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A closed linear algebra involving vector and axial-vector currents and baryon interpolating
fields (BIF) is constructed. In particular, the equal-time anticommutator of two BIF is
assumed to be the most general expression linear in currents allowed by covariance and the
discrete symmetries. The algebra is closed via the various Jacobi identities. Whenever
possible we proceed in analogy with successful current-algebra concepts, The basic BIF
considered here has spin 2 and is assumed to transform linearly under chiral SU(3). Its
divergence can be used as a BIF for spin-2 baryons. A Lagrangian model combining the
massive Yang-Mills gauge field Q& and the Rarita-Schwinger field 4~ is constructed. The
canonical commutation relations of such a model imply that the equal-time anticommutator
(@O,Cs) contains a term proportional to es. In a limiting case only this term remains.
"Soft-baryon" theorems are derived from the algebra. In particular the s-wave scattering
of "soft nucleons" from a target is calculated and agrees with the current-algebra soft-me-
son s-wave scattering lengths. Weinberg-like sum rules resulting from the algebra are also
derived.

I. INTRODUCTION

The vector and axial-vector currents deduced
from the study of weak and electromagnetic inter-
actions have been successfully utilized in the study
of low-energy mesonic processes. ' The use of
these currents in mesonic processes follows from
two basic assumptions: (I) The currents and their
divergences may be used as "smooth" meson inter-
polating fields (MIF); (2) the equal-time commuta-
tion relations involving at least one time component
of a current form a closed linear algebra. Assump-
tion (2) is strong, yet does not alone give rise to
the chiral algebra. In fact, assuming a linear
closed algebra, i.e., [Q,', Q',] = Xis„,Q„ forces the
choices y'=1 or 0. The Adler-%eisberger rela-
tion, for example, picks out y =+1. Alternatively,
one might arrive at the linear algebra via an an-
satz of universality or by studying field-theory
models. Once these assumptions have been im-
posed upon a hadronic amplitude, various approxi-
mations have been employed in order to confront
meson-meson or meson-baryon data.

Given a set of baryon interpolating fields (BIF)
with assumptions analogous to (I) and (2), it is
possible to employ similar schemes to confront
low-energy bar yonic processes. Unfortunately,
however, a suitable set of BIF is not suggested by
weak or electromagnetic processes and therefore,
to pursue the problem further, we shall proceed
whenever possible by analogy with successful cur-
rent-algebra concepts. Thus just as spin-0 MIF
are given by the divergence of spin-1 MIF we shall
assume that spin--,' BIF are given by the divergence
of spin- & BIF. In Sec. II we define and consider

general properties of such objects. In Sec. III we
construct the most general linear algebra involv-
ing the vector and axial-vector currents and the
spin-& BIF. The commutation relations of the BIF
with the vector and axial-vector currents is deter-
mined by the transformation properties of the BIF
under the chiral SU(2} or chiral SU(3}group. In
the present discussion we assume that the spin- &

BIF transform as linear representations. To corn-
plete the analogy we introduce anticommutation re-
lations for the BIF. In the present work we exam-
ine the simplest possible model, viz. , we assume
that equal-time anticommutators involving at least
one time component of the spin-& BIF are the most
general expressions linear in the vector and axial-
vector currents. Of course the equal-time com-
mutation as well as the anticommutation relations
are subject to the requirements of covariance and
C, P, and T invariance. The algebra is closed
via implementation of the various Jacobi identities
satisfied by commutators and anticommutators.
Finally, remaining parameters are eliminated by
the freedom to fix over-all scales (Jacobi identi-
ties are invariant wight respect to change of scale).
In actual calculations commutation relations in-
volving divergences of BIF and MIF appear, e.g.,
the o term in ordinary current algebra, and some
such terms are examined.

Other than simplicity, is there any other reason
to suspect that the anticommutation relations of
BIF should be linear in currents? Straightforward
composite models for the BIF, e.g., in terms of
canonical quark fields, invariably yield models
quadratic in currents. ' Such models are at best
terribly cumbersome and lead one into the difficul-
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ties associated with such singular products. The
ansatz of linearity might indeed be reasonable if
we imagine the currents to be fundamental opera-
tors of the theory and that low-energy phenomena
can be adequately described by the leading term in
a power-series expansion. Furthermore, as shown

in Sec. IV, it is not difficult to write down a La-
grangian theory that yields in an appropriate limit
the linear algebra we have constructed. This La-
grangian is a combination of the Yang-Mills'
gauge-field Lagrangian plus a slightly modified
Rarita-Schwinger4 spin- & Lagrangian. The appro-
priate limit has g, -0 (the gauge-field coupling
constant), m, -0 (gauge-field mass), and M, -O

(matter-field mass) with g, '/m, ' and M, /m, fixed.
In Sec. V various applications are suggested.
Exact "soft-nucleon" theorems are derived, s-
wave scattering lengths for "soft nucleons" are
given and compare favorably with those of physical
nucleons in certain channels, e.g., Nm and NK, and
finally steinberg-like sum rules' are derived. In
Sec. VI a discussion of results and a prognosis of
future progress in representing low-energy had-
ronic process within an algebraic framework is
made. In the Appendixes are collected some rela-
tions satisfied by spin-1 (spin-2) commutators
(anticommutators).

II. SPINOR-VECTOR FIELDS

The spinor-vector field @„"(x)with Lorent'z index p and Dirac index o transforms under Lorentz transfor-
mations as the direct product of a vector field with a Dirac field. ' Such an object has 16 components and
can be covariantly decomposed, for example, as

(2 1)

where 4" is transverse to both y„and s, and hence has the required number of independent components
(eight) to describe a Dirac spin-& particle. &„q'"=q', and y„4"=4, are both Dirac fields and may be used as
interpolating fields for spin —,'. The single spin- & particle to vacuum matrix element is

X/2
(0(+"l (s~)&=(2, ".

z "(q, &)zg, (2.2)

where relative to 4", a is defined to have natural (unnatural) parity if it has the same (opposite) parity as
(1(" and z is equal to one (y'). g is the wave-function renormalization. The vector-spinor u"(q, X} with po-
larization X is transverse to q„and y„and satisfies the Dirac equation (q y —M„)H(q, a) =0 and

V

gn"(q, &}n"(q,&)=-
2M

g"'-
&

—&M. (r'q"q r+q yyV')
a a

(2.2)

As mentioned above, 4" contains two independent spin- —,
' components. The vacuum to spin--,' particle ma-

trix element is

Ms
(o~s„q ~P(q, ~)) = ', u(q, ~)g, M,s, (2.4)

where P is normal (abnormal) if it has opposite (same) parity as 4'" and e is one (y'). Under the discrete
transformations we have

(pq "(x, x')8 '=7l~y'q„(-x, x'),

8q "(x)8 ' =@~(I"(x)C,

(2.5a}

(2.5b)

v'4 "(x)r '=q~T+„(x, -x'), (2.5c)

where ~((i~'=1, C=iy'y', and T=iy'y', following the conventions in Bjorken and Drell. ' For later refer-
ence we examine the spectral functions and the Lehmann-Kallen representation for spinor-vectors.

