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Triple-Regge Coupling and Diffractive Spin Dependence
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From qualitative arguments based on Regge behavior of three-to-three scattering ampli-
tudes, taken together with the assumption that the vacuum trajectory function passes through
unity and has a finite slope there, we argue that {1) the vertex function coupling three vacuum
trajectories vanishes linearly at zero momentum transfer, and {2) a certain constraint equa-
tion equivalent to the vanishing of a single crossed-channel helicity amplitude connects the

j + 1 independent helicity amplitudes for forward diffractive scattering of a boson of spin

j «1. The appearance of certain spurious poles in the 3 3 amplitude plays an important
role in the discussion. We check our arguments in a simple Feynman-diagram model.

I. INTRODUCTION

M' = -(p+ p, —p, )'. (1.4)

The symbol disc» denotes discontinuity with re-
spect to M', and E,dc/dp2 is the differential cross
section for the inclusive reaction

p, +p- p2+x.

Regge arguments' suggest that, in the limit
M'- ~, s/M'- ~, disc„~F behaves like

(1.5)

~

1+&-iwn(t)( s a2(t)
A -=disc„2F -P(t) . , (M') ~

sin'va t
(1.6)

where n„ is the vacuum trajectory function evalu-
ated at zero momentum transfer and a(t) is the
leading Regge trajectory function in the t channel.
The coefficient which couples the trajectories is
t)(t).

Poles in the t variable at integer values of a(t)

Much interest in the Regge properties of three-
to-three scattering amplitudes has been evident in
the recent literature. This arises from Mueller's'
discovery of a relation between a certain disconti-
nuity of the forward amplitude and the cross sec-
tion for a corresponding inclusive cross section.

Using a generalized form of unitarity, Mueller
showed that

discs2F(s, M2, t)/s E2do/dp-2, (1.1)

where F is the connected amplitude for the forward
three-body process shown in Fig. 1. The squared
center-of-mass energy is

s = -(p~+ p)' (1 2)

the invariant momentum transfer squared to the
measured particle is

t = —(p- p,)',
and M is the "missing mass" defined by

are explicitly displayed via the factor [sinva(t}]
In the remaining coefficients, zeros may occur in
the signature factor or in the coupling coefficient
P(t). One particular zero, it is well known, must
occur'. If total cross sections approach constant
values at large energies (a„=1), if a„has a finite
slope at zero momentum transfer, and if the t-
channel trajectory is itself the vacuum trajectory,
so that at t=0, a(t} =a„=1, then P-0 as t-0.

How this zero comes about dynamically is not
fully understood. One knows only that it must be
present if a„=1 is to be a consistent solution of the
dynamical equations, whatever they may be.

In contemplating this and other related ques-
tions, it is useful to interrogate the Veneziano
model for the six-point function. 4 One can explic-
itly compute there not only the discontinuity func-
tion A(s, M', t) but the full six-point amplitude
F(s, M', t) itself. Several interesting features
emerge from armlysis of the Veneziano model as
we shall now discuss.

Spurious t-variable singularities, for one thing,
seem to occur in the full amplitude F: From Eq.
(1.6) we see that F must have the form

~
1 y s-& ~o'(&)

~

2 s2 ~(&)( M&) y-2 (&)
F = P(t) . , +F'

sinw[2a(t) —a„] sin2wa(t)

(1.7)

where F' has no asymptotic discontinuity in M'.
Zeros of the sine functions in the denominator
appear to produce unexpected poles in F at t val-
ues for which 2a(t} —a„ is an integer. The Vene-
ziano model in fact produces an amplitude which
conforms with E(l. (1.7), with its apparent poles.
These poles must, of course, be spurious since
there are no particle states with mass v t corre-
sponding to 2a(t) —a„=integer. We can imagine,
in advance, that the spurious poles are canceled
in either of two ways. Namely, either P(t) has
zeros at these points or else F' cancels the poles
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FIG. 1. For@sard three-
particle scattering process.

