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We propose a dynamical Lagrangian theory for the hadron with strong and electromagnetic
interactions. We give a simple physical interpretation of our Lagrangian in the parton pic-
ture and show explicitly its equivalence with the formal string formulation of the hadron for
both the free and interacting Lagrangians. The theory is gauge-invariant with a well-defined
conserved current. (The low-energy theorem for currents holds. ) The elastic and transition
form factors are non-Gaussian and analytic with an infinite series of vector-meson poles. In

the two-current channel the electromagnetic amplitude has fixed poles with the imaginary
part satisfying rigorously the Dashen-Gell-Mann-Fubini sum rule. In the Bjorken limit our
v g& scales and is saturated by narrow resonances. A dispersion relation for T2 continues
to hold in the scaling limit and the Gottfried sum rule for v W&(cu) is exactly satisfied with
the fixed-pole contribution. The hadronic amplitude obtained from the off-shell Compton
amplitude is equal to a beta function. In the crossed channel our theory generates Regge
poles with quantized intercepts which are degenerate with the vector-meson poles in the off-
shell photon line which phenomenologically implies the p f-A2 degeneracy. More generally,
we project explicitly hadronic vertices out of our electromagnetic vertex through vector-
meson poles and find that these vertices are dual and factorizable.

I. INTRODUCTION

With the recent work on hadron electrodynamics,
different approaches to the problem illuminated
various aspects of photohadronic processes. On
the one hand, Feynman's partons' presented an
attractive pictorial representation of the hadron as
a collection of pointlike objects. On the other hand,
formal or phenomenological theories presented
schemes for calculations with varying degrees of
success. Among these the quark model' is at pres-
ent the best available systematic way of classify-
ing the rich spectrum of observed resonances, the
vector-dominance model' gives the connection be-
tween spin-one resonances and the electromagnetic
nucleon form factors, and a great number of ap-
proaches' are based on the resonance model with
the proclaimed goal of presenting the strong, elec-
tromagnetic, and weak interactions in a unified
representation.

In previous papers' the present authors succeed-
ed in constructing a gauge-invariant electromag-
netic interaction for the hadron with a well-defined
electromagnetic current. We obtained a number of
interesting results that the interested reader would
find in Ref. 5. On the other hand, some important
questions were not satisfactorily treated: (a) The
elastic form factor was Gaussian, (b) duality was
broken, (c) we failed to connect the strong and

electromagnetic amplitudes through vector-meson
poles, (d) there were internal symmetry and ghost
problems in the theory, and (e) the connection be-
tween the formal presentation of our model and a

pictorial representation was not accomplished.
In this paper we present a dynamical generaliza-

tion of our model where we believe we have an-
swered all the above questions except (d) in a sat-
isfactory manner. The summary of the applications
of the generalized model was given in a recent
letter. '

In Sec. II we present the physical model for the
theory. The physical picture underlying the pres-
ent model is the representation of the hadron as
a collection of pointlike constituents (following
Feynman' we call these objects "partons") withthe
following dynamics: The nth parton is coupled
with a frequency (n —l)&u to the center of mass of
the first n —1 partons where the potential is ap-
proximated by that of a harmonic oscillator and
where + is the frequency of the first- and second-
parton potential. The Hamiltonian of this system
ean be trivially diagonalized with a normal-mode
representation corresponding to the Veneziano
model. ' The charge quantum number is assumed
to be carried by the first parton. Then we intro-
duce a gauge-invariant electromagnetic interaction
by the minimal substitution. The general features
of the model are that (i) there is a cluster point of
partons around the center of mass of the hadron,
(ii) the charge has a peripheral distribution, (iii)
in the normal-mode representation of the interac-
tion Lagrangian, the minimal substitution over the
parton coordinate

m, y, —m, y, -eA (y, )

is expressed as
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(k) t u 22m

(1.4)

In Sec. V we show that the elastic form factor
and the transition matrices are not Gaussian, but
rather decrease as a power of the momentum
transfer. Typically, the elastic form factor for
the ground-state hadron is given by

n ~ n - n
mo z„-mo i„—2 mo 1

c„A(y2)2n+1 " n+1 " 'n+1
(1.2)

where c„-I/n is the charge carried by the nth

mode and y, is a linear function of the z„'s.
In Sec. III we proceed to write the Lagrangian of

the free hadron in the formal language of the string
model. ' We assume in addition that the charge dis-
tribution over the string is governed by a dynamical
variable & such that the total free Hamiltonian is
given by

L
H = p +Q na„a„+ -, A. g (q,.'+ &uo't', '}——,Xu,L.

n=1

(1.3)

In Sec. IV we construct the electromagnetic in-
teraction Lagrangian allowing the quantum-mech-
anical fluctuation of the normal-mode couplings.
We prove that the interaction is gauge-invariant
and that in the normal coordinates, the expectation
value of the charge distribution reduces to the par-
ton results of Sec. II. We prove current conserva-
tion for our electromagnetic current given by

~ 22O

H(&&(s t)
~ o dy s2«»(1 s-2)-~r«&+2+~/2

[r(-'L)P . .
x(I-e '"w~) ~" (1.9)

where a(s) = s+ a(0) and a~(t}= t +1 - 2L. The s-
channel poles are at a(s)=N+2X&u, M with N, M
=0, 1, 2, . . . , ~, whereas the t-channel poles start
at az (t) =2, 3, 4, . . . , ~ due to the double helicity
flip of the vector mesons. The particle spectrum
has no external mass dependence in either channel,
and in the t channel we have the same spectrum as
that of the off-shell photon line. The asymptotic
behavior of each channel is dictated by the Regge
poles in the crossed channel.

When 2A. coo = 1, the hadronic amplitude is a simple
beta function, '

2 L

H,' '(s, t)=, ', B(-a(s), 2 —a~(t)}.[r(-.'L) 1'
(1.10)

B. We investigate the singularity structure in the
t channel of the electromagnetic amplitude and show
the presence of fixed poles at J = 1,0, -1, . . . , -~.
The leading contribution at J = 1 is given by'

T, (v, t, k, ', k,')is, =
(

)Fi(t). (1.11)

The imaginary part W, '(v, t, kl k2 ) of the ampli-
tude satisfies rigorously the Dashen-Gell-Mann-
Fubini"-type sum rule for the electromagnetic
current:

dvW2t '(v, t, k, ', k2') =Fz (t).
0

(1.12)

r(-,'L)
(l.5)

C. In the Bjorken scaling limit" vW, scales
and has a simple analytic expression

Defining a Regge trajectory with a quantized inter-
cept a~(-k') such that

2 "
( -1)~ '

+1}vW"'(~) =
r(-,'L) ((a+I) o" (o-I

ai(-k') = -k +1 ~L2- (1.6) (1.13}

then F~( k') has an infi-nite series of vector-meson
poles at a~(-k') = 1, 2, 3, . . . , ~ and is ana. lytic with
an asymptotic decrease

F (-k') ~ (k') ~(ink')"'-'
k

For l, =2 we have

where &o=2mv/k'. In this model scaling is saturated
by the nondiffractive narrow-resonance contribu-
tion. The large-cu behavior is dictated by the or-
dinary Regge-pole exchange such as
vW~t '(&u)-&u ~t" ', whereas at threshold (&u= 1)
vW~~l(a2) vanishes like -(~-I) 0 '[-ln(&u-1)j n '.