The spectral function is

p""(q) =(2'}'P5'(p„-q)(0~4"(0)~n)(n~e "(0)~0),

where 4"=-0"~y'. From Lorentz covariance, and C, P, and 7 invariance, one deduces that

(2 5)
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P""(q)=g."l.(q)(P +q. yP )+ 3
q"-

4 (P +q yP ) q'-
4 q

+
3

(q" r-"q y)(p, +q rp, )(q'-q rr") , —(-q-" r"-q r)(p. +q rp', ) q"-

(p„+q rp, )(q"-q rr") 2, — (2 7)

where

gs~, (q)=-s"'-
3

—
3 .(q"r'q r+.q rq'r") (2.6)

is transverse to q" andy" and commutes with q y. p, =p,(q'), p. (j =1, . . . , 6) are real and p,*&,)-p&»). It is
not difficult to show that p, and p, receive contributions exclusively from spin-& states in (2.6), p, and p,
(p, and p, ) receive contributions from spin- states that couple exclusively to B„C"(y„4'") and p, „receive
contributions from states that couple to both spin--,' components. For the present we shall assume that
y&4" does not couple strongly to low-lying baryon states and we shall neglect p, yo Had we assumed that
y„4'"=0, it would follow that p, » —=0. From Egs. (2.2)-(2.4) it is a straightforward matter to show that the
single-particle states make the following contributions to the various spectral functions: Spin--, particles
with the same parity as C" make contributions of the form

P, (q')+ q rP. ('q') = -g '(M + q' r)~(q' M.'-), (2 0)

whereas opposite-parity spin-& states contribute with the opposite sign to p, (q'). Similarly single-particle
spin--,' states with same parity as 8„%'" contribute as

P, (q')+q rP (q )=gs (Ma+q y)6(q Ms ), -
whereas opposite-parity states contribute with opposite sign to p, (q ).

Given Eq. (2.7) and assuming that no subtractions are necessary, we obtain in a standard manner the
time-ordered product

(2.ii)

where the covariant spin-& propagator is

(
r"q r p3(p') q rp. (u') —. q r r"

& . &~ „ . &. „ „ , „ r"q rr'P"=q-
4 4 p'(p' —q —&e) 4 16 4 4

dp + —~"r'+ —q'"~" + q'~"—

and the seagull or noncovariant term is

S""(q)= —,
'

(&, —,' C, )(r'r "—Z"'+r'r'g"')+ —.
'

(&, —4 C,)(g "'z"'q r —(q Z "' +g"g "')r'l

where

(2.12)

c-=, ))(rp) ant) c,'-=J dgpbp) (2.13)

The separation of the time-ordered product into covariant and noncovariant parts is in fact rather arbi-
trary since the covariant propagator is defined only up to a polynomial. The inverse covariant propagator
also has a simple form: With single-particle dominance we have

P '„.(q)=- 2HM. +q r)(Z„. —r„r.)+q„r. q.r„f-
&a

The other time-ordered products we shall encounter are

(2.i4)

dxe ""0 TB ~ 4' x%" 0 0 =P "q -8 "q, (2.15)

where
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p3(u') v-rp4(u')d„2 . v yr"
(2.16)

and the seagull is

S '=
3&kg

"r'
Finally, the spin--,' propagator -iP(q) is given by

dxe "*(O~Ts ~ q(x)s ~ 4(0)~0) =-i ', , '
du, '.~ ~

~

u'[ ps(u') —~ ~p4(u'}j
~ gQ

(2.IS)

(2.18)

Note that all of the above time-ordered products are consistent with Bjorken's' observation that under mild
assumptions in the limit q fixed, ~&Z (

—~, time-ordered products go to zero. Other relations satisfied by
the propagators and vacuum expectation values of the various anticommutators may be found in Appendix A.

We shall now introduce a set of BIF that by assumption couple to the low-lying baryons.

III. COMMUTATION AND ANTICOMMUTATION RELATIONS

We introduce a set of octet and decupket BIF that can couple to any of the low-lying baryons with J~ = —,
' ',

Let the vector-spinor octet BIF eb, N,"( )xand the vector-spinor decuplet BIF be, n,"(x) with parity equal
to +1.

A. Commutation Relations

The transformation of these spherical SU(3) tensor BIF under the SU(3) vector densities is

[V'(x) X"(y)]6(x'- y') =W3 ' X~(x)V(x- y)
8 8 82 (3.1)

[V.'(x), ,n,"(y)]6(xo- y') =&6,n,"(x)6'(x—y)
8 10 i0

(3.2)

up to possible terms that kategI'ate to zero. Such possible Schwinger terms" will not be considered here.
We follow the notation and convention of DeSwart"; in particular, we use a spherical basis and the SU(3)
CIebscb-Gor4ga coefficients. Let us recaQ the forrh of the current-algebra commutators in a spherical
basis:

[Zo(x), Z,"(y)]6(x'- y') = &3 ' Z &(x)6'(x- y),
8882

(3.3}

where J", is the apyx'opxiate vector or axial-vector current. In accord with our fundamental requirement
that the equal-time (snti) coxpmutators be hnear, we assume that X" and n" transform linearly under
chiral SU(3)~SU{3). Since s+"e0 this does sot imply that aÃ and an transform linearly under chiral
transferxnaticms. '~ ~mes the grgnefox'matron of the MF under the axial-vector densities is

[&.'( ), ,&l(y)]6(x'- y') = ~'. ..j .&!( }6'( —y)+P. ..~ .4!( )6'( —y}
888, 8 10 8

(3.4)

[~ (x)z nL(Q]6(X - y ) =p nv(x}6 (x- y)+ 6 ~u(x)6 (x y). -8 10 10 q ~ 8 8 10
(3.5}

(3.6a)

(3.6b)

In fact one obtains bvo independent solutions.
Solution 1:

Note that the axial. -vector curx cot changes the parity and that ere do not restrict ourselves to the case
P]' ~y', N".'3 The constants g, P, P, and 5 are deteimined via the Jacobi identities between two axial-

vector. cur. rents md a BIZ,

[x,[r, z],] =[r, [x, z] ],+Qx, r],z]„
[x, [r, z] ] =-[r, [x, z] ] +[[x, r] , z] .
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Solution 2:
(4)1/2 p 5(5)l/2 4 (2)l/2 (3 8)

The freedom to rescale the fields has been used since Eq. (3.6), for example, is invariant under the trans-
formation X —~X and we have not yet specified the scale of the BIF. Solution 1 states that N" and 4" each
transform irreducibly under chiral SU(3) and correspond to the (1, 8) and (1, 10) representations, respec-
tively. Had we chosen the opposite signs in Eq. (3.7), e.g., let, N —(-1),N, we would have obtained the
(8, 1) and (10, 1) representations, respectively. Our choice of sign is motivated by the sign of the axial-
vector coupling constant g„/g». In solution 2 N" and h" transform irreducibly under chiral SU(3}, i.e., as
(8, 10). Had we restricted ourselves to the form N"=$y', N"(x), Eq. (3.4) with Eq. (3.7) or (3.8) would

imply that t'=+1. If we limit ourselves to the chiral SU(2) subalgebra, Eq. (2.1}reduces to

