P)] I 0 I 0 3 0 — I 0
[4]Y(om) ( I ) [ 2( ) [21)'(ss).m+ 2( ) [2]]'(4m), r + 8 ( ) [2]J(44),4 8 ( ) la]]'(..),4

+2(s)'[2]](. ),4+2(«) '(' [2]]'(«)-'IrI '&' [2]]'(44)-41 I

'&' [2]]'( )s]s+['4]r(o ) O(t(')

(B1b)
I (0) Gl 2 (P)I I 0 — I 0 I 0 — I 0 — I 0

[4]Y(mn) ( tat t c ) [ 8 (~) [2]](44), n 8 (+) [2]](44), + 8 5 n( ) [2]](44),s 8 (~) [2]](ss), n T!(+) [2]]( ),

+ K5mn(+) [a]7(ss), r + 2(tat) [2]](4n)4 + 2 (tt) [2]](4m), 4 25mn( ) [2]](48)4] + [4]](mn)+ O(~ ) '

(B1c)

The notation used in this appendix is similar to that used in Appendix A. In particular, the field
t &y('&„)

contains those terms which vanish as ( ) ~r ~-0 or whose form is such that they cannot contribute to
t-4]y(„,)sv in a rest system of the pth parti. cle.

The field [2]](») in (Bl) is the nonsingular part of [2]](») evaluated at the position of the pth particle.
We find from (B1), in a rest system of the pth particle and keeping only those terms which become in-

finite as (P)~r~-0,

C (p)~r
~

+0(/P) (B2)

where

0)
]Co

[4J ( /~ ) [~ ( 4[2]](44), 4[2]Y(tt), + [2])'(4 ), )] ~

(B3)

If we make use of the transformation properties of the various terms in (B2) and (B3) and compare (B2)
with (15.59), we see that

N N

[4]y(p„)'"= P 'a„, '[«]C'(ru) '],st+ Q 'asd, '[[,]C'(ru) ']sd, +O(t( ), (B4)

where

(p) I r~ I 2&(g)l GiI po p a p a & pa I p o r
]C p ( I c ) Ittt (4] [2JY(pa), p 2[2]Y(pa), p

+ [2]Y(op) a 4 ] [2']Y(pa) r p 2 [2]&(pa) r

(B5)

The field ~~]y(„,) can be broken up in the following manner:

(P) — (P) — + (P) e t
[2]y(Pv) )2]~(](Iv) + [2]~(]Iv)

where [&]'p(][1 ) is that part of t2]y(&„) which is nonsingular along the world line of the pth particle and

(P) ext ~ (P')
L2]~(]I» ~ t2] ) (I[Iv)

P'&P

(Bs)

(B7)

If we make use of the fact that along the world line of the Pth particle,

(u) — 3,Jy(„,) p=O(~ ), (Bs)

then we find that the &~ ]C'„can be put in the form

(0) I /1 / 2%(u)r Gi I pa ext & ext p a ext p a&4]C„=-C~i& S E~ i4'0 ~2]r(pa), ] 2 f2]y(pa), ], + +[2]y(],p) a

pa ext 7 I ext p o r4{] [2]](pa) rat ttp 2 [2]y(pa) r tt tt tt ttp)] (B9)
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To the solutions (81) we can always add a term [4)y(t„,) of the form

I p4&
[4)){pu) (Opp%a+%p))pa Quu Qpa) [4)g

whex'e

(810)

Cl' [4)g{' =0({(').

Since such terms will not contribute to I4~y(I&,~
", they cannot affect the equations of mass, motion, and

spin. to fourth order.

APPENDIX C: A RELATIONSHIP BETWEEN I, AND THE
SIZE OF A CHARGED GENERALIZED

MAXWELLIAN PARTICLE

%e can regard the field g„„over a perfectly iso-
lated region of the continuum containing only gen-
eralized Maxwellian particles as broken up in the
following manner:

tv='9pv+g pv+g gus (C1)

where g~„contains those terms of g„„which are
linear in the quantities (P)~& (P)~& (lf)~& and (&)g

and g„",contains those terms which a,x'e nonlinear'
in these quantities. Note that in an isolated region
of the continuum containing only an isolated gen-
eralized Maxwellian paxtiele at rest we would find,
neglecting Rny spin the pRx'tlele may have

g [.&)
= -(e'/c')(Ir I

' —1/2P)~., Ir I,„
I Ig I84l= g I4~l= "~

g(„)= -6„(m /2c')lrl ', g(„)=g(„)=0,

g(„)= -(mo/2c') Ir I
'.

