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E (z) can be related to E&(z) through the recursion re-
lation

(n —1)E„(z)=e —zE„((z), n =2, 3, . . .

Then, E&(-IzI)= —.Ei(IzI) can be used to define E&(z) for
z =-Iz

I
& 0, hence, alla (-Iz I). In turn,

g g

Ei{z)= P dt-
t

is defined for all -~ & z &+; see V. Kourganoff, Basic
Methods in Transfer Problems (Oxford Univ. Press, Ox-
ford, England, 1952), p. 254.

27Because of the large-s& saturation assumption in Eq.
(9), this validity to the order of inverse logarithms is
also characteristic of the popular Poisson distribution
for o„generated in multiperipheral models, see e.g. ,
Eq. (3.17) of Ref. 7.
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rounding Eq. (81).
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(b) H. Abarbanel et al. , ibid. 22, 500 (1969). In Ref. 30(b),
a nonscaling form A (1/Q )(s/Q )~ ~ is obtained. This
form for A is that derived with point vertices from AFS
[Ref. 7, p. 912, Eq. (4.12)] by assuming that the Q2 de-
pendence is the off-mass-shell hadron, to dependence.
It would follow that
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With the inclusion of photon spin, still only one structure
function scales [and az /o~-Q f(p)]; see G. Altarelli and
H. Rubinstein, Phys. Rev. 187, 2111 (1969).
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We use quantum-statistical mechanics to calculate the distribution of the spins of the reso-
nances in the dual-resonance model at a fixed high energy squared (s). The resonances are
concentrated in the region of spin &v s, with the distribution eventually falling off exponential-
ly. The profile f'unction of the Veneziano partial-wave amplitudes is mainly controlled by the
spin distribution of the resonances, and not by their individual couplings. This spin distribu-
tion is largely similar to that in the statistical model of nuclei.

I. INTRODUCTION

One of the most characteristic features of the
dual-resonance model' is the very rapid growth of
the total level density n(s) with increasing energy
squared (s}.' For large s, it has the asymptotic
form"

n(s)ds —s"'e' 'd s,
where

D+ 3 Dn' "'
b=—

2 ' 6
Q= 277

and D = 4 in the usual Veneziano model, ' but may be
larger. ' Thus, ' for

D=4, 5, 6, 7, . . . ,

e= -~, -4, -&, -5, ... ,

g '= 180, 174, 159, 147, ... MeV.

The statistical bootstrap model for hadrons' also
gives a level density of the form (1.1), with
a ' = 160 MeV (Ref. 7) and b & -~z(Ref. 8). The
similarity of these two results may suggest that
the statistical bootstrap and dual-resonance models
are closely related. "" It is therefore interesting
to see if the two models agree in other details of
their predictions.

In this paper, we consider the distribution of
angular momentum (f) among the resonances of
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(1.2)

the dual-resonance model at a definite mass Ws,

as the first step in a comparison with the same
distribution in the statistical bootstrap. Some re-
sults for the dual-resonance model have already
been obtained, but not the complete distribution.
Qy applying the Darwin-Fowler method of statisti-
cal mechanics to the harmonic oscillators of the
Veneziano model, "Corgnier and D'Adda" found
that the mean and standard deviation of the square
of the resonance spins behave like

&t~) -=3&l,')- —,'s

H =H+ a' "a' ' (2 3)

including an extra scalar (spin-zero} oscillator
mode, except when a(0}= 1. The scalar mode
does not change the main features of the l distribu-
tion, and so we shall use (2.1) instead.

B. The Statistical Method

The X„"'are the occupation-number operators for
the oscillators.