[Ao( x), , N,"( y}] 6( x' - y') = — n„+u„C'/', "~/', N~(x)6'(x - y) - ~ p, C,",/' ' ~/', n,"( x) 6'( x- y), (3.9)

where the SU(2} Clebsch-Gordan coefficients have been introduced. Notice that if we assume that a„N" is a
f ree nucleon field operator that also transforms Linearly under chiral SU(3) then we would find g„/g»
= (-I/W3}[a, + (3/v 5)a,]. In particular for solution 2 we would obtain g„/g» =+—'„ the SU(6) result. " But in
general the situation is not expected to be so simple and important corrections will arise due to coupling to
other states and the possible nonlinear transformation property. In accord with our linearity ansatz the
e:,ual-time commutators of V,"(x) and A,"(x) with, N', (y) and, A', (y) are the same as Eqs. (3.1) and (3.2) and
Eqs. (3.4) and (3.5), respectively. For example

[J."( ), ,N:(y}]6( '- y') =[J:( ), ,N."(y}]6( '- y'), (3.10)

where J"is equal to V" or A".
Attempts to use equal-time commutation relations between axial-vector currents and fields within the

framework of sidewise dispersion relations, "etc.,"invariably choose nucleon fields that transform irre-
ducibly as (1, 8) under chiral transformation as suggested, say, by the c model. " However, as indicated
above, it may indeed be more interesting from the point of view of understanding and improving SU(6) re-
sults to consider solution 2. This question shall be pursued further. One might ask why we do not con-
sider higher-dimensional representations. The answer is simply that baryons with isospin greater than &

have not been observed and thus we do not admit such higher-isospin BIF (no "exotic baryons").

B. Anticommutation Relations

In order to complete the analogy with current algebra, a model for the equal-time anticommutation re-
lations between BIF involving at least one time component must be considered. As before, our basic an-
satz shall be to write down the most general model linear in currents allowed by covariance and the dis-
crete symmetries. The remaining arbitrariness will be eliminated by closing the algebra via the Jacobi
identity Eq. (3.6a). Let us consider one such anticommutator in detail:

{,N,'(x), ,N,"(y)]6(x' y') = -" [((u'„g," + (v'„a "„)V",(x)+ i((u'„g," + (u'„o",)y'A", (x)]6'(x- y),
O 0

ac (3.11)

where ~'„are constants, a""=,'i[y", y"], a-nd lin-
earity has been invoked. If we take the adjoint of
Eq. (3.11) and set the result equal to Eq. (3.11}for
p, =0, we find that co~ are real numbers. The con-
straints due to parity have already been imposed.
Charge-conjugation invariance implies that ~'„'-=0.
Had we introduced second-class axial-vector cur-
rents, then a term such as ~'„would have remained.
T invariance implies that co'„' are imaginary and
co'„' are real and hence yields no new information
in this case. The results obtained by imposing
C, P, and T invariance on all the other anticom-
mutators is recorded in Appendix B. Note that the
relative discrete transformation properties of the

BIF are fixed by Eqs. (3.4) and (3.5).
The next step is to close the algebra via the

Jacobi identity Eq. (3.6a) between the axial-vector
current and the time components of two BIF. The
procedure is straightforward but tedious and we
record the results in the following manner:

6(H- yo}{+No(x), ,N&(y)) = 8 «V~(x) 64(

(3.12)

where the choice ++ (+ -) or ——(-+) in the left-
hand side yields the term proportional to V,"(A,").
Similarly,
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5(xo- y')[, n,'(x), ,Z",(y))= $ /„'( )
& (&- y)

10 8 10 8V,"(x) ~

(s.is)

tions.

Solution 9:

6(xo —yo)[, iv,'(x), ,Z~(y)) = „'6'(x—y).
88 10 oV~(x),

(3.14)

The parameters +, , . . . , ~ are fixed by the choice
of how the BIF transform under chiral SU(3), i.e.,
Eq. (3.7) or (3.8). Corresponding to Eq. (3.7}we
find solution 1:

(3.16)

and

27. +3cr '

g 4 2 x/' 1 /+37 (3.18}

However, we may fix the scale such that, N -,N'
=(l(u, l/&3)' ' N and n-, n'=(lel/v 6)' ',n. Note
that N and 4 may be indePendently rescaled in
solution 1 since each transforms irreducibly under
chiral SU(3). Thus after dropping the primes, the
result implied by solution 1 may be read from
Eqs. (3.12)-(3.14) by making the following sub-
stitutions.

Solution l:
~; =y; —~3 ~;/i~21,

~=s-&6 8/lel,
(3.i6)

Thus the algebra, without any further input, is
defined up to two parameters whose origin is clear:
&u, /l~, l

is just a "d" to "f" ratio which cannot be
determined from within the algebra and o deter-
mines the relative "size" of the two irreducible
chiral SU(3) tensor operators.

Corresponding to solution 2 [Eq. (3.8)J, we find

410 7'

4 2 2v+3o (3.17)

However, we may make a convenient over-all
change in scale:

Note that we cannot rescale N and 6 separately
without modifying their chiral SU(3) transformation
properties. Thus, after dropping the primes, the
result implied by solution 2 may be read from
Eqs. (3.12)-(3.14) by making the following substitu-

Thus for solution 2 we have to determine one pa-
rameter, 0, and the sign of ~. In the limit of
exact SU(2) x SU(2) symmetry we shall see that o =0
in both solutions 1 and 2. In the limit of an SU(3)-
symmetric vertex function we shall see that ~, =0

solution 1 and cr is again equal to zero in solu-
tion 2. The undetermined signs in Eqs. (3.16) and
(3.18) can probably be fixed by some compactness
assumption similar to current algebra, where
[Q,', Q,'J =+is„,Q, yields a compact algebra,
whereas a minus sign leads to a noncompact alge-
bra. However, just as for example the Adler-
Weisberger relation chooses the plus sign, here
too we shall find at least two tests and a Lagran-
gian model which imply in Eq. (3.16) that ~, & 0 snd
in Eq. (3.18) that ~ &0.

If we had considered only the Jacobi identity Eq.
(3.6a) between the time component of the axial-
vector current and time components of two BIF, we
would have not been able to eliminate terms of the
form o",y'J",(x}from the right-hand side of Eqs.
(3.12)-(3.14). In fact such terms would appear with
coefficients having precisely the same structure
as in Eq. (3.15) or Eq. (3.17). However, if we im-
pose the Jacobi identity between a sPace component
of a current and the time components of two BIF we
can exclude all such additional terms. For exam-
ple, consider the Jacobi identity between V', ,N',
and, N'. The left-hand side of Eq. (3.6a) gives
rise to a term of the form uaysoo~[V', A J, whereas
the right-hand side gives rise to a term of the
form ~'„y'o"A, . The Dirac structure of these two
terms is at variance and therefore u'„—=0.