(C2)

We shall assume that fox the paxticles in any re-
gion of the continuum we investigate,

I eel/c'P «1.
We shall show later that (C4) seems to hold for
generalized Maxwellian particles of physical in-
terest.

The gravitational radius x~ of a generalized Max-
wellian particle will be defined as the distance
from the center of the particle to those points
where, when the particle is isolated and observed
in a rest system,

lg(.~)l= &.t lg('..)I= l.
This distance seems to be a reasonable measure of
the size, with respect to the gravitational field, of
a genera, lized Maxwellian particle, as within this
distance from the center of such a paxticle the field
g(„,& is so strong that the approximation method we
have been using, involving the expansion of the field
g„, in a power series in e, is almost certainly not
valid. At distances much greater than r~ from the
center of such a particle, we will in general find,

We see that the gravitational x'adius of a generalized
Maxwellian particle is proportional to the mass of
the particle.

%e shall define the electromagnetic radius x~ of
a generalized Maxwellian particle as the distance
fx'om the eentex' of the pRx'ticle to those points
where, when the particle is isolated and obsex'ved
in a rest system,

(C8)

This distance is a x'easonable measure of the size,
with respect to the electromagnetic field, of a gen-
eralized Maxwellian particle as within this distance
from the center of such a particle the field g~&„,

&
is

so strong that the approximation method we have
been using in this paper is almost certainly not
valid. At distances much greater than ~~ from the
center of such a particle we wiQ generally find, as
can be seen from (C8), (C4), and the distance de-
pendence of g~[„,

&
in (C2), that

lg[„.) l«1. (CQ)

The expansion of the field g&„in a power series in
x is presumably valid at such distances from the
center of a generalized MaxweQian particle px'o-
vided the mass and spin associated with the parti-
cle are not too large.

From (C2), (C8), and (1.78) we find that

re=4;(1+ ~,'/4P) '~',

= (2[:/c')'~4(e'/4){e c')'~4/'~'

as can be seen from (C5) and the distance depen-
dence of g(~„„) in (C3), that

Ig(pu)l«1 ~

The expansion of the field g„„in a power series in
~ is presumably valid at such distances from the
center of a genera, lized Maxwellian particle pro-
vided the charge and spin associated with the part-
icle ax'e not too lax'ge.

From (C3), (C5), and (1.V8) we find that

(C V)
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If we make use of (C4), a condition which is equiv-
alent to

(c12)

then to a good approximation,

(cls}
We note that the electromagnetic radius o' a gen-
eralized Maxwellian particle, if (C4) can be con-
sidered valid, is proportional to the square root of
the localized electric charge of the particle.

If we introduce the classical electrodynamic ra-
dius r~ associated with a particle of mass m and
charge e,

rc = e'/4we, mc',

Eg. (Cll) can be written in the form

r, = (rcr~ }'~'I'~

(c14)

(C 15)

We shall now attempt to estimate the magnitude of
l. Let us assume that Einstein's theory is correct
and also that generalized Maxwellian particles can
approximate, except near the center of a particle,
real particles. It then seems to the author that a
reasonable value for the electromagnetic radius r~
associated with an elementary particle having a
localized charge equal in magnitude to the electron
charge would be around 10 "-10 "cm. If the au-
thor is correct and this is the order of magnitude
of the electromagnetic radius associated with such
an elementary particle then at distances of the or-
der of magnitude of 10 "cm or less from the cen-
ter of such a particle the electromagnetic field is
so strong that the expansion of g„, in a power
series in ~ is almost certainly not valid. This sug-
gests that the concepts diffuse electric charge,
localized electric charge, force, position, velocity,
etc. are all inadequate for describing the interac-
tion of elementary particles over distances of the
order of magnitude of 10 "cm or less. This seems
to be empirically confirmed. In order to describe
the interaction of the elementary charged particles
of nature over distances of the order of 10 "cm or
less, a more detailed knowledge of the structure of
a particle than that provided through the above con-
cepts seems to be necessary.