More completely, H [Eq. (2.1)] should be replaced
16

(1.3)

respectively.
Fritzsch" has also considered this problem us-

ing statistical methods, which have also been ap-
plied to the Veneziano amplitude by Chang, Freund,
and Nambu. " By taking into account the Bose na-
ture of the quanta, we calculate the distribution of
t,, and of l for the factorizing resonant states of
the Veneziano model. Our method counts the time-
like (spinless} excitations correctly; it does in-
clude the ghost states, and does not allow for the
linear dependences of some of the states, ' but it is
unlikely that these will greatly influence our main
conclusions. "

II. CALCULATION OF THE ANGULAR

MOMENTUM DISTRIBUTION

A. General Method of the Operator Formalism

The resonances of the Veneziano model are the
eigenstates of an operator H (the "Han&iltonian"),
with eigenvalue «(s}, an integer. H is built from
an infinite set of four-vector harmonic oscilla-
tors":

tr(He "/r)
tr( ///T) t- (2.4)

where the trace is over all of the oscillator states.
This gives

8 &&0 k k)exp ——(n,"'+ n'"
k 1 ( (k)

g()&
I0

The oscillator excitations that label the reso-
nances can be regarded as forming a statistical
ensemble, whose Hamiltonian is the operator H.
Then n(s) is like the energy, and the statistical
average of a quantity at energy a(s) = N can be
evaluated by replacing the sum over states at a
fixed energy N by a sum over states of al/ ener-
gies, provided that we include a weight of e "/r/

tr(e "/ ) in performing the average. This is the

normal device of statistical mechanics, in pass-
ing from the microcanonical to the canonical
(Gibbs} ensemble.

The temperature T is defined by the requirement
that the average of H coincides with N:

H= P Pea&'"a&„"
P=Ok=l

3 (&0 T as T-~. (2 6)
(2.1)

p. =+, —,z, or0,
where

g(k) ~ Z g(k)
(k) ya, =

= p gust~&".
/ =ok=1

We label the states a~+"i0) to be diagonal in L„
the z component of the angular momentum:

So

T —(3/2«')'/2 WN (2.6)

WN~8 22

If the scalar mode [Eq. (2.3)] is included, the
product in Eq. (2.5} is multiplied by
[1 —exp(-I/T)] ', and then

The operator I., is then"

I ~ (ao&&+ a(&&& a& &+a( &)s ~ x y y x
k=1

(cg(&& sl(&&)
k=1

(2.2)

so the effect on T is negligible asymptotically.
Once the correspondence between the microca-

nonical and canonical ensembles is established,
the average of any operator A over the states with
a definite energy N, &A)„, can be calculated ac-
cording to the formula
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tr(/is "'T)
(&&»= ~( «/T-), (2.7)

where the trace is taken over all the states of the
system. The validity of Eq. (2.7) depends upon the
system possessing a large number of degrees of
freedom and so having a high degeneracy, condi-
tions that are clearly satisfied by the Veneziano
spectrum g

(2.9) becomes a Fourier integral and the integral
equation (2.12) is replaced by

ir (() f, d=o(, T)e "'e (2.13)

This integral can be evaluated by contour integra-
tion, distorting the contour to encircle the lower
half n plane, and explicitly performing the sum
over the pole residues. This gives

C. The Angular Momentum Distribution

1
o (I ) =—sech' ~

4T 2T ' (2.14)

1 =-N
gg

We first evaluate the average of the operator
e' ', which is equivalent to finding all moments
of the distribution. By definition,

(«4g(Lg) p o (I ) 4 «L(gg (2.9)

We find the distribution in I, by first obtaining
that in /, . Let the proportion of oscillator states
with eigenvalue l, of the z component of angular
momentum be o»(l, ) at (k(s) = N, with normalization

o»(l, ) = 1. (2.8)

where the coefficient has been fixed by normaliz-
ing o»(I, ) to be in accord with Eq. (2.8). In Fig. 1,
we compare the spin distribution obtained using
the analytic expression Eq. (2.14) with that found

by a numerical evaluation of Eq. (2.12). It is seen
that Eq. (2.14) provides an excellent asymptotic
approximation, so that in the following we shall
use analytic expressions obtained from Eq. (2.14).

Now let p»(l) be the fraction of oscillator states
at n(s) = N with spin I, and p»(l) that fraction with
some definite z component of this spin, so that

By our previous considerations [Eqs. (2.1), (2.2),
and (2.7)],

P p»(I) = 1.
l=o

(2.15)

tr(H((gLge HIT)-
( )N tr( H/T)-

Then o»(l, ) has contributions from all resonances
of spin l ~ l, .