The introduction of BIF with opposite parity is
crucial for the construction of a nontrivial linear
algebra. Had we resorted to the device" of chang-
ing the parity via y', i.e., setting N = (y,N
[where g' = 1 as required by Eq. (3.4)J, the only
solution to the Jacobi identities would have been
the trivial one with the right-hand side of Eqs.
(3.12)-(3.14) identically zero. Proof: Equation
(3.12) states that the anticommutators of the posi-
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tive-parity BIF are the same as that of the nega-
tive-parity BIF. But since y' and y' anticommute,

N =-)+Ny'r implying that f N', N"j =-(+N s

„N"], which would then require that p); —= 0, Q.E.D.
Thus, having been forced to introduce opposite-
parity BIF, we shall later exploit this situation and

assume that the low-lyix~ baryons couple exclu-
sively to the BIF with the same parity, e.g.,
A(1230) couples to, bP and L(1670) couples to

Finally, for future reference, let us write the
anticommutator of the nonstrange BIF in Eq. (3.12):

t-sr!t*), -sr(r))s(*'-r')= —(.~ )&'."!'."v!(*)s'(*-r)+—(.—,)n".*'.", r(*)s'(*-r)

1 3 1

u12 ' ))5(p, + pp, (T,)„V,"(x)+u 3 p), — td, 6„V)'(x) 5'(x- y),a ~g 1 ae 8 (3.19}

where

Tp =Tat Te=t+(a) (Tr+ZTp)s

and 7 y 2 3 are the Pauli Cartesian spin matrice s
(recall that we are using a spherical basis and

TTTCartesian TiTi Zispher Ta a}'

C. Commutators Involving Divergences

In actual calculations where for example Ward-
identity techniques are employed, one encounters
(anti) commutators between time components of
currents or BIF with the divergence of currents or
BIF. The original notorious such example is the 0
term encountered in ordinary current algebra':

[A,'(x), 8 A, (y)]5(x'- y') =-o„(x)5a(x—y) (3.20)

(in a Hermitian basis). The only model-indepen-
dent statement available concerning such a term is
that for SU(2) xSU(2) it has no I =1 term Other. -
wise, one falls back on various models such as the
o model" which suggest that I =2 is also absent.
To consider such o type commutators we avail our-
selves of the following rather general identity.
Given

5(x'- y')[X'(x), r (y)],=5(x'- y')[XP(x), V (y}J,
= Z "(x)5'(x —y),

one may readily show that up to terms that inte-
grate to zero,

4'(x} ~. &(y}J &(x'-y')+[e X(x) V'(y}i 5(+-y')
= t) Z(x)5a(x —y).

(3.21)

For example, if X and F are axial-vector currents,
then Z is the conserved vector current [for chiral
SU(2}] and Eq. (3.21) implies the standard result
that there is no I = 1 v term. Si.milarly, if we
apply Eq. (3.21) to Eq. (3.12), we obtain (we re-

strict ourselves to nonstrange BIF throughout the
remainder of this section) from the anticommuta-
tors proportional to the conserved vector current

,Z.",(x) = 5„,Z'(x}. (3.24)

In the limit of SU(3) symmetry, i.e., s„V,"=0, or
in the limit of exact chiral SU(2), i.e., B„A,= 0,
a=1, 2, or 3, one arrives at similar conclusions
for the other components of Eq. (3.12). Equations
(3.13) and (3.21) imply

(,n:(x), ,a n, (y)) 5(x'- y') =i5.„Z'(x)5'(x y), -
(3.25)

where we have omitted possible isospin-two and
isospin-three terms on the right-hand side of Eq.
(3.25). We shall not now pursue further the various
requirements imposed upon these and other "Z
terms" by the Jacobi identities, Eq. (3.6a). Suffice
it to say that in practice we shall attempt to mini-
mize the importance of such terms wherever pos-
sible. In current-algebra calculations one also
attempts to do away with such terms when consis-
tent with other general constraints. This is not
always possible, e.g., in Weinberg's calculation of
n-n scattering lengths" the 0 term plays an im-
portant role.

Let us briefly turn our attention to Eqs. (3.4) and
(3.5). Equation (3.21) implies that

6( '-y')I, N:( ), ,s N. (y))

+5(x'- yp)(, s ~ N, (x), ,Npa(y))=0, (3.22)

from which we deduce that the "0 term" defined by

(,N'. (x), ,e N, (y}}5(x'-yP) =-i,Z,"„(x)5'(x-y)

(3.23}

[where ++ (- -) on the left-hand side corresponds
to + (-) on the right-hand side] has no I=1 piece
and is Hermitian, i.e.,
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[A'(x) s ~ X,(y)J6(xo —yo)+[a ~ A, (x), ,X'(y)J6(xo —yo)

= G' ' ,9 N, (x)6'(x - y)+ p ,8 ~ n, (x)5'(x - y).,. 888, 4 8108

(3.26)

If a ~ A, =0 [e.g. , exact chiral SU(3) symmetry] the
above equation would imply that 8 ~ N also trans-
formed linearly; however this is not the case and
the second term on the left-hand side of Eq. (3.25)
is in general nonvanishing.

IV. A LAGRANGIAN MODEL

We have constructed a closed algebra consistent
with our ansatz of linearity and the general con-
straints due to covariance and the discrete sym-
metries. Is it possible to reproduce this algebra
from some simple Lagrangian model? The first
kind of model one might consider is a quark model.
The construction of currents from quark fields sat-
isfying canonical anticommutation relations,
J"aqua" q, yields the current algebra. If one at-
tempts to construct the BIF in terms of three
quark fields it is not difficult to see that in general
the equal-time anticommutators will be quadratic
in currents, i.e., the canonical anticommutation
relations for the quark fields will remove one
quark and one antiquark field leaving two quark
and two antiquark fields. ' Similarly, any naive
composite model for the BIF leads to anticommuta-
tion relations quadratic in currents, e.g., BIF ~
nucleon field x current. In any event, such results
are suspect due to the highly singular nature of
products of so many fields. Thus we are led to
study models that involve spin-& fields. The sim-
plest such model one might consider combines a
Yang-Mills' gauge field with a Rarita-Schwinger'
spin-& field. To simplify the notation somewhat
we shall restrict the discussion to SU(2) Hermitian
gauge fields P," and nonstrange vector-spinor fields

Consider the following Lagrangian:

and D, is the covariant derivative with

Il;. = s'5,.+g„'i(~-,),.y;(x) (4.4)

~~0@v rOv ~ (4.6)

respectively. Since I "' and G"v are antisymme-
tric, P' and 4' have no canonically conjugate vari-
ables. The canonical commutation rules are

[S'„.,(x), y",(y)J6(x'- y') = -i6, ,6.,6'(x- y},

[e.'( ), V;(y)J6( '- y') =o,

{@„.(x), Go"(y)) 6(x' —y') =+i6, 5„64(x.-y)

or

(4.7a)

(4.7h)

(4.8a)

{G,"(x),e.,(x)) 6(xo —y') = -i6,,6,.6'(x- y),

Note that F"' and G"' are antisymmetric. If we

turn off the interaction between the gauge field and

the vector-spinor field the Lagrangian reduces to

&VM+RS —Mo+. ' &r ' +..
The inclusion of the final term allows great sim-
plification of the equations of motion in the inter-
acting case. However, in order to describe a fusee
spin--,' particle, one would have to introduce a
subsidiary condition y„4"=0. Recall that the equa-
tions of motion deduced from Z» are y„4'"=0,
s„+"= 0, and (-iy ~ a + M,)4"= 0. Let us return to
the interacting case. The momenta canonically
conjugate to P", and 4," are given by

(4 5)

where
(4.1) {4',(x), 4', (y)) 5(x'- y') = 0.