Our vW, '(a2) satisfies exactly the Gottfried sum
rule 12

r(a2 +1)I'(k'+1)
r(k'+(u, +I) —vW ~~ l(m) = 1.dip

(1.14)

In Sec. VI we investigate the two-current ampli-
tudes, with the following results:

A. The hadronic amplitude Hmt ~(s, t}, obtained
from the helicity-flip off-shell Compton amplitude
T,'~'(v, t, k, ', k,') at the lowest poles -k, '=-k, '= ,'L, -
is dual and is given by

D. The low-energy" theorem for currents
holds. In the soft-photon limit of k,- 0 we have'

kl k2~0

(1.15)
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E. In Sec. VI E we present the summary of the
calculation for 8', '. The leading contribution to
W~l in the Bjorken limit is obtained as

I)V ( I ) f(I ) (~) (1.16)

where f( )((d) is a scaling function.
In Sec. VII we investigate duality and factorization

of the theory. We find that duality holds for on-
mass-shell vector-meson-hadron vertices. On the
other hand, it is minimally broken in the electro-
magnetic vertex because of the presence of fixed
poles in the two-current channel of hadron-current
amplitudes. Our electromagnetic vertex specifies
the strong vertices in the following manner: The
scalar vertex is

Byq

BT
(2 2)

Define the center-of-mass coordinate 2 and the
relative coordinates zn as

m, y, +m, y, +m3y, + +mN„yN„
m, +m2+m, + ~ ~ ~ +mN

mlyl+ m2y 2

m+m1 2

where the time derivative j; is taken with respect
to the proper time" w of the hadron

~ L/2

Vz( z)=g z (, )'. 'e:V,
and the vector vertex is

(1.17)
lyl m2y2 mN yN

m, +m, +. . .+m, -y

Since all masses are equal, the above coordinates
are simply expressed as

1
Z =

N+ 1 (yi+y&+ ' ' '+yN i)

[ff V ] . ei&x(a) .
Dm y '+

(2.4)
1

z = —(y, +y, + ~ ~ ~ +y„) —y„„, n=1, 2, . . . , ¹

(1.18)

where az(-k, ') = 0 and az(-k') = 1.
In the conclusion, we summarize our approach

and present the theoretical curves for the elastic
form factor and the structure function vR', and
the corresponding data.

II. PHYSICAL MODEL FOR THE THEORY

Inversely, (y„y„y„ . . . , y„„)can be expressed as
linear functions of (Z, z„z„.. . , z„):

1 1y~=g+ 2Zl+3 Z2+' ' '+ Zn+ ' +2 n+1" N+
1 1

y2=Z —2Zl+ 3 Z2+' ' '+ Zn+ ' '+ — ZN,2 n+1 n

1 1
y3 Z 3 Z2 + & Z3 + ' ' ' + Zn + + — —

ZNn+1 n N+1
Ne will first exhibit the underlying physical

model for our theory of the hadron and its electro-
magnetic interaction.

Let us assume a hadron to be a bound system of
N+I pointlike particles ("partons") with mass m,
and four-dimensional coordinates y, „,where
i = 1, 2, . . . , N+ 1. Let us further assume all par-
tons to have the same mass mp = m, = m2 = ~ ~ = m N

that parton 1 interacts with parton 2 through an
attractive potential which is here approximated
by a harmonic-oscillator potential with a frequency
co, that parton 3 interacts with the center of mass
of partons 1 and 2 with frequency 2+, and more
generally that parton n interacts with the center of
mass of partons 1, 2, . ~ . , n —2 and n —1 with fre-
(Iuency (n —1)()).

The Lagrangian for the system is generally
given by

i —1 1 1y;=g — . Z; I+, Z(+'' '+i+1 ' N+1 "'
(2.5)

f.= m, (N + 1)Z'+ z m, —,'(z, ' —&u, 'z, ')

1 2 ~ 2+2 P3( 2 2 2)+

+ —,
'
m, (z„' —(o„'z„')+ ~ ~ ~

n+1

N
yN+I =Z

N+1 Z" '

The Lagrangian of the assumed system written in
the normal coordinates (Z, z „zz, . . . , z„, . . . ) is
then given by

2m, y, +-,'m2y'2 + ~ ~ +2mN ly

(yi& y21 ' ' ' I yg+1)! (2.1)
where

co„=ne

0 + (2 6)

(2.7)
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and mon/(n+1) is the reduced mass of the (n+ 1)th

parton with respect to the center of mass of the
first n partons.

The center of mass and relative momenta are
given by

&LP = —.=mp(++1)Z,

BL n
~ mp Zn ~Bz„n+1

(2.8)

[z. „,z„,]=i5
(2.10)

Introducing the creation and annihilation operators
a„and a„such that

1 1/2

2
2 mn[n/(n+ 1)J()&„

(a„+a„),
(2.11)

Then the total Hamiltonian takes the form

2 N 2P ~1 m„ n 2 2H= +~ +mp (dn z„
2mn(Ã+ I) „, 2 m, n/(n+ 1) n+ 1

(2.9)

Here we assume the canonical commutation rela-
tions

Note the relations

Z =i[H, Z]=2P)
1 n+1

z„=i[H, z„]=—
0

(2.17)

Letting N go to infinity in Eq. (2.15), we notice
that this Hamiltonian has the same form as that of
the string model (see Sec. III}.

Now the hadronic wave function for the system in
the ground state is given by

(Z, z„z„.. . , z„, . . . )

=4.(Z)4, (z,)4.(z, ) Q.(z„) "~,
(2.18)

where $(&(Z) is the free-particle wave function cor-
responding to the center-of-mass motion, and

P„(z„)is the four-dimensional harmonic-oscillator
wave function with frequency n:

)„(*„&=(.
& -) e*p(- — ' *„'). (2.&9&

To understand the model better, let us investi-
gate the clustering properties of partons. The
mean-square distance of parton n+ 1 from the cen-
ter-of-mass point Z is given by

and

[am, (&) an, v] 5mn5»v r (2.12) Using the above wave function, we have

(2.20)

the Hamiltonian can be expressed as

P2 N

H= + ()&dna„a„,
2M~

(2.13)

1 n+1 2(z. )=
0 n n

Thus, we obtain

(2.21)

where M„ is the total mass, and the constant con-
tribution due to zero-point fluctuation is sub-
tracted.

As this point we relax the relation between the
total mass M„and parton mass m, by assuming a
certain mass renormalization, thus allowing the
two quantities to be independent. %e shall choose

(2.14)

1 n 2 1 2

m, n+1 n, . „„m,i(i+1} i

For n-~ the above quantity tends to

((y.„-Z)') —+ O(1/n'),
0

(2.22)

(2.23)

N

H=P +dna„an,
n=1

with

(2.15)

This normalization is such that the fundamental
unit of energy is the inverse Regge slope. Then
we finally obtain

and most of the partons are very near to Z (clus-
tering point).

Having studied the Hamiltonian for the free sys-
tem, we now want to introduce the electromag-
netic interaction in the model. In the parton co-
ordinates (y„y„.. . , y, , . . . ) we make the minimal
substitution

m,y, -m, y, —e,A(y(}, (2.24)

~n ~ mp @n ~n

(2.16) where e, is the charge carried by the ith parton.
Gauge invariance is here automatically satisfied.
On the other hand, in the normal coordinates
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(Z, z „zz, . . . , z„, . . .} the problem is far from
trivial and can be local only in special cases since
the A. field associated with one of the normal co-
ordinates is a superposition of fields at different
points and diagonalization is not always possible.