If r~ is of the order of magnitude of 10 "-].0 "
cm, then the empirically observed breakdown of
Maxwell-Lorentz electrodynamics at atomic inter-
action distances probably cannot be explained as a
breakdown at such distances of the approximation
procedure we have been using in this paper, the
expansion of g„, in a power series in ~, but proba-
bly must be explained through the inadequacy over
atomic interaction distances of the idealization we
have been using, the use of ideal particles in a
perfectly isolated region to represent real parti-

cles in an isolated region. Another possibility is
that the breakdown of Maxwell-Lorentz electrody-
namics at atomic interaction distances is due to
the importance at such distances of the nonlinear
terms in the forces between elementary particles.
This will be discussed later.

From Eqs. (C10) and (Cll) we see that the value
of r~ discussed above must be associated with a
value pf l pf the prder pf 'magnitude pf 1Q'-10' m.
A value of l equal to 1 earth radius can perhaps be
considered a reasonable lower limit on the magni-
tude of l. Thus we have presented one reason for
believing l may lie near this lower limit. There is
a second reason for believing that l may lie near
this lower limit. It seems to be a necessary con-
sequence of the assumption that generalized Max-
wellian particles can approximate real particles
when the particles are interacting over moderately
small distances.

If we assume that generalized Maxwellian parti-
cles can approximate real particles when the par-
ticles are interacting over moderately small dis-
tances, then the second-order electromagnetic
force (1,96) is expected to dominate any interaction
involving charged particles which interact over
moderately small distances because over such dis-
tances, Maxwell-Lorentz electrodynamics seems to
hold when applied to real particles. This will place
a restriction on l. The reason for this is that we
must in general be concerned with the effects of
higher-order terms in the forces between gener-
alized Maxwellian particles even when the ideal
particles are interacting over distances much
greater than their electromagnetic radii. This is
related to the fact that those terms in the second-
order electromagnetic force (1.96) which would
have been proportional to ~e ~ ~ e~ vanish iden-
tically, and only terms in the second-order force
proportional to ~ee ee/I' and ~~ee ~ ee/l4 re-
main.

If the higher-order terms which would have been
proportional to ~~~e ~'~e ~"~e~ do not disappear
from the interaction force between generalized
Maxwellian particles, then the ratio of these
higher-order terms to the second-order interaction
force, over small interaction distances, is expected
to be of the order of magnitude of (re/r)'(I/r)'. The
quantity r is the distance between two interacting
particles. The above ratio is not necessarily small
for small interaction distances. This can be seen
from the fact that if l lies between 1 and 10 earth
radii then this ratio is equal to unity, for particles
having a charge equal in magnitude to the electron
charge, at distances of the order of magnitude of
10 2-10 ' cm.

It should be pointed out that we cannot really be
sure of the order of magnitude of any of the higher-
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~ee~/+2[2 r 2/f2 + 1P 42 (C 16)

and both (C4) and (C12) are satisfied.
Is there an experimental means of measuring /?

One might expect that a modification of the Caven-
dish two-sphere experiment, an experiment which
has bee~ used to test Coulomb's law to great ac-
curacy, might provide a means for measuring /.
To the best of the author's knowledge the most
precise experiment of the Cavendish type was per-
formed by Plimpton and Lawton in 1936." In this
experiment it was found that if the force I acting
between any two elementary charges e, and e, is
given through the equation

E = (e,e,/4w ) e/rr"', (C17)

then q' must be less than 2x10 '. The quantity r in
(C17}is the distance between the two elementary
charges and r is an undetermined universal con-
stant.

A simple calculation will show that if the force
E between any two elementary charges is given
through the equation

E = (e,e,/4me, )(1/r' —1/4P), (C18)

then the Plimpton-Lawton results mean that / is

order terms in the forces acting on generalized
Maxwellian particles unless we actually calculate
the terms using the procedure developed earlier in
this paper. If we do this there are reasons for
believing that the higher-order terms in the force
acting on a generalized Maxwellian particle which
would have been proportional to ~~~e~ ~~'~e~ ~ "&e~

vanish identically, while those terms proportional
to e~ ~ ~e~ ~ e~ ~ e do not." If this is so
then the ratio of these latter higher-order terms to
the second-order force, over small interaction
distances, becomes the significant ratio. It is to
be expected that this ratio will be of the order of
magnitude of (re/r)'(l/r)'. Note that if l lies be-
tween 1 and 10 earth radii, then this ratio is equal
to unity, for particles having a charge equal in
magnitude to the electron charge, at distances of
the order of magnitude of 10 '-10 ' cm.