The equations of motion are"
(4.81)

Z&'(x)=aug~(x) s~yu(x)

...el( )e'.( )

:(~,),.+,'(x)+".(x) (u ~),—
0

(4.2) or
0

(4.9)

0
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The interesting and useful feature of the above
equations of motion is that both Q,

' and 4 are
given in terms of the canonical variables, i.e.,
Q', , I'", , G,", and 4». Therefore, given the ca-
nonical commutation relations it is a straightfor-
ward exercise to calculate commutators involving
Q', and ~. Since the matter fields have been cou-
pled via the covariant derivative, the field-algebra
commutators are the same as those calculated by
Lee, Weinberg, and Zumino, "i.e.,

(4'.(x), Al(y)]5(x'- y') = ~ '.g 0"(x)5'(»- y)
0

,5.,gt 5'5'(x- y).
0

(4.11)

Furthermore, one can calculate the other com-
mutation relations that involve at least one time
component:

[4.'(»), 4'".(y)]5(x' —y') = .'(-.'T.)., 4',"(»)5'(»- y)
0

(4.12)

and

l.e."( ), ~Ay}]5( '- 3') =
l.0'.( ), 4'".(y)15( '- y').

(4.13)

Equation (4.12) is expected; it states the transfor-
mation property of the matter field 4" under the
non-Abelian gauge transformation. Note that no
Schwinger terms appear. The derivation of Eq.
(4.12) involved the identity 0"=+y'o" 4" combined
with the canonical anticommutator to yield

(G"( ), G"(y)]5( ' —y')=-'y' "5'( —y),

(4.14a)

and for later reference we note that

(@'( ), &'(y)) 5( ' —3 ') = r'l r' y'5'( y) (4—14b)

G" 0,. =O'G".

Finally, we calculate the anticommutators between
the spin-& fields:

-M014A»}, ~', (y)] 5(x' —y') = -g.(k~.).,0.'(»)5'(x- y)+ f&"5'(x- y)5., + f ','(-.'T ) —.'3'y'y'S" (x)5'(x —y)
0

(4.15)

2

M, '(4', (x), 0,'(y)) 5(x' —y') =g,M, (-,'~, ) P (x)5 (x- y)+ z —5 G ~(x)@. (»)5+(» —y)4 m,
2 2

+ 4 (&~o2 b)a +a (x)&~n(x)rl y&
mo

lz (l ) I&—0!( )'la. ~aA'l( *)4!( |I,„j~*'5'(**-y). (4.16)

We now reexpress Eqs. (4.11)-(4.16) in terms of new rescaled fields defined by

4."( ) =(g.!.') V."( ) (4.11a}

0'" (x) = tgo/mo(M )&/2]Nu (x) (4.17b)

Equation (4.1.1) has the same form as that of the algebra of currents with an explicit Sch~~er term (6.T.):

[V,'(»), V,"(y)]5(x'- y') =is„,V,"(x)5~(x- y) —&, 5„g"'5',5~(»- y).
go

Equation (4.12) exhibits the transformation property of N& (x):

[V',(x), &",(y}]5(x'-y'} = -(-,'7,)„Ã,"( )x5( —x y).

Finally, the anticommutators of interest are

(4.18)

(4.19)

m2
pr', ( ), Frx', (y)] 5( xy') = (-,'~ )„V,'(x)5'(x- y) i5„2 —a,'5'(x- y}- a ', (-,' )„T-,' y'3" 3

'S"'( )5'(xyx}
go 0

(4.20)
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{No(x), N„(y)j5(x —yo) =(ar,),VO(x)54(x —y)+i45„2 G ~(x)N, (x)5.4(x —y)
0 0

M

0

2 I

+ (-,'T, )„S'V,'(x) — ', e„,V', (x) V', (x) v, ,y'6'(x - y), (4.21)

where

F,""(x)= (g,/m, ')F,""(x), G";(x)= (g,/m, '~M, )C","( x) (4.22)

2

F,~( x)= a~ V."(x) s" —V,"(x) — ', ([e.„vt'(x}V;(x) —ter"(x)~, X"(x)J-(q- v)).
0

(4.22)

Thus our primary objective has been achieved and
we have exhibited a model in which the anticom-
mutators Eq. (4.20) and Eq. (4.21) contain a term
linear in the vector field. This does not occur in
standard composite models. It is not difficult to
find limits in which most of the other terms in Eqs.
(4.20) and (4.21) disappear or become c numbers.
For example, consider the limit (similar to the
limit studied by Bardakci et al.")

M0 0 g0 0 and M0 0

with

C ' =g,'/m, ' and d = m, /M, (4.24)

fixed. In terms of the new variables the canonical
commutation relation Eq. (4.7a) becomes

[F„,(x), V', (y)J6(x'- y') = i Cm '—5,„5„5(x. y). —

(4.25)

In this limit" Fo'(x)-0 like m, ' and we assume
that the piece of I,"given by

JB~V,(x) —8 V', (x}——e, ,[V'(x}V,(x}—V (x) V~(x)J

also goes like m0' in the same limit. It is then
straightforward to take the limit of Eqs. (4.20)
and (4.21) and obtain the desired result:

Pro (x), F&(y)J 6(x'- y') = (-,'T.).,V&(x)64(x- y)

+ S.T. + (I = 0 term}.

(4.26}

Our basic intention in this section has been to ex-
hibit a Lagrangian whose canonical commutation
rules imply a structure similar to the one we
hypothesized. We shall not pursue here the dif-
ficult questions associated with such a Lagrangian
field theory. However, we do feel that the Lagran-
gian merits further study in that the equation of
motion, Eq. (4.9), is particularly simple and al-

lows one to eliminate K in terms of canonical
variables.

V. SUGGESTED APPLICATIONS

Given the algebra of Sec. III, a host of possible
applications present themselves. In this section
we shall primarily outline several such applica-
tions and some of the results. A more detailed
implementation of the program will be presented
in a separate communication. We shall restrict the
discussion here to nonstrange BIF so as not to get
entangled in problems associated with the breaking
of SU(3).

A. Nucleon Zeros

The first class of theorems is a direct conse-
quence of the ansatz that the interpolating field of,
say, the nucleon is proportional to the divergence
of a spin-& field just as the pion interpolating field
is proportional to the divergence of a spin-1 object.
This ansatz immediately allows one to state theo-
rems entirely analogous to those of Adler. "
Namely, a scattering amplitude involving a nucleon
vanishes at the unphysica/ point where the four-
momentum of the nucleon goes to zero with the
other particles on their mass shells. Note that in
our case because of conservation of baryon number
no additional terms arise from external-line inser-
tions. Clearly, a zero four-momentum nucleon is
not a physical object and the utility of such a theo-
rem will lie in its use, for example, as a boundary
condition for off-shell models of nucleon ampli-
tudes, or in the treatment of subtractions in or-
dinary dispersion relations and in sidewise dis-
persion relations.