Here let us assume that the charge quantum e
is carried by one of the partons, say parton 1;
then the interaction Lagrangian is given by

dvL, =e I dv ' A„(y).
4

(2.25)

1 I 1
Yl ~ j. 3 2

—g+ z + z +'''+
n+1 + ~ ~ ~ (2.26)

the above interaction is also given in the normal
coordinates by the substitution

Since the transformation bj- (zj is a linear trans-
formation and

this system correspond to the physical model pro-
posed in Sec. II. In the present generalized dy-
namical resonance model~ where we allow quantum-
mechanical fluctuation in the hadron internal de-
grees of freedom, we should add to the Lagrangian
of the previous model the Tegrangian of a set of
scalar harmonic oscillators. We shall prove in
Sec. V that these scalar oscillators induce an in-
finite series of vector-meson poles with quantized
Regge intercepts in the off-shell photon line of
electromagnetic currents when the hadron interacts
with the external electromagnetic field.

The T~grangian density of the model is then
given by

&($) =&.(t)+&g($)

n
n p 1 n

1/2
-m„-2 mp O„A y, , (2.27)

L
1 8 f 2

+ $ $2~ 2g 2
2m~ .

(3.1)

where

2n+1 mp n
(2.28)

III. DYNAMICAL RESONANCE MODEL
FOR FREE HADRON

In the previous formal model' considered by the
present authors, the hadron was considered to be
represented by a collection of world lines that at
any proper time v obey the two-dimensional con-
tinuous-string equation with free ends. We will
show that the Lagrangian and normal modes of

Thus, we see that the different normal modes cou-
Ple uith different strength to the electromagnetic
fi eld.

So far, the attempt made in this section has been
classical. In the real world, due to parton-parton
collisions, the charge distribution may be quan-
tized. We will require that the expectation value
of the quantum-mechanical charge-distribution
operator p„corresponds to the classical distribu-
tion o„: Consider an L&imensional space (g, )

(i = 1, 2, . . . , L) corresponding to the charge fluctua-
tion with a harmonic wave function (&uo/z}z''
+ exp( Q cop/ ) The charge -distribution operator
p„(t') = e "~ "with L = 2 gives for o„=(p„(g)}&the
1/n behavior. This additional degree of freedom
gives an extra contribution to the total free Ham-
iltonian of the system.

In Secs. III and IV we shall present this general-
ized model in the string language, and then com-
pare the model with the classical picture shown
above.

8 xi' 8 xU

BT2 8(
8 g.
8+2 0 i& i=1, 2, . . . , 1. .

(3.2)

(3.3)

We assume the boundary conditions for free ends:
8

8(
"=0 for $ =Om. (3.4}

These allow the coordinates x„($) to have the fol-
lowing Fourier decomposition corresponding to the
normal modes of the system:

x„(])=x,+2 Q x„„cos(n$), (3.5)

which corresponds to the separation of motion in
center-of-mass and relative coordinates. For
each mode x„„(r)the equation of motion is simply
expressed as

8'x . =u.n 2

BT, ' =-n x„n, n=0, 1, 2, . . . , ~. (3.6)

The canonically conjugate momenta associated
with these degrees of freedom are given by

Bg 1 Bx„'"'= s(sx„/s, )
= 2. s,

"

1 1"
= —p„,+- Q p„„cos(n$),

n=J,
(3.7)

where L is the number of independent scalar oscil-
lators, A.~p their frequency, and A. an arbitrary
constant. The summation over the Lorentz indices
is understood to be taken. Applying the principle
of least action to the above Lagrangian, we obtain
the following equations of motion:
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with the following appropriate commutation relations:

[x„., P„„]=f5„„b
Now the total Lagrangian is obtained by integrating 2 ($) over t':

(3.8)

f.=lo+f ~= iI &(&}4
Jp

Ll p + ~2 2 + ~ g (gp (3.9)

The Hamiltonian density can be calculated from the
Lagrangian density as

36(&) =36,(t')+&~(t)

ex= v[p„(()j'+ 4—„
L

(3.10)

and the total free Hamiltonian is

H=HO+Hg = JC($)dt
~ p

00 L
=P„o'+ 2 Z (,Pp,.'+n'x„, ')+ 2 & Z (ng'+ ~o'Cg'),

n=g

These operators satisfy the commutation relations

[ap, my av, n) = bg Ubmn i

[b„b,'. ]= 5„.
Then the Hamiltonian H takes the form

(2.12')

(3.16)

H=Hp+Hg
40 L

=P& 0'+ Qna& „a„„+Xuogb;b, ,
n=g

(3.17)

where we dropped the constant term corresponding
to the zero-point fluctuation. In particular, in the
following H~ is always defined as

L

H~ = —,X P (q, '+ uo't', 2} —L-, X&oo. (3.16)

where g, is defined by

~L
"' s(sr, /s~)

(3.11) Now it is quite easy to establish the relations be-
tween (x„p,}, (x„,p„) and (Z, P), (z„, x„) by compar-
ing Eq. (3.14) with Eq. (2.16). They are given by

Z =xp, P=Pp,

1 ag,.
A. 87' (3.12)

Zn +ny ~n ™p Pn '

(3.19)

g; and g, obey the canonical commutation relations

[tie Qjl ~bi 'J (3.13)

1~(a„+a pn)p,
(3.14)

and a similar decomposition for the scalar oscil-
lators:

t'g= (b;+b, ),
1

V 2(Op

g, = -i(-,',}'"(b;—b;).
(3.15)

Notice that in the Hamiltonian (3.11}the first
term corresponds to the center-of-mass motion
and the second and third terms to the internal ex-
citation in terms of an infinite set of four-dimen-
sional harmonic oscillators and a finite set of sca-
lar oscillators.

Let us introduce creation and annihilation oper-
ators for the normal modes:

a"(s) =n(s) -&(u,M, M=0, 1, 2, . . . , ~

n(s) = a'(s) = s+ a(0),
(3.20)

and on their daughters. The mass spectrum is
given by

(m„„)'=Q nH„„+X(u,M- o.(0).
n, |l

(3.21)

We have defined the problem such that the funda-
mental unit of energy is the inverse Regge slope.

The degeneracy of this model is higher than
that" of the usual Veneziano model in an unimpor-
tant manner. The multiplicity is exponentially in-
creasing and is of the same form as that proposed
by Hagedorn" in his thermodynamical model.

The particle spectrum is specified by picking up
a class of solutions among those of the proper-
time equation that correspond to an eigenvalue
a(0), which physically is the intercept of a. leading
Regge trajectory. Then all resonances lie on the
linearly rising trajectories
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In the following, for convenience, when we refer
to daughters we mean all the nonleading Hegge
trajectories.