in the first term of Eq. (1.7).
We learn from the Veneziano model that both

methods of cancellation occur there. The spurious
poles at 2n(t) —o.„=1, 2, . . . are canceled by zeros
of P(t), i.e., the absorptive amplitude A has zeros
at these points. On the other hand, the poles at
2n(t) —o.„=0, -1, -2, . . . are explicitly canceled by
the "subtraction" function E', i.e., E' has the form

s " M ~C~ f (t)+2n(t} —o.„' s 2a(t) —n„+ 1 '
(1.8)

where the coefficient functions f„f„.. . are such
that the spurious poles at 2n(t} —a„=0, -1, -2, . . .
are exactly canceled. If this latter mechanism
were also operative with respect to the spurious
poles at 2o.(t) —n„= 1, 2, . . . we would need terms
F' which behave like s "'/M', s ~'/M', . . . .
This would represent not only a highly non-Regge
structure for the full three-particle amplitude, but
a rather defective asymptotic expansion. ' We do
not expect canceling terms like s~~~'~/M', s~ ~'~/

M4, . . . because the general Regge behavior for
fixed s/M' is supposed to be (M') ~G(s/M', t).
That is, as has beer called to our attention by
Professor M. L. Goldberger, we are assuming this
form for the full 3-3 amplitude as well as for its
absorptive part; and moreover, we are assuming
that G(s/M', t) is free of spurious poles as
s/M'- ~. We are therefore inclined to believe
that the occurrence of zeros in P(t) at 2n(t) —a„
=1, 2, , is a very general phenomenon that goes
beyond the Veneziano model.

Related directly to this phenomenon of the zeros
of p(t) is the vanishing of the leading power of the
inclusive cross section at t=0 for the case where
all three trajectories joined by the triple-Regge
vertex pass through e =1 at zero momentum trans-
fer.

On the other hand, the elimination of the spurious
poles at 2a(t) —o.„=0, -1, -2, . . . must occur, in
our view, by the subtraction mechanism, since
otherwise P(t) would vanish in the physical region
(t & 0) and we would be confronted by negative cross
sections (barring the appearance of double zeros).
It appears, then, that the Veneziano model deals
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FIG. 2. Model Feynman diagram.

with the spurious poles in the most reasonable of
ways.

Nothing in the above discussion, nor in the de-
tails of the Veneziano model, gives any hint of the
mechanism whereby a more general model (e.g. ,
the real world) will produce the expected vanishing
of the triple-Regge vertex function P(t) at 2c.(t}—o.„
=1, 2, . . . and the pole-canceling subtraction effect
at 2n(t) —o.„=0, -1, -2, . . . . Since the 3-3 ampli-
tude is compounded of 2-2 amplitudes as well as
the 3-3 parts, it could be that the success of the
subtraction mechanism implies precise relations
between multi-Regge coefficients and 2- 2 ampli-
tude parameters (e.g., coupling constants). In
order to study this question, we have performed a
simple model calculation based on a single type of
multiladder Feynman diagram, shown in Fig. 2.'
The discontinuity function A(s, M', t) is computed
in Sec. II. The results are consistent with our hy-
pothesis: P(t) =0 for 2o.(t}—a„=1,2, . . . . On the
other hand, the spurious singularities at 2c.(t) —o.„
=0, -1, -2, . . . are canceled by naturally occurring
subtraction terms in E', without any need to call
upon other diagrams and hence without any implica-
tion of coupling constant or other parametric iden-
tities.

Note added in Proof. It has been pointed out to
us by A. H. Mueller and T. L. Trueman, and also
by M. A. Virasoro, that our general conclusion on
the vanishing of the triple Pomeranchukon vertex
at t = 0 ceases to be valid for nonplanar diagrams
(analogous to third double spectral-function effects
in two-body processes). In this case, spurious
singularities at wrong (triple Regge) signature
points can be present in right- or left-hand M'
cuts separately, and are canceled when the two
cuts are added. This has been verified in a model
by A. H. Mueller and T. L. Trueman, and indepen-
dently by one of us (D.G.).