A more detailed investigation and discussion of
the higher -order terms in the forces between gen-
eralized Maxwellian particles and a discussion of
the possible connection of these terms with the ap-
pearance of quantum effects will be presented in a
later paper.

The lower limit on / discussed in this appendix
must be considered as speculative and as only a
rough order of magnitude estimate. Note that if we
consider 1 earth radius to be a lower limit on /,
then for generalized Maxwellian particles having a
localized electric charge equal in magnitude to the
electron char ge,

APPENDIX D: INTERACTION OF GENERALIZED
MAXWELLIAN PARTICLES

When generalized Maxwellian particles of charge
e, mass m, and negligible spin are separated by
distances of the order of magnitude of r, or less-
r, is the greater of the two lengths ra and re,

ra =2Gm/c', re =ro(1+ra'/4l') ' ', (D1)

where

=(2G/e2}~~4(e /4pf e)~~4t' (D2)

and will be known as the effective radius of a par-
ticle —they cannot be considered to interact even
approximately as Maxwellian particles. Over such
distances the approximation procedure we have
been using in this paper, involving the expansion of

g„, in a power series in a, is almost certainly not
valid. We cab say nothing about interactions over
such distances. This has been discussed in Appen-
dix C.

In this appendix we shall assume that Einstein's
theory is correct and also that elementary parti-
cles, atoms, and atomic ions can often be repre-
sented without too much error, at least at macro-
scopic distances from the center of each particle,
by generalized Maxwellian particles. We shall
also assume that / is an astronomical length of the
order of magnitude of several earth radii. This

greater than 4.6 miles. The force E in (C18) is the
force, to lowest order, acting between two charged
generalized Maxwellian particles at rest. Since we
already have reasons for believing that / is greater
than 4.5 miles we must regard the Plimpton-Lawton
experiment to be of insufficient sensitivity to de-
termine /. If the sensitivity of the Plimpton-Lawton
experiment could be increased by a factor of 10',
then the experiment would have a chance of detect-
ing the effects of the diffuse electric charge sur-
rounding an elementary particle and of determining
/. Whether such sensitivity is possible today the
author does not know. The author also wonders if
gravity effects and effects associated with the mi-
croscopic structure of matter may not complicate
the experiment when performed to such accuracy.

Neglecting these complicating factors, one finds
that the change in the voltage difference o between
the inner and outer spheres of the experiment,
when the voltage on the outer sphere changes by V,
is given, to the lowest order in (a/l)', through the
equation

t =,(a'/f')(1 —&'/a') V, (C19)

where a is the radius of the outer sphere and b is
the radius of the inner sphere. In the Plimpton-
Lawton experiment a was 2.5 ft, b was 2 ft, V was
3000 V, and v was found to be less than 10 'V.
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latter assumption means, as we see from above,
that the various values of r, associated with ele-
mentary particles, atoms, and atomic ions are all
microscopic lengths. This also means, as we see
from (1.79)-(1.98), that the diffuse electric charge
associated with such particles will in most cases
produce only a negligible interaction among the
particles. This can be attributed to the relatively
large value of l and to the fact that, in contrast to
the localized electric charge, the diffuse electric
charge associated with a generalized Maxwellian
particle does not produce a radiation field, a field
which depends on the particle's acceleration in ad-
dition to its position and velocity at a "retarded"
or "advanced" time. In general, only through
cooperative effects involving many particles is it
possible for the diffuse electric charge associated
with elementary particles, atoms, and atomic
ions to give rise to any observable effect.

In this paper we are also assuming that the dis-
tribution of positive and negative charge in the uni-
verse is such that there are no cooperative effects
on a cosmic scale which preclude the existence of
isolated regions. This must be so as in this paper
we are assuming isolated regions exist in the uni-
verse inside of which the contribution to the elec-
tromagnetic field produced by any charge outside
the region is negligible. Of course within some of
these isolated regions, cooperative effects asso-
ciated with particles within the region itself may
allow the diffuse electric charge associated with
these internal particles to produce an observable
effect within the region. In other regions, because
of the distribution of positive and negative charge,
cooperative effects of such a, magnitude presumably
do not exist and all macroscopic observable elec-
tromagnetic interaction can be described through
Maxwell-Lorentz electrodynamics. Maxwell-
Lorentz electrodynamics of course will be valid
throughout any isolated region which is sufficiently
small so that all interpartiele distances are neg-
ligible in comparison to l.