Since we specified the particle spectrum, we
can write down the propagator for the hadron. Let
us recall that in quantum mechanics the propagator
for an intermediate state n is simply given by

1/(E; —E„) Sim. ilarly in our model the propagator
for a state with momentum P is

1 1

n(0) —H a(0) —P' -Q, nata„- H~

C)

dy exp[ —y[Qna„a„+H~+P' —o(0)] I .
0 n

(', t((= (pM, ()sx„sp($, g) (4.1)

-=x„,+X„(g). (4 2)

The charge distribution p($, g) is here specified by

p(g, l) cos(n])d(p. (&) =
~ 0

where A„ is the electromagnetic field and X is the
center of charge defined by

p(g, g)x„(~)d~
v 0

= x„,+ 2 Qp„(g}x„„
tl =g

(3.22)
=e "~ ~ n=0, 1, 2, . . . , ~

2
7 (4.3)

In the conventional Veneziano model without sca-
lar oscillators, the strong coupling with the ex-
terna. l scalar field is given by'

p.(r) =1,

where the last condition is obtained from the unit

total charge
cnx(k=o) .+.e

y (3.23) p($, g)d$ = l. (4.4)

where the normal-ordered form is to be taken with
respect to the a„and a„operators. In the present
model this coupling should be modified so as to in-
corporate hadron-scalar interactions. This is
achieved through the complete factorization of the
hadronic amplitudes which are obtained out of had-
ron-current amplitudes on top of vector-meson
poles in the off-shell photon lines. We shall study
this problem in Sec. VII.

7I

Z, (])d& =e "A„(x), (4 6)

where

». »..0 g )». . g s p.(t)

Integrating Z, (() over $, we obtain the interaction
Lagrangian

IV. ELECTROMAGNETIC CURRENTS
AND GAUGE INVARIANCE

In Sec. II we showed explicitly that introducing
the electromagnetic interaction through the mini-
mal substitution in the parton picture resulted in
an unequal normal-mode coupling (UNMC) with the
electromagnetic field evaluated at the point y, . In
this section we shall exhibit the formalism in the
string model.

Because of UNMC, the electric charge is dis-
tributed over the string. This charge distribution
p($} is assumed to fluctuate around the point p($)
= 25($), and its fluctuation to be governed by the
Hamiltonian Hz of the scalar oscillators. In the
off-shell photon line, this fluctuation induces vec-
tor-meson poles when and only when the charge
distribution is localized at $ =0, thus preserving
duality in the hadronic amplitude. On the other
hand, we shall find that the hadron-current ampli-
tudes are almost, but not quite, dual due to the
presence of fixed poles which are characteristic
of these physical amplitudes.

l.et us denote the charge distribution by p((, g)
where t (g, i =1, . . . , L) is the L&imensional dy-
namical variable introduced already in Sec. DI.
Then our interaction Lagrangian density is

The action integral is generally given by

Si= Ltd7 =
~~

l(((y)&(((y)d'y.

(4.6)

(4.7)

Now writing

() f('(( , *)A=„(vl&'y- (4.8)

4i,(y)=-
~

", ~'(y-x)
4 +

or expressed in momentum space as

i p(&) = i p(y)e 'd y

(4.9)

(4.10)

To make a correspondence between the present
formalism and the classical picture of Sec. II, we
first evaluate

(X)~ = x, + 2Q (p„(g))q x„,
n=g

(4.11)

in the interaction Lagrangian and taking care of the
canonical commutation relations, we obtain the
electromagnetic current in the following symme-
trized form:
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where On the same condition we also observe that

(4.17)

n+ 2(do

For L=2 we have

2 43p(x)q=x, +2 ' x„.
n =l n+ 2(00

Comparing this with the relation

1
y, =Z+ z„

(4.X2)

(4.13)

Now taking the expectation value of the interaction
Lagrangian Eq. (4.5) we have

(I.I)~=e "A„(X)
~T

=e ~ A&((X)()+(higher correlation terms)
C}X

~T

= e ' A (y ) + (higher correlation terms) .By
ev

(4.18)
(4.14)

obtained from Eqs. (2.26) and (3.19), we see the
correspondence

(4.15)

Thus we have established the correspondence be-
tween the generalized model and the classical
picture of the parton model.

The total Lagrangian in the presence of the elec-
tromagnetic interaction is simply given by

by choosing L t.t= I-+1-1 (4.19)

(4.16) Substituting the above Lagrangian in the relation

s (ex„,/s T)
+ „, s v s (s x„„/a~) +, , s ~ s (s g, /s I)

we obtain the total Hamiltonian

H„,= II+H,

(4.20)

L oo

sp„t)= [p« —eA„(X)]'+;g([p„„—2ep„(t)A„(X)]'+ n'x„„')+ ~ Ag I); —2e "
x& „A„(X) + (2),'r. ,

(4.21)
where the interaction Hamiltonian Hi is defined by

HI = —e(p„„A„(X)),+ e'A „(X)A„(x)—eg [p„(&)p„„,A „(X)),+ 2e +2[p„(g)] 'A „(x)A„(x)
n =l, n=1

L 2 L

*„,.A, (*) 2 *2+ Z "
„,.A, ('))

i=1 n=l ~i + i=l n=l

22O L eo

= —A, — ' 2 .~ 2+Ip(2)]'2, . 22+ Q ",„Q " *.„) A ()A( ). (4.22)

(4.23)

(4.24)

It is worth noting that the interaction Hamiltonian, in addition to the j A. term, has the contact terms.
Having split the total Hamiltonian B„,into two parts, H, the Hamiltonian in the absence of the electro-
magnetic interaction, and Hi, the interaction Hamiltonian, we shall always consider the problem in the
interaction representation.

In the following, let us prove current conservation. The matrix element of the divergence of the elec-
tromagnetic current between the two eigenstates l L2) and l o') of the Hamiltonian H is

'(2,)„(2)l )=( l~ d,'"* «). —
Using the equation of motion, the above gives

Jld i(dd "*I )= (
' —«)J(d ( 'I "*I )

= 2vi(a'- a)5(o'- a)(a'ale'"" "Io&==
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where we have explicitly used the translational invariance of the current in the v space or the conservation
of the eigenvalue o. of H.

Similarly, we can prove the gauge invariance of the theory beginning with the action integral Sl . Gauge
invariance requires that the substitution

A„(X)-A„(x)+
a A(x)
8x~ (4.25)

should at most change the action by a total derivative. This condition is here trivially satisfied since

a%„aA(X) " a A(X)
~ T ~X @X

(4.26)

(4.27}

For computational purposes, we will write down the matrix element of the current between the ground
state and the excited state. First we split the current into three parts:

j „(k)=j '„"(k)+j "(k)+j "'(k),

where

j&„'&(k) = J' (p„,e"*),dT,

j'„"(k)= Q (p. (r.)p„,e"*),«,
n=l

(4.28)

(4.29)

(~)j'"(k) = ', Q zq Q " x„„e"" dr
f =1 n=l +

Then

r„=(m, n~, P'~j„(k) ~0, 0, P)

(4.30}

p(0) + p(1) + p (2)

1/2
=(0 (") & ",0'l'" "l»»(') g, , 0' v. (&\ — — ( „—„')„"*"' O, O, ()

n=l +

oc

~ rL, „( ~», '"' '"'" ~(.~ t). »»(),
1=1 n=l +

(4.31)

(4.32)