Going beyond the specifics of our model, we con-
sider in Sec. III the implications of the presumed
vanishing of the triple-Regge function P(t) in the
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timelike region (t & 0) at the points 2a(t) —o.„
=1, 2, . . . , in particular, with n„= 1, at the boson-
particle points e(t) = 1, 2, . . . . At such points, we
are in effect considering the forward elastic scat-
tering on a spinless target of a particle of mass
v t and spin j = o.(t) = 1, 2, . . . . Let f„' be the forward
amplitude for s-channel helicity m (which is of
course conserved). We learn for the vacuum-tra-
jectory contribution to the f' that

(-1)
(1.9)j —m! j+m!

That is, at zero momentum transfer, the combin-
ation of s-channel helicity amplitudes indicated
above decouples from the vacuum trajectory. For
the special case of vector particles (j = 1) this re-
sult implies that the amplitudes are independent of
helicity in the high-energy limit where the vacuum
trajectory dominates. For particles of higher spin
(j & 1), helicity independence is not necessarily re-
quired by Eq. (1.9) but is consistent with it, ' as we
see from the identity

( I)m

m=

It may also be remarked that Eq. (1.9) is equiva-
lent, via well-known crossing relations, ' to vanish-
ing in the crossed (pp) channel of the amplitude
corresponding to maximum helicity difference
(A. —X =+2j).' This result in fact also follows di-
rectly from the interpretation of Eq. (1.6) in terms
of helicity poles. '

II. THE MODEL

Our model is based on the diagram of Fig. 2,

where the boxes describe off -mass-shell 2-2
amplitudeS for which we adopt the Regge proper-
ties corresponding to ladder graphs. The Regge
trajectory function associated with momentum
transfer t is u(t) and the unsignatured amplitude
associated with the corresponding two boxes is

P,(k', (k+ p, —p, )', t). (2.1)
-[(k -p.)']"'"

sinvn t

The trajectory function associated with momentum
transfer zero is n„and the amplitude associated
with the corresponding box is

-[(k P.P, -P.)']""
(3.((k p, p.)', (k-+p, -p, )')sinmn„

(2.2)

For the moment we are regarding o.„and n(t) as
adjustable, so, e.g. , n„has not yet been set equal
to unity. But we are already anticipating, for
M'- ~, s/M'- ~, that R, and R„ can be approxi-
mated by their high-energy forms. In Eqs. (2.1)
and (2.2) we have suppressed the factorized de-
pendence on external masses.

The forward 3-3 amplitude is given by

~ a4k 1 j.
~ (2m)'i ' " [(k+p, —p, )'+ p, ']' k'+ p, ' '

(2.3)
In order to carry out the k integration, it is con-
venient to use a spectral representation for the in-
tegrand based on the identity

-( s) 1 " s'ds', , -1 & n & 0. (2.4)slllWQ lT 0 S —S —SE

For o.„and 2o.(t) in the interval -1 to 0 we there-
fore have

"[(k+p -p )'+ p, ']' k'+ p,
' sin'wa(t) v'

(m ')'"'"(m ')"~

[(k+p, —p, )'+ p, ']'(k'+ p, ') [m, '+ (p, —k)'J[m, '+ (p+ p, —p, + k)'] '

The double spectral function p(p, ,', p', t) absorbs the free propagator functions and provides for off-mass-
shell behavior of the residue functions P, and P„. We may note here that any falloff of these functions for
large values of the off-shell mass variables will reflect itself in superconvergence for the spectral func-
tion p. This is central to our main result, and we shall return to it at the appropriate time. Concerning
the representation of Eq. (2.4), we emphasize that it holds only for -1 & o & 0. Later on, we will want to
consider the situation for n & 0, which we reach by analytic continuation after the k-space integration has
been carried out. On the other hand continuation to u„or 2o(t) & -1 is not allowed, since in this regime the
amplitude is no longer controlled by the high-energy properties of the Regge boxes.

With integrand given by Eq. (2.5), the k-space integration of Eq. (2.3) is standard. It is equivalent to the
integration associated with the square-box diagram of Fig. 3. It will be convenient to work in the totally
spacelike region where p, ', p, ', p' and
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s=-s, (2.6)

are all positive. We later continue to the appropriate physical region. The amplitude F(s, M', t) is given
by

t t 4

F = — du, du dm adm 2p(u, , u', t)(m, ) ~(m ) " Q dx& 6(I -g x&), (2.7)

where.