It should be pointed out that a region of cosmo-
logical dimensions cannot really be considered
isolated and the results of our idealization (the use
of ideal particles in a perfectly isolated region of
the continuum to represent real particles in an
isolated region of the continuum) when applied to
such a region must be regarded with caution. Fur-
thermore, it should be pointed out that although we

may hope to approximate, over a finite and not too
large region of the continuum, an exact nonsingu-
lar solution to the field equations by a solution in
which real particles are represented by ideal par-
ticles, if we extend this solution in either a tjme-
like or a spaeelike direction, errors may accumu-
late, and over the extended region the solution may

(e)mb)+~ (e)F
V P

(n)P —(P)[ (e/c)u &P
P Lap)

', a(e'/4m', c')-(u-„+ u pu'u„)],
where

(D4)

(D5)

(ng)e x t g o ')g (D8)

The effective electromagnetic field associated with
the pth particle can be shown to satisfy the elec-
tromagnetic field equations

(P)F .v + (P)J (P)F"
LPV) I 0 P ~ LP I P)

where

(n)J" —0)J~ +(P)J"D
V P V~

and

(D)JI. -(0) e 5 (~~ (P)
$ ~) (P)uu d((P) ~}

(»)

(D8)

(D9)

9'~ JD -(~~JD +(~~J~
p p ret + padv~

Q)J"a
p r e t(adv)

=")a„,(„,) ""[-(ec/8vl')u„(ru) ']„,(„,).
The quantity(~~J& is the current associated with
the localized electric charge of the pth particle.
The quantity ~ J„will be known as the effective

(DIO)

diverge radically from the nonsingular solution
we were attempting to approximate.

Are there any observable effects of the diffuse
electric charge associated with generalized Max-
wellian particles which could provide a test of our
work and of Einstein's relativistic field theory?
Because of the presumed rather large value of E,

we would in general expect observable effects of
the diffuse electric charge only in astronomical
phenomena. As is well known, such phenomena
are often very difficult to compare with any theory
because of their great complexity. However that
may be, examples of astronomical phenomena,
some of whose properties might be correlated with
the diffuse eleetrie charge associated with charged
particles, are the magnetic fields of the sun and
planets and the weak interplanetary field of the
solar system. "

If one wishes to investigate the consequences of
the equations which describe the interaction of
generalized Maxwellian particles to second order,
Eqs. (1.95)-(1.98), it is convenient to introduce
the concept of the effective electromagnetic field
produced by a generalized Maxwellian particle.
We shall define the effective electromagnetic field
~ F t-„,) associated with the pth particle as follows:

(P) F 9)FL + ~(~)F~ (D8)

In terms of such fields, Eqs. (1.95)-(1.98) take the
form
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B„=( po/4 m) (IA /r') 2 c os 8,

Be =(p/4w)(I, A/r')sine, B =0. (D12)

We are using spherical polar coordinates r, 8,
and y in (D12) where the origin of the coordinates
is at the center of the current loop and 8 is mea-
sured from an axis perpendicular to the plane of
the loop and running through its center. We are of
course neglecting terms of higher order in a/r.

The effective magnetic field 5n produced by the
diffuse electric charge associated with &he particles
circulating in the loop is given by

B„=-(p.,/4m)(IA/4l'r) 2cos 8,

Be =(po/4v)(IA/4l'r)sin 9, B~ =0.
(D13)

We are again neglecting terms of higher order in
a/r From. (D12) and (D13) we find for the ratio of
the magnitudes of the two fields B~ and 5D at a
distance r from the center of the loop

B&/B~ = r'/4P (D14)

We conclude from (D12) and (D13) that if the
magnetic field of the earth is produced by circu-
lating currents in its interior then these currents
will not only give rise to a field which falls off at
large distances from the center of the earth in-
versely with the distance cubed, but also to a
field which falls off inversely with the distance
itself. From (D14) we may surmise that at dis-
tances from the center of the earth less than about
2l the field produced by the circulating localized
electric charge inside the earth will be dominant,
while at distances greater than about 2l the field
produced by the associated circulating diffuse elec-
tric charge will dominate. Our knowledge of the
magnetic field in the vicinity of the earth suggests
that l cannot be less than several earth radii.