~eff+(-k!T+k &) n (-A/T-fa)e-
f[

~

((g=o g =o

k=i ( (I-e "T) ' glvlng

(2.10) ],0

so

(e' Lg)„= G(n, T)e '~"' (2.11)

0.9

0.8

where"
oo 1

G(u T) = TT 2e-~~~ cosa + e-»~~ '
0=1

The distribution function in l, is then found by
inverting the Fourier series, Eq. (2.9}. With Eq.
(2.11),

0.7

0.6

0.5
b

0.4
cf

e-(,n' /3)T
o»(l, ) = (fo. e ' 'gG(/k, T),2' (2.12)

0.5

0.2
which can be evaluated numerically, or analyti-
cally in approximate form. In the latter case, we
replace G(&, T) by"

O. I

20
I

40 60 80

«o(T
sinh(xnT) '

where C(T} is a function of T only. " Then Eq.

FIG. 1. Graph of the quantity 4ToN(l, ) as a function of
l, at a fixed high energy, giving the fraction [o&(l,)] of
states with a given spin component, l, . The solid curve
is the analytical approximation, sech2(l~/2T); the dashed
curve is the numerical evaluation. Here N =2125.
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p„(l) = o„(l)—o„(l+ 1). (2.16) [ [
)

[
) )

With Eq. (2.14), the spin distribution of the res-
onances at o(s}= N is given by

0.5—

(I)
scr„(l,)

L» 1

1 sinh(l/2T)
4T~ cosh~(l/2T) ' (2.17)

tj}

o 04
C3

0.3
C)

It is convenient to make use of the impact param-
eter b = 21/WN, and then 4T'p„(l) is a universal
function of b:

0.2
Cf)

1 sinhcb 1
4T' cosh'cb 4T' (2.18)

O. I

where c = v/2&6, and N is measured in units of
(o.') ' =1 GeV'. Although we use an impact param-
eter, we remind the reader that p„(b) is the frac-
tion of resonance which can be found at b and not
the profile function of the partial-wave amplitudes,
the latter being related to p„(b) in a nontrivial way.
The direct dependence of p on b given by Eq. (2.18)
enables it to be related to this profile in the same
way at all energies, and will be discussed in Sec.
III. In Fig. 2 we show the b dependence of p (at a
fixed value of N), and also of p = (2l+ 1)P, which
is the total fraction of states with spin l = —,'b~¹

0 0.2 0.4 0.6 0.8 I.O I.2

b {fermi)
FIG. 2. Curves I are 8Tc p plotted against the impact

parameter b, giving the fraction of resonances at b. The
solid curve is the analytical approximation, (7r/' 6)f(b);
the dashed curve is the numerical calculation, with N
= 2125. Curve II is 8cTp, giving the total fraction of
states at b, showing only the approximate form, ~t7r~bf (b).

l(b)= Jd) d(! )=)d 'J d'b d f(d )

D. Details of the Distribution

sinh(2cb) —2cb
cosh(2cb) + 1

(2.21)

(2.19)

For small values of l, p„(l) increases linearly
with l:

p„(l) =8T, for l«T (but lwO),
l

The leading trajectory (l = N) has b = 2WN, so we
see that I(b) approaches unity rather rapidly when
N is large. For example, 90% of all the states
have a spin below

and then rises to a maximum at

or
l = 0.51'
b=0.20 F

for P and
0.77 vN

0.30 F
for p.

which corresponds to an impact parameter of

b = 0.73 F.

(2.20)

For larger values of l, the distribution falls ex-
ponentially,

p„(l)-,e "'r for l »T,1
1.0

I [ ) [

)

[ l [ I

t

t [ I

and not as a Gaussian. "
With our normalization, Eq. (2.15), the total num-

ber of spin-l resonances at o)(s) = N is determined
by the total level density [Eq. (1.1)], and so in-
creases very rapidly with ¹ There is a strong
clustering of resonances below a parabola dis-
placed by AL -FN away from the peak at L, -F¹
In particular, there is a relative linear depletion
of low-spin resonances.