B. PCBIF |Partially Conserved BIF)

There may be circumstances in which the value
of the amplitude at the "soft-nucleon" point may be
extrapolated back to the physical region. Such
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cases provide examples of what we may eall
PCBIF (partially conserved baryon interpolating
field). One may ask what is the basis for hoping
that such extrapolations have anything to do with
reality? After all, the nucleon mass is not a
small number, whereas the pion mass (140 MeV)
is. One might respond as has recently been em-
phasized, particularly by Dashen, ~ that the suc-
cess of partial conservation of the axial-vector
current (PCAC} does not depend exclusively on the
smallness of the pion mass but rather on the na-
ture of the chiral SU(2) symmetry breaking, i.e.,
extrapolation to physical pions from soft pions is
valid provided the neglected terms are of o.der of
the chiral symmetry-breaking parameter. Fur-
thermore, successful results obtained frorr ap-
plying PCAC to kaons are difficult to understand on
the basis of the "small" kaon mass (more than half
that of the nucleon) and most probably will find
their explanation in terms of chiral SU(3) symme-
try breaking. Other extrapolations in meson
masses, e.g., in the p meson, have also yielded
unexplained surprisingly good results: As an ex-
ample, we may cite the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin (KSRF) relation. " Note
that this relation cannot be derived by current
algebra alone. Thus we argue that the magnitude
of the nucleon mass is not a priori a basis for
pessimism. In fact we shall show, for example,
that s-wave scattering lengths of soft nucleons can
be extrapolated successfully to physical nucleons.
A rigorous justification for such a procedure, how-
ever, will have to await either an understanding of
the symmetry (and possible symmetry breaking)
embodied by the baryon algebra we have con-
structed or a dispersion-theoretic estimate of the
terms neglected in such an extrapolation.

C. Off-Shell Nucleon Scattering Amplitudes

Consider the off-shell scattering amplitude R]'b

representing the scattering of a BIF, i.e., N"+z
N + P2s.

Pv R ab ~Rab +ob y (5.2b)

and

k Rgb SRgb Zi2b P

P,R,b
= - iR,b

—Z, b

(5.2c)

(5.2d)

where a dash(-) appears in place of a Lorentz in-
dex whenever the appropriate off-shell amplitude
involves the divergence of a BIF, e.g. ,

dxe "'" P-q' TN" x8 ~ N, O nq

(5.3)

In addition, we have defined

dxe '"" p-q' N, x, NbO 5x uq

=~ ~, + ~~, (r,)„&p(-q')Ivgu(q)&
1 3

W5

+~3 co — cu, 5, P-q' V,"nq 54

and

The pole structure exhibited by these off-shell
amplitudes may be represented as follows:

(5.5)

R,~
= —iP(k)L, ~ P( P), - (5.6a)

R,~' = —P (k)[i L,~ P z "(-P) ~+L,~ P (-P)(P ' -
& P ' y y")],

(5.6b)

R,"& = -t[P" (k)L,&+ 3 (k" —«y"k ' y}P(k)L,~ ]P(-p),

(5.6c)

The Ward identities implied by the baryon algebra
are

(5.2a.)

(2v)45'(P+ k+ q+ q') R,"„"

dxdy e ' "e '~'

&& &0(-q') I »."(~)&l(y) I o(q)&

(5 1)

i@~'=P".(k)4P. '( P) i '. ((k" -'y"-k -y)P(k-)L-'P "(-P)+P" (k)L:;P(P)(P'- ,'P yy"}-
(5.6d)-(-'}'(k"-y"-'k' »(k}L. P(-p)(p'l p y y')],

where we have introduced the covariant spin--, propagator P"'(q) given in Eg. (2.12), the spin--,' propagator
given in Eq. (2.18), and the additional propagator
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(—
) Jd lu. ( ') — )).( ')I

(5 'I)

The Ward identities Eq. (5.2) may now be reexpressed in terms of the proper off-shell amplitudes I,„
(whose momentum dependence has been suppressed). The off-shell nucleon+ u-nucleon+ P proper ampli-
tude is given by

I &
= —(C~ —k ' yC4} ~{k&P"„,(k)L~" P„.~(- p) p~+i U,'~p„+(Cs —k' yC~}P ~(k}Z ~

—Z.,P '(-P)(C,'+P 'yc,'}+Z„)(C,'+P 'yc') '

The other two amplitudes are also given in terms of L,.",'.
(C,'-k yC')L, "=+ik„P" (k)L„—'0," P ' "(p)+i , Z, P—'(p)P(p)(p ——,'p yy )P (p)

(5.8)

(5 8)

L~„(C,'+ p y C,') =iL,",'P, "(p}p,+ P '~,(k}z.', i ,' P-'"-„(k}(k"- ,'y"k y-)T(k)P-'(k)Z. „ (5.10)

where C,' has been defined in Eq. (2.13). The construction of "soft" nucleon theorems follows directly from
Eq. (5.8). In the limit k, p —0 the left-hand side of Eq. (5.8) is the amplitude for the process soft N + n
-soft N+P, whereas the first term on the right-hand side is at least second-order in P and k and we shall
assume that the terms involving Z., are negligible. Thus to lowest order, the term we shall retain is pro-
portional to 'U",,p„which is usually explicitly known.

A particular choice of states n and p might, for example, be either vacuum or single-particle states. Iden-
tical considerations are applicable to different choices of BIF in Eq. (5.1).

D. Nucleon Scattering Lengths

We shall now derive a general expression for the s-wave scattering lengths of a soft nucleon from a tar-
get. The derivation is subject to the provision that we may neglect the Z term that appears in Eq. (5.8). In
certain channels, e.g., N~ and NK, this result gives good agreement with the s-wave scattering lengths of
physical nucleons. However, in other channels, e.g., NN and NK, this result breaks down probably due to
the presence of nearby inelastic thresholds. A similar circumstance occurs in the current-algebra cal-
culations. nN and KN scattering lengths for soft mesons will approximate that of physical mesons; how-
ever, nucleus or KN soft-meson scattering lengths differ greatly from the physical scattering lengths. The
explanation is generally sought in terms of the appearance of inelastic thresholds, e.g. , in the KN channel
one must contend with the ~Z channel below threshold. "

Let o. =P be a single-particle state. The off-sh 11 s N scattering amplitude, L.. . Eq. (5.8), in the
limit k, P -0 is to lowest order given by

l„„P„l)",,= „N',~, —„' (t,)q„~ —, , — )5 Il Y, , (5.11)

where t, are the isospin matrices of the target and Y, is the target hypercharge. N is the normalization
of the state. SU(3}-symmetric vertices require (d, =0 and the baryon algebra requires ur, =+ &3 rsee Eqs.
(3.16), (3.18), and (4.26}]. To establish our normalization (whenever possible, the same as Bjorken and
Drell}' we note the S-matrix element for the process a+nucleon-P+ nucleon is