More realistic models of the circulating currents
in the earth's interior can be constructed and the
properties of the generated magnetic fields com-
pared with the earth's magnetic field. This com-
parison would certainly not be easy to make as
one would have to take into account the effects of
the plasma surrounding the earth. Nevertheless a
more thorough investigation of the earth's magnet-

electric current associated with the diffuse elec-
tric charge of the Pth particle. Note that

(P)JD 1 (~)JD (D11)

From Eqs. (D4)-(D10) it is ea.sy to calculate the
effective magnetic field outside a circular current
loop. If the current associated with the localized
electric charge flowing in the loop is denoted by
I and the area of the loop is denoted by A, we find
that the effective magnetic field 5~ produced by the
circulating localized electric charge is given by

ic field and other magnetic fields of astronomical
dimensions might provide observational evidence
for Einstein's theory.

APPENDIX E: PHYSICAL APPLICATION OF LORENTZ-
INVARIANT GRAVITATIONAL THEORY

where

(E2)

or in a different notation,

(p)
~

s (p)
~ s& ~&) ~xt

L2 j&(44) ~

where

"'~"=d(~'t')/cdt.

(E3)

(E4)

Vfe see that with slowly moving gravitationally
bound or nearly bound particles the velocity de-
pendent terms in Eqs. (1.108)-(1.115) are of the

We shall show that the velocity-dependent terms
in Eqs. (1.108)-(1.115) are not physically meaning-
ful when the velocities of the interacting general-
ized Newtonian particles are small with respect to
the velocity of light and the particles are bound or
nearly bound by their mutual gravitational attrac-
tion.

The equations which describe the motion and
structure of interacting generalized Newtonian

particles can be expanded in ~~ther a power series
in ~ or, if the quantities in the equations are ex-
pressed as functions of t rather than ~~)w or x4, in
a power series in c-'. We shall assume here that
such power series converge. We note that the
mass m, which is of the second order in ~, can
never appear alone in the equations which describe
the structure and motion of interacting generalized
Newtonian particles but can only appear in combi-
natjpn with c as c m . This fpllpws frpm the
general form of the solutions to the homogeneous
equations given in the main text. It means that the
equations 'of motion (1.108)-(1.110), which are cor-
rect to order five in v, will also be correct to or-
der five in c '. It also means that the field equa-
tions (1.111)-(1.115), which are correct to order
three in ~, will be correct to order three in c '.
We are assuming that any charge or spin which
might be associated with the generalized Newtonian
particles we are investigating can be neglected.

Under the above-mentioned conditions, assuming
the generalized Newtonian particles are not too
near each other, generalized Newtonian particles
interact to lowest order in c ' as Newtonian par-
ticles. This follows from Eqs. (1.108)-(1.123) and
arguments given above. It means that for slowly
moving bound or nearly bound particles,
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same order of magnitude as higher-order terms
in ~ which were neglected in arriving at the equa. -.
tions. This means that the velocity-dependent
terms in Eqs. (1.108)-(1.115) should not be con-
sidered as having a physical meaning when the
velocities of the interacting generalized Newtonian
particles are small with respect to the velocity of
light and the particles are bound or nearly bound

by their mutual gravitational attraction.
If we wish to get, at each order of approxima-

tion, physically meariingful equations which de-
scribe the motion and structure of slowly moving
generalized Newtonian particles it seems reason-
able to assume that we should solve for these equa-
tions step by step with respect to powers of c ' not

If we wish to find the equations of motion up to
a certain order in c-', it will often be convenient

to first solve for the equations up to an order in ~
which is known to give equations accurate to the
order in c-' desired, and then to expand these
equations in a power series in c ' keeping only
terms up to the order in c-' sought. This is in
fact how we arrived at Newtonian gravitational
theory, Eqs. (1.117)-(1.123), which is accurate to
lowest order in c '.

In summary we may say that in contrast to
Lorentz-invariant electromagnetic theory, Lorentz-
invariant gravitational theory is in general only
physically meaningful. when applied to weakly inter-
acting ideal particles moving with velocities near
the velocity of light. " Both theories are of course
inapplicable when the ideal particles involved are
very close to each other. This has been discussed
in Appendix C.

~C. R. Johnson, preceding paper, Phys. Rev. D 3,
295 (1971), hereafter referred to as paper I. It is as-
sumed that the reader is familiar with paper I. The
notation used in the present paper, hereafter referred
to as paper II, will be the same as that used in paper I
except that in paper II, when we refer to an equation in
paper I, we shall place a I in front of its number. Thus
in paper II Eqs. (I1.2) refers to Eqs. (1.2) of paper I.