In Fig. 3 we show the behavior of the cumulative
distribution function I(b), which gives the proportion
of the states whose spins lie below l = —,'bvN, from
Eq. (2.18},

0.8

I(b)
0.6

0.4

0.2

I

0.2 0.4 0.6 0.8 I.0 I. 2

b (fermi)

1.4

FIG. 3. Graph of the cumulative fraction of states,
I(b), that occur below impact parameter b, as a function
of b. The 90% level is indicated.
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150

100

(b}~0.43 F

for the average radius.
Finall wy, we can use our approximation to evalu-

ate the moments of the distribution. For
Eq. (2.14) gives

' u ion. or example,

50

90%
50%

(L,'}= a»(l, )l,'dl,
N

N

dl l 'sech' ~
4T -N ' ' 2T

50 100 150

N (GeV )

200

FIG. 4. Pa
the states

Parabolic contours enclosing 50% a d
es on the Chew-Frautschi plot of the V

i an 90 of
es ' o e eneziano

e asymptotic contours have been cont d

as dashed lines down

con menue

ines own to low energy. Every tenth Re
trajectory and th 'hear resonances at one energy

en egge

shown.
e gy, are

Half of all thethe resonances occur in a ring between

l = 0.69vN and 1.42WN

or
b= 0.27 to 0.56 F,

centered around

or

b= 0.42 F.
InFi. 4we r'g. p esent the Chew-Frautschi plot with

the parabolicp olic contours which enclose 50% and 90%
of the resonances. The conc tr t'en a &on of resonances
at low spin is evident.

The aver e s '
ag pin of the resonances given b E

(2.18) is
n y q.

(l}= dip(t)
0

giving"

(l) = 1.1&M

1=-,N as N-~

as previously found by Corgnier and D'Adda.

E Average Number of Excited Quanta

For later usese, we gave the average number of
s = . It was ob-oscillator quanta excited at n(s}=N.

ained by Fritzsch, "from the Bose distribution,
and thxs eventually also follows from our Eq. (2.V),

with the operator A equal to

(s((k) ~ cg(k) ~ cg(k)+ st(k)
)(l =1

0

the total-number operator. The average is

(»»=4K a)rN ek/T

-4TlnT as T-. (2.22)

III. DISCUSSION

A. Partial -Wave Couplings

The form of the spectrum p„(l) has implications

partialindividual internal resonances in the
wave of a two-body scattering amplitude. For sim-
p icity, we take the 2-2 scattering amplitude
—B(-n(s), -n(t)), for which the residue of the
resonance poles in the tth partial wave at n(s) = N

1
1 [n(t)+ 1][n(t}+2].. .[n(t)+ N]

2Q
P) (z,)dz, . (3.1)

The behavior of P,'l~jpN', , xs rather complicated, and

Fram ton"
has been investigated (as N-~) b Ny ambu and

rampton" for the Lovelace amplitude" for

1) 1J 7f 7f and I'(1 —n (s) —n (t))

We adapt their results to our amplitude for scalar
bosons. For small t (l «N) P (l) is independento, and varies mainly as a power of ¹

P»(t) —const
(lnN)' '

(3.2)
d = max(n(0) —1, —3 —2n(0)]. ,

and & = 1 or 2 " At fwed N, this form remains ap-
proximately, up to l-vN lnN d thn, an then P»(l) de-
creases exponentially ' Th' t ff ' '

1xs cu o in l is similar
to what we find foror P», within a logarithmic fac-
tor see Fig. 2 and Eq. (2.18)], and is a conse-



3182 CHIU, HE IMANN, AND SCHWIMMER

quence of the fact that the strong interactions have
a finite range.

If we define g„(I) to be the average coupling of a
spin-l resonance to the external particles, then
P„(l) is related to p„(I) by

n(N)p„(I)g„'(I) = P „(I). (3 3)

Comparing Eq. (3.2) with Eq. (2.18), we see that
P„(l) and P„(l) behave rather similarly, except for
two effects which are relatively small: (a) the lin-
ear suppression of low-angular-momentun states
and (b) the lack of a logarithmic dependence in the
"radius" of p„(I)."

From this comparison, it follows that the cou-
pling g„(l) varies only rather slowly with I. It
seems that the Veneziano model chooses to imple-
ment the characteristic form for its profile func-
tion almost entirely through structure in the spec-
trum rather than in the couplings.