...&i~(-q')N. (-k)l(S —I) l»(p)~(q)& ~

Z/2
lim 2 2 6 (2v) 5 (p+k+q+q') u(-k)(-k y —M~)iR, (, (p ' y —M~) u(p)

k2=u 2=P IN N v

X/2
lim M„'I„'(2w)'5'(p + k+ q+ q'), u(-k)L„, u(p),k2-N 2 pN

(5.12}

where

(0~8 N,"~N(q)&=5 g M„u(q) (5.13)

and g„ is as yet undetermined. We may now read
off the s-wave scattering lengths of physical nu-

cleons. The value of I... Eq. (5.11), is extrapo-
lated to threshold and we recall that the s-wave
scattering length a~ of total isospin T is defined as
-2mi times the reduced mass times the coefficient
of the 5 function in S at threshold. Thus
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(5.14)

where we have used nucleon pole dominance for
the & N propagator, i.e., p,"(p, ') =g„'M„5(g'-M»'),
inserted *v 3 in place of ~„and the total isospin
is given by T =-,'~+t. Before comparing our re-
sult with experiment let us recall Weinberg's ex-
pression for pion s-wave scattering lengths, "

ar —- —— "
2 -[T(T +1)—t(t+ 1)—2j

1 ppz„M, 1
4mm +M F22

(5.15)

and the result of the current-algebra calculation of
s-wave soft-kaon scattering lengths,

a =- 2= —11F,MN

4~E,' (5.18)

which is not in startling agreement with the experi-
mental values of a0~~=5.5 F and a," =-17.5 F. As
expected, the presence of a bound and pseudobound
state disallows any "smooth'* extrapolation from a
"soft" to physical nucleon in this channel.

The value of g„'=M+, ', Eq. (5.17b), is consis-
tent with considerations of Sec. V E.

an example where soft-nucleon extrapolations are
not entirely inappropriate. What happens to the
"soft-nucleon" -nucleon s-wave scattering lengths?

gNN 00

and

E+ t E

(5.16)

The pion decay amplitude E„ is a measurable
quantity and is related to the pion-nucleon coupling
constant by the Goldberger-Treiman relation. Un-
fortunately, g~2 is not directly measurable and the

analog of the Goldberger-Treiman relation would
relate g~2 to the pion-nucleon coupling constant and
the off-shell N(1520) decay amplitude. Detailed
analysis of applications of the baryon algebra to
the vertex functions will be presented elsewhere.
For the present we shall require consistency be-
tween the various expressions for scattering
lengths. First of all comparing»-K (Eg. 5.15) with
K-» (Eg. 5.16) implies that E„'=E»', the SU(3)-
symmetric result. If we use E -93 MeV in Eq.
(5.15) for»-N, we obtain good agreement with
experiment, i.e.,

a"" = -2a~s~&, =0.20m„' =0.28 F,

compared with the experimental value of about
0.1 tm„'. From Eg. (5.16) we find a»0"=0 (consis-
tent with experiment) and if we use E» =E„we
obtain aE, "=0.75 F as compared with the experi-
mental value of about 0.3 F. However, experimen-
tally I'E appears to be somewhat larger than E,
and Eg. (5.16) may have to be modified.

The sole remaining parameter in Eg. (5.14) is
determined by requiring consistency with the soft-
pion-nucleon scattering length Eg. (5.15). This
implies

2

S

(5.1'ta)

(5.17b)

With this choice, the "soft-nucleon"-meson scat-
tering lengths are entirely consistent with the "soft-
meson"-nucleon scattering lengths. Thus we have

E. Weinberg-Like Sum Rules

gP ~A1 2 (5.19)

whereas the second sum rule suggests that

g 2 g 2 (5.20)

One derivation of the first sum rule for a general
Lie algebra involves use of the vacuum expectation
value of the Jacobi identity between (two time-
component and one space-component) currents and
the assumption of c-number Schwinger terms. "
The second sum rule (on less sure footing) relies
on an assumption of asymptotic chiral invariance~
or a specific Lagrangian model. " We shall now
show that similar sum rules follow (with some ad-
ditional assumptions) from the baryon algebra.

Consider the Jacobi identity Eq. (3.6a) between
V,(x, t), N~~(y, t), and N', (z, t):

The single-particle-to-vacuum matrix elements
of currents and the divergence of currents are in
principle measurable via weak or electromagnetic
processes. For example, E„(the vacuum-to-sin-
gle-pion matrix element of &„A") is given by the

pion lifetime, whereas g~ (the vacuum-to-p-meson
matrix element of the vector current) is measured
in e' e colliding-beam experiments. However, gA
(the vacuum-to-A, -meson matrix element of the
axial-vector current) will have to await the mea-
surement of a process such as e + v, —A, before
it is experimentally known. Other single-particle-
to-vacuum matrix elements have not been experi-
mentally determined. Nonetheless, one has an im-
portant device (within the meson-dominance ap-
proximation) to eliminate this arbitrariness in cur-
rent-algebra calculations, viz. , first and second
Weinberg sum rules. ' Weinberg's first sum rule
suggests that



CLOSED LINEAR ALGEBRA OF CURRENTS. . . 313'7

V x t, Vq, t 5 y-z = 3 N~y t, N~~z t 54x-z

+&3 N~ x, t, N', z, t 54 x- y +S.T.ad b

Now take the vacuum expectation value and Fourier transform of the above equation:

(5.21)

6, ,(-1)o~q', (C~- C~)+S.T. =v 3 2 C ~(q2)+ v 3 C'~(q, +q, ), (5.22}

1=0 (5.23}

where C|(0) f oi~o~(p 2)/p 2 and F1~0& is the spin-1 (-0)
spectral function. In Eq. (5.21), Schwinger terms
(S.T.} may arise in (N, N) or in [V, N]. In general
such terms may be q-number terms whose equal-
time (anticommutators} commutators with (N) V

may indeed have nonvanishing vacuum expectation
values and contribute to Eq. (5.22). We will invoke
(revoke) such terms whenever their presence
(absence) is required. The vacuum expectation
value of equal-time (anticommutators) commutators
of (BIF) currents are given in Eqs. (A3) and (A10).
The first observation appropriate to Eq. (5.22) is
that the SU(3} tensor structure requires

The sign is the same as required by our study of
¹ and NK scattering lengths in Sec. V D. Further-
more, the left-hand side of Eq. (5.27) is approxi-
mately" equal to 2E„', whereas in Sec. V D we de-
termined the second term on the right-hand side to
be equal to —,'E,' and hence of the same order of
magnitude. There is no a Priori reason to expect
the sign and the magnitudes to be consistent. In
precisely the same manner one can eliminate many
of the urRnown single-particle-to-vacuum matrix
elements of BIF. We record the result in the fol-
lowing manner (using pole dominance}":

gP gN (1520) 4 gN
M M(1520) 3 M„

As emphasized in Sec. III [see Eqs. (3.16) and

(3.18)] this implies that ~, =+ v 3. Thus Eq. (5.22)
implies (s corresponding to the sign of u&, )

~ q', (C~- C~) = C'„'(q, ) —C'„'(q, +q, )+S.T., (5.24)

where [Eq. (A3)]

C", (q, ) = (C,"--.' C.")[q'+ -'q iv']

gN(1860) 4 gN(1535)

M(1860) 3 M(1535)
2 2g F235) 4 g 5(1650)

M(1235) 3 M(1650)
~

2 2
gb, (1670) 4 go{1910)

M(1670) 3 M(1910)
(5.29)

y (Cl Co) (CN & CE) (5.26)

Equation (5.26) holds for all members of the octet
of currents and BIF. In particular, using pole
dominance" [p meson on the left-hand side and
N*(1520) and the nucleon on the right-hand side],
we obtain

a'n'(1520) 4 Z~'
m, M(1520) 3 M„'

where

(5.27)

+ 3(C2 gC4 )q~q' r '3C~r' — (5 25)

If we equate terms proportional to q', in Eq. (5.24)
and allow the remainder to be canceled by the S.T.,
we obtain

where (=1 or 4 corresponding to solution 1, Eq.
(3.16), or solution 2, Eq. (3.18}, respectively.
The last two equalities are a consequence of the
Jacobi identity between V', ,4', ,Z', and V', b,',

Z', respectively. In Eq. (5.29) we have exhibited
only nonstrange baryons; however, identical re-
lations are suggested for the low-lying strange
baryons. Further analysis of consequences of
these sum rules and the analog of Weinberg's
second sum rule will be given in a separate corn-
munication. We have thus demonstrated how one
can determine many of the vacuum-to-single-par-
ticle matrix elements of BIF that arise in the con-
text of baryon dominance.