2In the case where the spin is zero, Eqs. (1.69) are
just the usual geodesic equations, to second order in z,
for the motion of a test particle in a gravitaional field.

3A relationship between the effective-size of a particle
and the magnitude of l is discussed in Appendix C. In
Appendix C we give reasons, based on this rel.ationship,
for believing l should be an astronomical length.

A more thorough discussion of the conditions under
which this is true is given in Appendix D.

~Note that radiation reaction terms do not appear in
the fourth-order equations of motion satisfied by inter-
acting generalized Newtonian particles. This- is because
the acceleration of such particles is always of the second
order in K [this follows from the second-order equations
of motion (1.62), equations which hold to second order
in v but contain errors of order four in v], so that radi-
ation reaction terms, if they are to appear at all, can
only appear as physically meaningful terms in the equa-
tions of motion of sixth or higher order. To understand
why this is so, remember 1-4 ~t » is proportional to the
product of two masses [see Eqs. (1.64) and Eqs. (1.59)—
(1.61)l and that mass in our work has been chosen to be
of order two in ~. If we were to investigate the gravita-
tional radiation associated with interacting generalized
Newtonian particles we would want to investigate the
radiation reaction affecting the motion. In order to do
this we would have to find the equations of motion sat-
isfied by the particles to a higher order of approxima-
tion than fourth. In this conclusion we agree with Kerr
[R. P. Kerr, Nuovo Cimento 13, 492 (1959)] and disagree
with Havas and Goldberg [P. Havas and J. N. Goldberg,
Phys. Rev. 128, 398 (1962)], who feel that a physically
meaningful radiation reaction term may appear in what
we call fourth order.

6It is shown in Appendix E that the velocity-dependent
terms in Eqs. (1.108)—(1.115) can in general only be
considered physically meaningful if the velocities of the
interacting particles are not small with respect to the
velocity of light or the particles are not bound or nearly
bound by their mutual gravitational interaction.

If the interacting generalized Newtonian particles are
moving with velocities which are low with respect to the
velocity of light and are bound or nearly bound by their
mutual gravitational interaction the quantity which is
most natural to use as an expansion parameter when
seeking equations describing the motion and structure
of generalized Newtonian particles is not ~ but c ~. If
c ~ is used as an expansion parameter and all quantities
are expressed as functions of t instead of as functions
of ~ )'7 or x4, one expects to get physically meaningful
equations applicable to slowly moving generalized New-
tonian particles at each order of approximation. It is
shown in Appendix E that to lowest order in an expan-
sion in c ~ Eqs. (1.117)-(1.121) are the equations of mass
and motion satisfied by such particles. We are of course
assuming that charge and spin can be neglected in this
lowest order of approximation.

~G. Bandyopadhyay, Science and Culture (Calcutta) 25,
427 (1960).

A. Papapetrou, Proc. Roy. Irish Acad, A52, 69 (1948).
~M. Wyman, Can. J. Math. 2, 427 (1950).
Subsequent investigation has shown that this is indeed

what happens.
Recently, more precise experiments have been per-

formed. These experiments seem to be more sensitive
than the Plimpton-Lawton experiment by a factor of
about 103. See, G. D. Cochran and P. A. Franklin, Bull.
Am. Phys. Soc. 13, 1379 (1968); D. F. Bartlett and E. A.
Phillips, ibid. 14, 17 (1969).

The author wonders whether some of the properties of
recently discovered astronomical phenomena such as
quasars and pulsars can be explained, at least partially,
through effects associated with the diffuse electric
charge which may be associated with elementary par-
ticles. Over astronomical distances greater than about
2l, this diffuse electric charge will cause like charges
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to attract each other and unlike charges to repel each
other. This may give rise to some observable astronom-
ical effects which cannot find an explanation through Max-
well-Lorentz electrodynamics.
' This fact does not seem to be realized in some of the

earlier works on Lorentz-covariant equations of motion
in Einstein's gravitational theory. See P. Havas and
J. N. Goldberg, Phys. Bev. 128, 398 (1962), and S. F.

Smith and P. Havas, Sid. 138, B495 (1965). In a paper
on Lorentz-covariant equations of motion in gravita-
tional theory, Carmeli [M. Carmeli, Nuovo Cimento
55B, 220 (1968)] arrives at some of the same conclu-
sions we have in this appendix. His technique for find-
ing equations of motion, however, has all the weak-
nesses of the other techniques mentioned in Sec. I of
paper I.