It is interesting to speculate on the possibility
that the unitarity corrections would act in a simi-
lar way, e.g. , absorption effects would be enforced
through the disappearance of the low-lying states
from the spectrum.

B. The Statistical Model

(3.4)

In the Introduction we remarked on the similarity
between the statistical bootstrap model' and the
dual-resonance model, in their predictions for the
total level density, and possibly also for the pre-
dominant decay mode of high-spin massive res-
onances. " The angular momentum distribution of
the statistical bootstrap is not yet known, but there
is an analogous problem in nuclear physics" (al-
though it is of course not a bootstrap scheme).
This was first stressed by Lovelace. '

The nucleons are regarded as a free Fermi gas,
confined to a spherical volume of radius R, with
equally spaced energy levels (spacing 6) into which
the individual nucleons can be excited. The total
level density is found by counting all possible com-
binations of excitations, and is evaluated exactly
as in the Veneziano model. ' The density of levels
at excitation energy E is"

(I &) -(/+ I/2) /2yT
2 (3.6)

This is also given by considering the addition of
the components l, as a random walk. 2~ Here,

Sy = 5m~AR

the rigid-body moment of inertia of a nucleus of A.

nucleons of mass m„.
The distribution (3.6) is somewhat similar to the

Veneziano case (2.17): linear for small I, and with
a sharp cutoff for large L. The shape of this cutoff
is, however, different in the two cases: The Vene-
ziano case does not have the Gaussian falloff char-
acteristic of random-walk problems, but only an
exponential. In the nuclear case, the cutoff occurs
at

(yT)1 2/

- (AT)"2

If we reinterpret this in terms of the variables of
the Veneziano model, we may expect that [Eq.
(2.22)] for a highly excited nucleus

A-(X) —y N lnN,

T--vN,

so that

I,-- vN (lnN)'/'.

This is similar to the Veneziano case, Eq. (2.20),
within the logarithmic factor. " So there is an in-
triguing analogy between the results of the Vene-
ziano and statistical kinds of model, and it would
be interesting to derive results for the statistical
bootstrap model of hadrons to compare with our
results for the Veneziano model.

E,
(o') '-6,

and we have an exact correspondence between the
two cases (when the Veneziano oscillator dimen-
sion D = 1).

Further, the orbital angular momentum distri-
bution of the excited nucleus is given by"

and the temperature is given by

T2$
6 (3.5)

Here, E is of course the eigenvalue of the nuclear
Hamiltonian. Expressions (3.4) and (3.5) should be
compared with the corresponding Veneziano case,
Eqs. (1.1) and (2.6). With our remarks of Sec. IIB,

ACKNOWLEDGMENTS

One of the authors (A. S.) would like to thank
Professor M. Gell-Mann for the hospitality ex-
tended to him at the California Institute of Tech-
nology, where part of this work was performed.
We gratefully acknowledge useful discussions with
L. Caneschi, S. Frautschi, G. Veneziano, and
M. Virasoro.



DISTRIBUTION OF THE STAINS OF THE RESONANCES. . .

*Work supported in part by the U. S. Atomic Energy
Commission. Prepared under Contract No. AT(11-1)-68
for the San Francisco Operations Office, U. S. Atomic
Energy Commission,

)Present address: Department of Physics, University
of Texas, Austin, Tex. 78712.

)On leave of absence from Corpus Christi College,
Cambridge, England, and the Cavendish Laboratory,
Cambridge, England.

5 Fulbright Fellow, on leave of absence from the Weiz-
mann Institute, Rehovoth, Israel.

See G. Veneziano, in Proceedings of the International
School of Subnuclear Physics, 1970 (unpublished); H. M.
Chan, Proc. Roy. Soc. (London) 318, 379 (1970).

2Such a growth was shown to follow from duality alone
by A. Krzywicki, Phys. Rev. 187, 1964 (1969); and also
by R. Brout (unpublished).

~S. Fubini and G. Veneziano, Nuovo Cimento 64A, 84
(1969); K. Bardakci. and S. Mandelstam, Phys. Rev. 184,
1640 (1969).

4K. Huang and S. Weinberg, Phys. Rev. Letters 25,
895 (1970).