D M x2x3 + sx]x2 + tx3x4 +pl xlx4 + p2 xlx3 ++ x2x4 + ml xj + m2 x2 + JtL l x3 + pt x4 ~
2 2 2 2

Carrying out the integrations over m, ' and m, ' we find

(2.8)

F=, I'(o,„+1)i'(2a(t)+1)I'(I—o,„—2o(t))

&«du, 'du'p(u, ', u', f) J IIdx;6(I-Z )
' 'D. .., .'„

i
(2.9)

where

D = M x2x3+ sx,x2+ tx3x4

2 2 2Pl 1 4 ~2 1 3 ~ 2 4 ~1 3 ~ 4

Let us now compute the M' discontinuity:

A =—.[F(M'+ ie) —F(M2 —ie)].2i

The discontinuity of D ~ is given by

(2.10)

(2.11) x, =uz, x, =u(l-z),
and observe that

(2.18)

uation to y & 1 omits the semicircular contribution.
We now suppose that 2n(i) + a„has been continued
to positive values, so that Eq. (2.12) has no con-
tribution from the tiny semicircle. Let us next
study the denominator function of Eq. (2.10) with
M' replaced by -M'. Introduce the new variables
u and z, defined by

,
) 1 em'~(-D)discu2 '( —

y
——

( )y (2.12) Jl d*,d*,—f d Jd*. (2.14)

where the integral symbol here includes all the
numerator complications of Eq. (2.9) and y
=1 —2n(t) —n„When y& 1. Eq. (2.12) implies an
integral to within ~ of the point where D vanishes,
plus a semicircular contour of radius e which can-
cels the singularity as ~ -0. The analytic contin-

Then

-D = C -Bz+u'z'P, ',
where

C = M'x, u —(tx4u+ P x,x4+ u, 2u+ u, 'x4),

B =M x2u+ sx2 —7X4 +pl ux4 —p, l u+p u

(2.15)

(2.16)

(2.17)

k+p+p -p; m
I 2' 2 P p2

Bs(B'—4P, u C)
2p u2

(2.18)

With respect to the variable z, -D has roots z
and z given by

"+P) P2 i P k; p. so we write

D= p, 'u'(z —z,-)(z —z ) . (2.i9)

k-p; m

FIG. 3. Equivalent square-box diagram; see text.

We take P,' to be positive and not too large
(p,' & —,u, '), later continuing in p,' to its (negative)
physical value. It can then be established that
z, & 1 and 0 & z & 1, so that the z integration runs
over the interval 0 & z & z . For the discontinuity
function A we now find
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A =G(t) f ddd, p'P('p, p',,', t) dd*,d, ,, ' ' '"t'tk( ~, —()

where

x 6(M'x, u —tx, u —P x,x4 —il, 'xd —p, lzu}I, (2.20)

and

G(t) = cot)la(t) sinn'[2 a(t) + a„]1'(a„+1)I'(2a(t) + 1)I'(1 —a„—2 a(t)),(2)l ' (2.21)

g z j. 2n(t )

[p 'u'(z —z}(z —z)]' '"'" 2.22)

Let us now pass to the first of our limits, s/M'- ~. The 6 function in Eq. (2.20) ensures that p, 'u2(z, —z)
is well approximated by sx,u and z by C/x, us. With these approximations the z integration is easily car-
ried out, and we find

(x.us)"" r(-2a(t})I'(2a(t)+ a„)
Cl -CX tt I (a„) (2.23)

Finally, using the identity

I'(a) I'(1- a) =
sinma '

we find

a„(S)~tk(l)
A.