(4.33)

with P'=P+k. The first term corresponds to the center of mass and is equivalent to the pointlike electro-
dynamical vertex. The second term was investigated in Ref. 5. We will outline here its important proper-
ties. Noting that

p„(&)( i( ', n} -'(a-„)—a„)„,e""(~)),=[-2p„(&)'k„—2ip„(&)(-,'n)' '(a„—at)„j e'"

and by the property of the coherent states, I „" reduces to

r„")=g (m, n)„p'~2ip„(g)( ,'n)' '(a„-}„e' "-)~0, 0, p).
n=l

The vertex contribution from the scalar oscillators is distinctively different from the above. Recall that
1/2

(» b;), »= —'(~ ((; —););
0

(3.15)

(4.34)

then an elementary ca1.eulation yields
L

I' ' =QQ, , (' (d2, Xb;
" " ~~~

( „), 0, »p).
i=1 n=l

Let us introduce here a function K~()„f„y)which is characteristic of our model. The propagator in the
( space is given by

(4.35)

where the correlation function EL(&„&„'Y) is defined and given by
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K.(C„&„y)-=&c, Ie '""Ic,&

(d ()

v(1 —e '~ ")
— L/2

exp[- —,'(u, (g, + g,)' tanh(2x(u, y) ——,
'

&u, (g, —(,)' coth(-,'x(u, y)]

P 1 L/2 I

exp --,'(u, (g,'+ g, ') coth(A(u, y) + (u,
sinhjA. +ay) ~

(4.36)

As is apparent from the above, K~(&„g,; y) is the propagation function of an L-dimensional harmonic oscil-
lator in coordinate space.

We shall write down useful properties of the function K~(g„f„y) below.

B

By

((d0$1+ KL = e CUogz — KL )
I 2

L
—Xmoy B B—(e o K&) = zg od j + &ego+ KI, ,

L

y.(t,-)q.(C,) , K.—=.') e —~g,&,&
(0.(& )({.(4)K.)

By ~ 1 4 2

where g,(g) is the ground-state wave function of the scalar oscillators:

tj,(f) = —' e

(4.37)

(4.38)

(4.39)

(4.40)

(4.41)

In Sec. V we will study specific applications.

V. ELECTROMAGNETIC FORM FACTOR

I o, o, p& =
I o, p&. d'&

I & & & ~ I
o &, (5.1)

The current is diagonal in the & space making one
of the & integrals trivial. Using the coordinate-
space representation for the wave function

L/4
(Ol o), = (

—') o- "*" (5.2)

and the polar-coordinate expression for the I.-
dimensional volume element

OO

r(-,'1.) ' (5.3)

the elastic form factor is then given by

2( )1 /2F(k) (, )
"(1—e ')'.

(5.4)

Here we define a Regge trajectory nz( k') such-
that

In Sec. IV we defined the electromagnetic current
and the vertex function. The simplest application
will be to evaluate the elastic form factor for the
ground-state hadron.

We sandwich the current Eq. (4.27) between the
ground-state bra and ket:

nL(-k') = -k'+ 1 ——'1.

with daughters (5.5)

F ( k2) ~ (k2) 0 (ln k2)
$2~ oo

Therefore our form factor satisfies an unsub-
tracted dispersion relation

(5.6)

OO F (P't

W Q 0
t' —t

(5.7)

where the discontinuity is given by an infinite sum
of 5 functions.

Notice that in the present model the elastic form
factor and the transition matrices are not Gaus-
sian; they are analytic and their rate of decrease
is mostly determined by ~,.

For the special case of L =2, F~( k') takes the-
simple form given by

I'(&u, + 1)1"(k'+1)
1"(k'+ u, + 1)

nl. (-k') —n, n = 1, 2, 3, . . . , ~;

then Fz(-k') has an infinite series of vector-meson
poles at n~( k') =1,-2, 3, . . . , ~. (For L=1 the low-
est pole starts at the p-meson mass -k'= —,'.) Fur-
thermore, it is analytic with an asymptotic de-
crease
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p m P, +k, =p, +k,

and mass-shell conditions

p, '= -m', p, '= -m', a(m'} =0,

k, =(k„[k,'+(-k, ')]' '),
k, = (k„[k, '+ (-k, ')]' ') .

(6.?)

k f ) p fll

Then, using the gauge invariance of the theory, the
off-shell Compton scattering amplitudes T, and T,
are defined such that

FfG. 1. Off-shel1 Compton scattering. k, k,

VI. TWO-CURRENT AMPLITUDE

We next examine the two-current amplitude in
our model. We calculate the Compton scattering
amplitudes for off-shell photons on a target parti-
cle in the ground state with mass m (see Fig. 1).

We define

P= —,'(p, +p,), s= -(p, +k,)', u=-(P, —k, )

(6.1)
2mv= -2I' k, =-2& k, =(s —m'+k, k,),

with momentum conservation

+

(6.4)

The propagator here is given by

dye '("o o(o))K-~(l. g
.

y)
1

(6.5)
where the correlation function KL(t„ t„y) wa's de-
fined in Eq. (4.86). Following the steps in Ref. 5,
the helicity-flip amplitude T, can be calculated
as

dye- o 1 2e otz /2(I e z$ )))& (I e . 2 )k2

x(1 —e '-& 'e t& 'e ') '
& 2(e' '+e' ")K~(t„g,;y). (6.6)

The helicity-nonf lip amplitude T', ' will be discussed later. In the following we will consider the s-channel
contribution since the expression is manifestly symmetric in s and u.

A. Hadronic Amplitude

Let us first evaluate the hadronic amplitude corresponding to the lowest vector-meson poles at -A, '
= -k, ' = ', L in the off-sh-ell photon lines. In Eq. (6.6), perform the angular integration in the g space and
then expand the integrand around g, = &, =0. Upon integration over &, and &, we get the pole contribution
corresponding to the factor I/(2k, '+L)(2k, '+ L} whose residue gives the hadronic amplitude

2 L, ~ac
If(I.)(s t )

o d ey (so)t(I e-y )-a~(t )+ ]+ i/ (I oe-2 ) w&p )
L/2-

2 ) ! [I (1L)]2 y —e

where

(6.7)

and

u(s) = s+ a(0), (6.8)

n/(t) = t+1 —oL.

(i) s channel singu-larities In the s channel H. , ' has an infinite series of poles at

n(s) = N+2A+OM, N, M=0, 1, 2, . . . ,

This can simply be seen by taking y- ~; denoting x = e ',
2mIf(c)(s t} o d&&-a(~)-$(I ~} o/( )y+(Q/o(I ~2$~o) I/2

[r (-',L)]' .',

(6.9)

(6.10)

(6.11)
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From this expression we obtain the above result by expanding the integrand around x= 0. Notice that the
scalar oscillators are excited in pairs since our electromagnetic current conserves a parity (-)'

(ii) t ch-annel singularities In. the t channel H, has an infinite series of poles which starts at

c(~(t) = 2, 3', 4, . . . , ~ . (6.12)

Note that we have no poles at the nonsense points nl(t }= 0 and 1 due to the double helicity flip of the vector
mesons. To prove this assertion, make a change of variable 1 —x =z in Eq. (6.11). Then

2 ~L ~l
H( L)( t) p d (I )-p((p)-1 -pg(t)-I+ L/2[I (I )2@up]- lLp

[r(-,'f,)]' „,
and writing the last term of the integrand as

[1 —(1 —z) ~~
]

+ P = (2)((() )
~(' z ~ [1+0(z)],

(6.13)

(6.14)

the location of the poles is seen immediately.
(iii) Regge asymPtotics. The asymptotic behavior of H, is controlled by the Regge poles c((s), c(~(t),

and their daughters. Specifically, the asymptotic behavior in the s channel for fixed t is obtained by letting
a(s)- -~; then the y=0 region contributes and gives

(6.15)

On the other hand, in the limit of t- ~ with fixed s, the nonvanishing contribution comes from the region
x=0 (y- ~) and the amplitude behaves like

(iv) Duality. From the above investigation it is obvious that H, ' is dual.
(v) p f A, degen-ex-acy. It is important to note that the particle spectrum in the t channel is degenerate

with that of the off-shell photon line. Phenomenologically this implies the p-f -A, degeneracy. This is one
of the severe restrictions to be satisfied by dual off-shell Compton scattering amplitudes.