VI. DISCUSSION

(d, =-&3. (5.28)

and the single-particle contributions to the BIF
spectral functions follow from Eqs. (2.9) and (2.10).
From Eq. (5.27) one concludes that

Our primary objective has been to propose an
algebraic framework within which one can ulti-
rnately describe low-energy baryonic processes
in a manner similar to the successful description
of many rnesonic processes. Wherever possible
we have proceeded by analogy with current algebra.
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Thus we have focused our attention on spin-& fields
so that their divergences could be used as inter-
polators for spin--,' particles just as the spin-0
components of some of the vector and axial-vector
currents serve as interpolating fields for spin-0
particles. We have imposed an ansatz of linearity
for the various commutators and anticommutators
of the BIF and have required that the baryon alge-
bra also be closed. As an exercise we have con-
structed a Lagrangian model whose anticommuta-
tion relations produce terms linear in spin-1
fields. However, it would be interesting to find a
Lagrangian model that reproduces the baryon al-
gebra without the need to consider various limiting
processes.

Several questions remain unanswered. The prop-
erties of linear algebras involving fermions un-
fortunately have not been studied in the literature
(to the author's knowledge), and it would be in-
structive to examine in detail their consequences;
in particular, the representation theory of such
algebras may be of physical interest.

We have pointed out that the baryon algebra im-
plies exact theorems for "soft" spin--,' objects
such as zeros in nucleon amplitudes and an ex-
pression for "soft-nucleon" scattering lengths.
Can this limit be understood in terms of some new
kind of symmetry? In the limit where the axial-
vector current is conserved one can think in terms
of Goldstone particles. Is there an analog in the
limit 8. N equal to zero?

In order to construct a nontrivial linear algebra

we found it necessary to introduce BIF of opposite
parity. We have taken advantage of this circum-
stance by assuming that the low-lying baryons
couple to BIF with the same parity. Is there a
fundamental reason why opposite-parity fields
appear?

Weinberg sum rules are not low-energy theorems
and we have shown that under certain assumptions
concerning Schwinger terms similar sum rules
follow from the baryon algebra. If one is hesitant
to enter a world of "soft nucleons" and other "soft
baryons, " the appropriate way to incorporate the
algebra into a physical theory may be indeed via a
study of "hard nucleons or baryons, " the analog of
the study of "hard pions. "" The procedure to be
followed is formally very similar to the Ward-
identity techniques used in current algebra. How-
ever, just as current algebra does not uniquely
specify an amplitude, "so too the baryon algebra
will leave undetermined parameters. However, as
has recently been shown, undetermined parameters
of the hard-pion approach can be fixed by a simple
smoothness assumption for pion vertices. " Simi-
lar smoothness assumptions can be posited for
baryon vertices.

Some of these questions will be discussed else-
where.
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APPENDIX A: VACUUM EXPECTATION VALUES AND PROPAGATORS

In addition to the results given in Sec. II, the following relations are useful. Single baryon pole domi-
nance of the covariant spin--,' propagator yields [see Eq. (2.12)]

1 2
I'""(e)=

M 2 2 g 2 2M
s(q"r'e'r q'rr"e") (M„-e r) —

2M
s(e"r' —e"r ).

If the field 4," carries an internal-symmetry index a, then the spectral function Eq. (2.6) has the form

p.","(q) = 6„P"'(e)

(Al}

(A2)

The vacuum expectation value of the various commutators may be calculated from Eq. (2.6) and Eq. (2.7):

0 C "(q)*f0* ' '*(0](q (), 0'(0)]i)(* )]0) =0, ((C — C)(q" ——0 yy ——'(y q —yq" ~ y y q )]

s(Cs ~sC0)l. (I g (I r —0 A' (I Z Y +(I (I' rJ

—s C.'(r' 4Z"'r'))—, (As)

where C, is defined in Eq. (2.13),

—o.,c' (q)-=Jq "*&olio:( ), qq, (o)]o(*')lo)=~ 0„(c,' ~ —', c,'0 y). (A4}

Note that in contradistinction to the spin-1 field commutator one obtains Schwinger terms for all four com-
ponents of C'". In fact positivity requires C"(q) &0.

The propagators and vacuum expectation values of a current J," are given in terms of the spectral func-
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tions (spherical basis)

ou:(q) =- (2~)'Q6'(q —P. )&o I&".(o) Is'&&~'l~:(0) Io& = (-1)'6. .~u'(q), (A5)

where

"(e)= l(s')(v' — * l(e')
(A6)

and the adjoint of the current is

Zu& —
( ])Qmgu

Thus,

(A'I)

dxe ""OTJ"x J'„0 0

&( 1)Q~6 1 4I"'+uv & qu v u&I I t uO vo(cl CO)
cz( 2 )d 2 quqv c z( 2)d 2

where

d 2
Cl(0) +J ~2

(A8)

(AQ)

Finally,

dxe "'" 0 J' x, J'„0 5 x' 0 = -1 ~~5 „q"- q" CJ-CJ . (A10)

APPENDIX B: LINEAR ANTICOMMUTATORS

We record the most general linear anticommutation relations consistent with covariance and C, P, and
T invariance.

(,v!(*),,vugg))&(*'-y')=( ')[;, !v(*),r ' '.(*)u'*(,*-'y.)

= (,Xu(x), ,F7;(y)}6(x'- y'),

f,A:(x)„~,"(y)}6(x'-y') = ., '
I (eg ".~ y,'~".)~(x)+ (e,'o".~ q g ".)y'V:(x)) 6'(x- y)

o o

= f,vu(x)„F7;(y)}5(x'- y'),

(,A, (x), ,Auv(y)} 5(x —y ) = [B~Vu(x)+ zB~ysouvA (x)]64(x y)
o o 10 8 10

(»)

(~4)

(B5)
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{,&!(*)„&l(v)it(*'- x') =( )u,z'. ~ -~'.)4(*)+( .,g'. + .,o'. Iy'v:(*tin'(*-y)

{~Nu(~) LP(y)}6 (x yo) (S6)

All of the parameters cu,.„.. . , v» introduced in the above equations are real. The number of parameters

is greatly reduced by the requirement that the Jacobi identity Eq. (3.6a} be satisfied. The results are re-
corded in Sec. III t Eqs. (3.12)-(3.14}and the discussion following].
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