5D is the dimension of the harmonic oscillators of the
Veneziano model (Ref. 11). Unequal intercepts for the
Regge trajectories can be described by increasing D
above four. See P. Olesen, Nucl. Phys. B18, 459
(1970); and C. Lovelace, Ref. 9.

R. Hagedorn, Nuovo Cimento Suppl. 3, 147 (1965).
VThis is an empirical value obtained by applying the

model to large-angle scattering.
S. C. Frautschi, Phys. Rev. D 3, 2821 (1971), has

slightly modified Hagedorn's original argument, so ob-
taining a bootstrap condition on b, as well as the ex-
ponential form.

BThis has previously been pointed out by C. Lovelace,
CERN Report No. CERN-TH-1123 (unpublished), pre-
sented at the Regge Pole Conference, Irvine, California,
1969; Proc. Roy. Soc. (London) 318, 321 (1970).

Possible further evidence for this is provided by the
fact that both models predict that high-mass resonances
decay preferentially into one low-mass and one high-
mass particle. For the statistical model, see S. C.
Frautschi, Ref. 8; for the dual-resonance model, see
Chan Hong-Mo and S. T. Tsou, Phys. Rev. D 4, 156 (1971).
However, in the latter case, this is only established for
the first few leading trajectories. The situation for
those resonances with very low spin (l & MN) is not clear.

~iS. Fubini, D. Gordon, and G. Veneziano, Phys. Let-
ters 29B, 679 (1969); Y. Nambu, University of Chicago
Report No. EFI 69-64, 1969 (unpublished).

~2L. Corgnier and A. D'Adda, Nuovo Cimento 64A, 253
(1970).

k2
1-2e '~cosn+ e ~~=a'+ —,T2 for —«1 Q. = 0T

= 1 for —»1.
T

The function
mRx

C(T)= Q &, where 0 ~ T.

~9This behavior was first observed to follow from local
duality alone by M. Kugler, Phys. Rev. Letters 21, 570
(1968).

Y. Nambu and P. Frampton, in Quanta, edited by
P. G. O. Freund, C. J. Goebel, and Y. Nambu (Univ. of
Chicago Press, Chicago, Qlinois, 1969), p. 403.

'C. Lovelace, Phys. Letters 28B, 265 (1968).
The difference in the lnN factor may be due to the

approximations made.
3H. A. Bethe, Phys. Rev. 50, 332 (1936); Rev. Mod.

Phys. 9, 69 (1937).
24T. Ericson, Advan. Phys. 4, 425 (1960).

H. Fritzsch, Lett. Nuovo Cimento 4, 893 (1970).
By applying statistical mechanics to the oscillators when

regarded as a Bose gas, and treating the addition of their
spins as a random walk, he obtained a Gaussian distribu-
tion for l„with (l, ) - (~)„contrary to Eq. (1.2). His
result is incorrect because the individual quanta (steps
in the random walk) are really indistinguishable bosons,
so that the normal random-walk analysis is no longer
applicable.

~4L. N. Chang, P. G. O. Freund, and Y. Nambu, Phys.
Rev. Letters 24, 628 (1970). We believe that the differ-
ence in the relation between N =n(s) and T used in this
reference and by us is due to a different treatment of the
normalization of the resonance contributions. A statisti-
cal formalism like our own has been used by Nambu,
Ref. 11, to Qnd the total level density, and in Ref. 13.

~'In the particular case o (0) =1 [the "Virasoro" case,
see M. A. Virasoro, Phys. Rev. D 1, 2933 (1970)], Brow-
er and Thorn have presented strong arguments that all
the timelike scalars are eliminated [see R. C. Brower
and C. B. Thorn, CERN Report No. CERN-TH-1293,
1971 (unpublished)]. In this case the coefficient 4 that
appears in our formulas should be changed to 3, and our
discussion continues to be valid.

D. Amati, C. Bouchiat, and J. L. Gervais, Lett. Nuovo
Cimento 2, 399 (1969).

This is closely related to the a& function. See E. T.
Whittaker and G. N. Watson, Modern Analysis (Cambridge
Univ. Press, Cambridge, England, 1965), Chap. 21.

~8The approximation involves setting