When 2X~, =1, the hadronic amplitude 8, is given by a simple Veneziano representation'.

5g(d
H,' '(s, t) = [,'], B(-c((s},2 —(xi(t)).

B. Fixed Poles

(6.17)

Now we study the singularity structure of the two-current amplitude. Most of the properties listed above
for the hadronic amplitude are preserved for the off-shell Compton scattering amplitude. However, duality
here is minimally broken due to the presence of fixed poles.

The pole structure in the s channel is obvious by construction. In the following, let us look at the singu-
larity structure in the t channel.

(i) t channel poles. In E-q. (6.6), perform the angular integration in the f space and make the following
change of variables:

y = zx, r(' = z(1 —x)w, &,'= z(1 —x)(2 —w) .

Then we obtain

(6.18)

1 ~1 (p 2
x —' dz(I —e ') "&'p dx dwz'(1 —x)[z(1 —x)] '[u(2 —w)] t' 'e4

i, f2
x(1 e ~ ' ")

) P(I e-P(z-x)(2 N)}P2 eExP(s) exp[-(upz(I —x) coth()((ppzx)]e-2 $(do gx

(ppz(1 —x)[w(2 —w)]'~'
&((I —()/2&

'" ' 'm( )
"") '

Expanding the integrand around z = 0 and using the relation

{6.19)
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-2k,k, =
a I (—t ) + 1 —,'I. ——k,' —k, ', t= -(k, —k,)', (6.20)

we can see the pole structure in az(t) which starts at

u~(t) =2, 3, 4, . . . , ~ (6.21)

due to the double helicity flip of the off-shell photons. The amplitude does not have any unphysical singu-
larity in I, in contrast to some other attempts done before. "

(ii) Fixed Poles. The amplitude has fixed poles at J = 1, 0, -1, . . . , -~." The leading contribution at J = 1

is given by

L/2«) (dp
(v t kl k2 ) I fixed pole

~l oc

}
+ (t).

00
2 - 2 2dI d I dye 0~(1 —e'~) "~'2 e' 'Ei(f I)

(6.22)

The fixed-pole residue has no structure in k, ' and
k 2 18

2

(iii) Current algebra -sum rule Let. us denote
the imaginary part of T, by

~ =1

(1-e ")(1-e ") e-y(1- ttt)

-0 2/2 -C 2/2 -y 2
(1 —e ' e e }

(6.2V}

the only surviving contribution in the limit of k2- ~
comes from y= 0 and g,' = $2'. Introducing the vari-
able z=k2y, then,

(6.23) lim Z', (I„g„z/k') = 6'(I, —I,}. (6.28)

Recalling that T,' '(v, t, k, ', k, ') satisfies a disper-
sion relation in v and using the simple supercon-
vergence technique, we obtain the Dashen-Gell-
Mann-Fubini"-type sum rule for the electromag-
netic current:

dv W,' (v, t, k, ', k, ') =F1(t) . (6.24)
4p

Another approach to prove the sum rule is to use
the no-correlation property of the product of two
currents:

Using

g /k 2k1

lim
1 —e '1

e-&2 z l-ma'
=iim

~

1+
~z ( 1 —e

= exp

i.(Y, 3.)j.(y', 34 = 6(y y')i. (y, yg -(6 26)
we obtain for T2~L)

(6.28)

The above property is very important in that it en-
ables us to construct a local current algebra. '

C. Bjorken Limit and Deep-Inelastic e-p Scattering

cu —= 2mv/k' (6.26)

Of special interest to deep-inelastic e-p scatter-
ing is the forward off-shell Compton scattering am-
plitude. An interesting limit to high-energy phys-
ics here is the Bjorken limit"; both n(s) and k'
tend to infinity with their ratio kept fixed. Experi-
mentally, this is the region where the SLAC data
proves scaling for the structure functions of the
process.

In Eti. (6.6), let us put k, =k, =k corresponding to
the forward case. Replace o.(s) by -k'(1 —co),
where

2e=1+
1 —e- &1'

we have

(6.31)

' vW (~')
lim k Tt ~(v, k'}=2m. . . (6.32)

k

where the scaling function vW, ~ (~) is defined by

vW ~~(&u) = lim vWt~ (v, k')
k2~

lim k'T& ~(v, k')
k

4m(u 0 0 1L 1,

NzL) 0 2e ~i /(1 —e-ti )+1—~

(6.30)
Introducing the new variable

and let k' go to infinity keeping cu in the region
&u & l. (By analytic continuation we can go to ~ & 1.}
The factors with k' dependence are

= lim —vlmTt (v, k')1
k2~ lT

and is given by the expression

(6.33)
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2~0 (d((d —1} 0 (d+ 1

(6.34)

Thus, vW~i)(v, k'), the deep-inelastic e ps-catter-
ing structure function, scales and has the simple
analytic expression in the Bjorken limit. Notice
that in the present model the scaling curve is sat-
urated by the nondiffractive narrow-resonance con-
tribution.

In the following let us look at some specific prop-
erties of our structure function vW, ~'(&u).

(i) Asymptotic behavior vga. i~(ru) has the asymp-
totic form dictated by the ordinary Regge-pole ex-
change such that

vN~)((u) ~ i u) i(0)(2(u,)
(6.35}~-- I'(-,'L)

(ii) Threshold behavior For &u.=1, vN~'(~) van-
ishes in agreement with the usual conjecture. The
rate of rise of this function is given by

~ I/2
vNi ((u) ~,'

((u —1) ~&& '[-In((u —1)]|I'(-,'L)20
(6.36}

The relationship between this rate of increase and
the asymptotic decrease of the elastic form factor
does not agree with the field-theoretical model of
Drell Levy and Yan ig In the Bloom-Gilman
derivation of this relation the effect of the infinite
clustering of resonances at ~ =1 when k2- ~ was
neglected, giving the discrepancy of an extra pow-
er of (~ —1), where the power p is a model-depen-
dent parameter which is closely related to the den-
sity of higher-resonance states.

In our model, since the propagation function

Kz(g„&„y) reduces to the uncorrelated form
bi(g, —&,) in the Bjorken limit and furthermore our
electromagnetic current satisfies the no-correla-
tion property [Eq. (6.25)], the threshold behavior
is determined by the asmyptotic decrease of Fi(t)
rather than by the asymptotic decrease of its
square Fi(t)'. This noncorrelation may be under-
stood in the parton picture of Feynman. In the
high-energy Bjorken limit of the off-shell Compton
amplitude, the only surviving contributions are
those where a single parton absorbs and emits the

off-shell currents almost instantaneously sethout
disturbing the configuration of other partons
Mathematically, thxs condxtxon xs realized m

our model by putting the time variable in the prop-
agator as y =z/k'-0, k'-~ [see Eqs. (6.28) and

(6.29)]. Then we have the limiting form, 6 (&,—f,),
of noncorrelation for Ki(t„r2,.y). This means that
the hadron excited into a certain configuration
specified by &, by absorbing the current through a
parton is de-excited from the same configuration
specified by &2 = &, by emitting the current through
the same parton.

Experimentally the rate of increase of vW2i~(cu)

at threshold is anywhere between 2 and 5.
(iii) Gottfried sum rule Ou. r vWPi(&a) satisfies

exactly the sum rule" given by

—vNi)(&u) = 1.dc'
(6.37)

This can be proved by making the change of vari-
able

(6.38)

in the left-hand side of Eq. (6.37) and by using the
formula

~(Pdg —(g it2 I'(iL) (6.39}

The above sum rule is a special case of the
Dashen-Gell-Mann- Fubini-type sum rule for the
electromagnetic currents Eq. (6.24).

D. Low-Energy Theorem for Currents

Since our theory of electromagnetic currents is
gauge-invariant and the obtained amplitude is ana-
lytic, the low-energy theorem for currents is nat-
urally expected to hold. "

Using gauge invariance in the soft-photon limit
of 0, -0, the low-energy theorem states that the
two-current amplitude reduces to the external-line
insertion of one current-matrix element.

From Eq. (6.6} one can immediately write down
the expression for Tati&(v, t, k,', k,'}at k,' =0 = k, k,
and t=-k, 2:

l./2 00

d t
J

d 1' dye ~0~& t2
oo ~ 00 0

&ow using the energy representation of Ki(f„g„y) given by

KL(&|, gz; y) =P &gz ln„&&nil e ""&l

nz&&nial

g, &

2
xe b~z t (1 —e ~2 )~a e"~&~&K (g l. ~ y)

(6.40)

(6.41)
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and the orthogonality of the harmonic-oscillator wave functions over the &, space, we finally obtain

L/2 oo OO 2 2
T (v, t=-k ' k =0 k )~„.+ o-—2m — d~t'2 dye 'h~& (I —e ~a ) 2 s~ "&')

2 & 1 & 2 kj'+-0 1j oo 0

,F ( k,-'), (6.42)

which is a verification of the low-energy theorem in our model.

E. Evaluation of 4',

All considerations in this chapter so far pertained to the helicity-flip amplitude T2i~). We will next study
the contribution to the helicity-nonflip amplitude d~). The calculations are technically very tedious and
lengthy. We will only highlight the important steps for calculating the forward amplitude.

Let us denote the polarization vectors of the two off-shell photons by c, and ~,. Then the forward Comp-
ton amplitude TP (v, k') is given by the term proportional to 5„„:

d'g, g(0, 0, p ~ ~, ,(r'"(k)+ I ")(k))„~m, g„p+ k)

d'&, (A+ B)K,(g „g„y)(a+ B),

dy(m, g„p+k~e ""oe '"~ ~m, &„p+k) (m, f„p+ k~e, „(I' ')(k)+ I' "(k))„)0,0, p)
0

OO g OC

L
l, ~ 5~ lJ

where

B2
~K.A = 2, .g(~„~.; y) «. I

e-'"'I ~,)F,L By2

(6.43)

(6.44)

AK, B= -2) 42~, , —g(K„&„y) (t. l e '"~(b 0) I r. ,)F,0 B( 2 By
(6.45)

BK A=-2))42(u, , —g(g„&„'y) (t', I (t b)s '""I(,&F,
B/22 By

, g(j„&„.y) ( (2 ~ (& b)e ""
(b &) ~ &,)F,

B B
L 0 B(2

with

g(c„c„)y=gp„(t,)p„(&,) e"'—1

(6.46)

(6.47)

and

= -ln(I —e ~l e t2 e ")

F =q, (g,))(),(g, ) exp[-k'g(g„g„0)] exp[-k'g(&„&„0)]e xp[2k' g(&„f„y)](e' ".+e' '"')

~ (~ )~ (~ )(I -gq ))) (I e-t2 ) (I e-tq /2e-t2 I e-y)- (ey ) + ex (u))

(6.48)

(6.49)

The summation over n is standard and the matrix element (f, ~
e '"~

~ &,) has been considered in Sec. IV.
Here we use the operator relation

(6.50)

Then, using the differential equation (4.39) for K~(g„g,; y) in the BK~B term, we can make partial integra-
tion in y. In the terms AKLB and BKLA we make partial integrations in p, and p2. Thus, we finally obtain
the following expression:
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2e-c l /2e c2 /2e-y2

2 2 FK j(k1~ ~2~ y) &

(1 e-&& /2e-~i /2e-~)

e-0 l /2e-C2 /2e-y2 2

BK~A = Xe o', , (f, f,,)FK~(r„g„y)
(1 —e &i /' e ". g /'e-&}'

2 ~ 12/2 F22/2 ye e e 2
e-C2' e-Cl /2e-C2'/2e-y

(1 e-jl q
/2e-422/2e-y 1-e ~2

2

AK B+BK B=2Xf,' g (g,)g (&,)6 (&, —&,)+Le " o',
/

(r, f,)Kz(f„ i2; y)

8F e -l 'e 2 'e' e '2'—+ 2k'F
1 —e ~l 'e ~2 'e ' 1 —e ~2

AKL, A = (6.51)

(6.52)

(6.52)

There are two contact-term contributions to be added, to the second-order electromagnetic interaction,
and these are given by

2 2

contact terms=-2, g, (&,)t),(&,)& (&, —g, ) —2Xg,', , $0(r.,)go(K, )5 (K, —K,). (6.54)

W (v k') = —ImT' (v &'}. (6.55)

In order to obtain the Bjorken scaling limit of 8',
we follow the similar steps to those prescribed in
the derivation of vW, (&u). Then we find that the
leading term, corresponding to the scaling form,
vanishes. The next leading term is equal to

These two terms should be added to the two-cur-
rent amplitude to obtain a gauge-invariant Compton
amplitude. These only contribute to the real part
of the amplitude and are actually canceled by the
surface terms of AK~A and BKIBafter the y par-
tial integration.

Now the structure function W', '(v, k') is defined
as

I

Therefore, our result for W, in the scaling limit
is in contradiction with the experimental data from
SLAC. The asymptotic behavior of the quantity 8
defined as

B =o, /c,
is similar to that predicted by the vector-domi-
nance model.

However, we do not regard this nonscaling be-
havior of 8', ' as a serious defect of the present
model. %e rather think that this is due to the fact
that in our framework we have not really treated
the target particle as a spin-& object. A similar
situation usually happens for a spin-0 target. For
example, in the ladder model of the (It' theory al-
lowing the vector-photon coupling, the calculation"
shows that in the Bjorken limit vS; scales, where-
as S', behaves like k ' times a scaling function up

I

x 1+ «X 2+ ~A(u+ 21uo —&uo)ln
co —1

(6.56) gM(s) = f

dp

]rn
L(T

(b)

FIG. 2. Duality scheme on top of vector-meson poles in
off-she11 Compton amplitudes.

FIG. 3. (a) In the two-current amplitudes of the pres-
ent model duality is minimally broken due to the pres-
ence of fixed poles; (b) duality in the local average sense
is preserved for the imaginary parts of the amplitudes.
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to logarithmic factors.

VII. DUALITY AND FACTORIZATION

m, m)„p

Electromagnetic interaction does not necessarily
require duality to hold in off-shelI photon-hadron
amplitudes. The minimal requirement there is that
duality should hold for the on-mass-shell vector-
meson-hadron vertices which are obtained on top
of vector-meson poles in the off-shell photon line.
This is what we have achieved in our model; it is
schematically shown in Fig. 2 for the case of off-
shell Compton amplitudes.

However, we point out that our electromagnetic
vertex is already almost dual in its maximally pos-
sible extent as may be seen in the specific applica-
tions given in Sec. VI. The exact duality is only
broken in the real part of the amplitude by the
presence of fixed poles in the two-current channel,
which is also the required property characteristic
of any physical hadron-current amplitude. Figure
3 illustrates this.

First let us recall some of the formulas that we
have obtained. The electromagnetic current is
given by

vector melon pole, '~~ n, n&, p
ot -k2—L

2

FIG. 4. Projection of the hadronic vertex out of the
electromagnetic vertex through the vector-meson pole
at-k =2m, .

and

p (g) e-n t /2 (4.3)

j'„"(k)= {P„„e"*},dv, (4.28)

j„"'(k)= Q {p„(g)p„„,e'"},d~, (4.29)

In the interaction representation we have the fol-
lowing expression for the current:

(4.27)

where

1 OX' (4.10)

where

(4.8)

(4.30)

Now let us calculate the matrix elements of j„' (k)
(i = 0, 1, 2} in the X space:

d~({p„„:e' r~" },(1 —e t ) (mal r&&1;Inq&, (7.1)

1'p" =&mxl jp" (k) Ink&

(7.3)

e OO

d 0g {p„(r)p„„,:e" "'.}„(1—e )' &mal r&&flnq&, (7.2)
~k n=1

I'„' =&mql j„"(k)
I
n q&

d~ggg p" x„„:e'~'~':(1—e ~ ) —. &mal g&
— &&In~&

where the normal-ordered form refers to a„and a~, i.e.,

:e' ~t': = exp ikg — p„(&}a„exp ikg — „(K)a„ (7.4)
n=1 n=1

As a specific example, here we try to project out of the above expressions the vector-meson-hadron ver-
tex corresponding to the lowest vector-meson pole at -k' = ~L in the off-shell photon line (see Fig. 4) and
study the duality and factorization properties. I'„' ' and I „"simply give the following contributions at the
pole:

!
k2 1L Fl lL }{p. ,o. : e" "':},&m. lo& (Ol n q&,

y2 L/2 +2 h2
(7.5)



PHYSICAL AND FORMA L PRESENTATIONS OF. . . 3079

where

„I. /2

(, , g/p„„, :e" ':),&m&lo&&olnx&,,,„,k2+ ,'I.-r( ,'I.-) „, (7.6)

1/2
X„(0)= 2+ x„„=g — (g„+st ) .

n=l n=l
(7 7)

I'„"' »puld be treated more carefully. Consider the divergence ik I' and pick up the vector-meson pple pf
that quantity. Then we get

y OO

ik„r„"'=—
~ d'gpss e""'-. &m, l g&

— &gin, &

8$; 8$;
0OQ L 82 82

2 &&in~&

e 40

d'g: e"""'.(1 —e ' )' —. [&m~1 &&(m~~. -n~~o)&t'In~&l

L/2
: e"»"': iz&u, (mg —n g) &mal 0& (0 l

n g) .
I'=L, &2 -"'+aL r aL

Recalling the mass-shell condition

-k'=-,'I. =-m ', a (m ')=1

in the pole residue, we finally obtain

„L/2
ik„r,"' ~ -ik„„. . . ", : e"r"'.A(o, (mg-ng)&mglo&&olng&.

Therefore, totally we have

r„~ 5""+k"k" " ) &,l v„(k)l
2 +m

(7.8)

(7.9)

('t. 10)

(7.1 1)

where

(7.12)

The spin factor 5„„+k„k„/mv' is explicitly shown in the vector-meson propagator where we have used the
conservation of the vector current for on-mass-shell hadron states:

k„&m~l v„(k)ln). &
-=0. (7.13)

From the expression Eq. (7.12) we can deduce the
scalar-meson vertex corresponding to the mass-
shell condition n~ (-kz') = 0, which is given by

„L/2
(m, l v, (k,)ln, ) =g, ",

)
. e"~ "':&malo& &oln, &,

2

2.0—

l.5

with

o~( k~') =0.-

(7.14)

(7.15)

g

~ I.O
Ol

I

U

0.5-
g~ is an undetermined constant.

Instead of having these matrix representations of
the scalar and vector vertices, it is possible to
obtain the operator expressions for them. Let us
recall the elementary relation of the generating
function for the Hermite polynomial

I

IO

k' (Gev'i

I

I5
l

20

FIG. 5. The variation of our elastic form factor
E2(-k2) versus the dipole formula F(-& ) =(1+0 /0. 71)
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0.5—

04—
t W2

0.3—

Q2

O. l

L 2 FIG. 6. Theoretical scal-
ing curves of v Wz~i(cu) for
L=2 versus SLAC data
(Ref. 24) for different val-
ues of ceo. The curves are
saturated by the nondiffrac-
tive narrow-resonance con-
tribution.

I I I I I I I I I I I

3 4 5 6 7 89IO l2 l5 20
I

50
I

IOO

g2 H (z)e'
nI

n=0

Then we can immediately write down the following operator form for these hadronic vertices:

~ L/2
y (b ) g

&& . ecksx(o). yr„L,

(7.16)

(7.17)

(7.18)

where

y - —b' b'g -—b'b
), ——e ' ' 'Qe

and

(7.19)

grands of Eqs. ('7. 1)-(7.8), one can similarly ob-
tain the hadronic vertices for higher vector-meson
poles.

VIII. CONCLUSION

0 =
~
vacuum) (vacuum~,

with

L
b b =P b, b, , etc.

('7.20)

2~coo = 1

o.(0) = o.~(0),

('7. 21)

(7.22)

which imply that all the Regge poles and their
daughters are completely degenerate up to spacing
by integers.

By considering higher moments in f in the inte-

These vertices are dual and factorizable, and in
the crossed channel generate the Regge pole o~(f)
with the quantized intercept and their daughters
spaced by integers. The vector current is similar
to that studied before in Ref. 22. It can be shown
that a full N-point amplitude which is constructed
out of these vertices satisfies SU(l, 1) invariance"
under the specific conditions for the parameters:

In conclusion we would like to stress that all our
results were rigorously derived from the Lagran-
gian of the model. We did not have to make any
further assumption to arrive at a particular result.
We find it interesting that we can exhibit explicitly
many of the conjectured properties of hadrons out
of our model.

To compare with experiment the internal symme-
try should be incorporated in the model. We trust
that our physical picture would underline these
generalizations. As a guideline, we compare our
theoretical curves with the experimental results, '
in Fig. 5 the elastic form factor and in Fig. 6 the
deep-inelastic structure function vWmi i(ru) for L = 2

for different values of ~o.
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