II/)l2 sjnmsa(t) g k 2 4 2 4dtl 'du'P I dx dx x "p'2"(') 'x du 5(u+x +x —1)6(C)C "".,2 4 (2.24)

where, as before,

C = M x2 u —tx4ll —p X2xg —(L( xd —tl k u & 0 .
(2.25)

pp. 2dp. dp. ,2=0, 2~ t =2,
(2.27}

We next want to pass to the large-Af' limit. With
respect to the x, integration, it appears that the
contributions from small x„namely x,u -1/M',
produce an M' dependence expressed by
(M')" p ' ('). The contributions from x, of order
unity produce a dependence (uM'} p ' and since we
have continued to n„& 0 this term will be conver-
gent for u-0. Notice however that the coefficient
of the (M') " ' term is independent of the variables
p.,' and p,

' and, upon integration over p. ,' and p'
the term would vanish if the following supercon-
vergence relation obtains:

and so on.
The presumed absence of crossovers suggests

that the superconvergence relations do indeed keep
pace. One can try to justify this assumption by
appealing to dynamical models of Regge behavior.
At issue is the behavior of the residue functions Pt
and p„of E(ls. (2.1) and (2.2) in their dependence
on off-shell mass variables. For any such residue
functions, call it r, let k, ' and k,.' be the off-shell
masses, and let n be the trajectory function. In
the ladder approximation to p' theory, for exam-
ple, one finds for large masses that"

P((((,', I' t)du 'dtl' =o. (2.26)
(k,', k, ') (,) (2.23)

In the absence of this superconvergence, we would
be confronted with a crossover phenomenon at
2a(t) =1, the asymptotic M' dependence being
(M') " ' (') for 2a(t) & 1, as expected, and (M')" p '
for 2a(t) & 1, an unexpected result Indeed, .in con-
tinuing to still larger values of a(t) we would en-
counter further crossover phenomena at 2a(t)
=2, 3, . . . , unless the superconvergence relations
keep pace, e.g., for t such that 2a(t) =2, unless n & 2a(t) + a„+3 . (2.29)

where k ' is the larger of the two masses. Since
in other respects our model is essentially based
on the g' theory, we shall adopt this off-mass-
shell behavior, although it is in fact stronger than
we need. We are then led to the following super-
convergence relations.

(1) Let n be an integer satisfying
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Then

J dp'p(p, ', p', i)(p')"=0.

(2) Let m be an integer satisfying

m & 2o.(t)+ 2.
Then

Jdp, 'p(p, ', p', t)(p, ,') =0.

(2.30)

(2.31)

(2.32)

Returning to Eq. (2.24) we now see that the large-
M' behavior is determined, thanks to the super-
convergence, by the behavior of the integrand for
small x,. Hence in the 5 function we can set x, =0
and similarly in Eq. (2.25} we set x, =0 except in
the term M x,u. The upper limit on the x, inte-
gration can now be extended to infinity and the x,
integration becomes elementary. We find

(iaaf')~~(s/iaaf')'"&'& I (n„+1)I (1-2a(i))
16v sin va I'(1+ a„—2n(t))

x dp. ,'dy'p(p. , ,', V', t) dux, dx, 5(u+x, —1)u"~ ' &'&[tx u+p'x, + p, ,'u]'"'" '. (2.33)

We see a remaining hint of the crossover danger
in the factor I'(1 —2c.(t)). However, at 2n(t) =1
the integrand is independent of p,

' and p, ,' and su-
perconvergence eliminates the pole; similarly,
the poles in I'(1 —2a(t)) at 2n(t) =2, 3, . . . are
eliminated by superconvergence.

Equation (2.33) shows the promised zeros at
2c.(t) —o.„=1, 2, . . . ; these arise from the denomi-
nator factor I'(1+ n„—2o.(t}). To be sure, at
2u(t) —n„= 1, 2, . . . the u integration diverges as
u-0 and this would appear to cancel the above
zeros. But at u-0 superconvergence with respect
to p, ,' causes the integral to vanish and the zeros
are reinstated.

We conclude this section with a few comments.
The triple-Regge vertex function P(t} has zeros,

as we have seen, at the points 2o.(t) —a„=1, 2, . . . .
In particular, if u„= 1 there is a zero at c.(t) =1,
i.e., the triple vacuum-trajectory coupling van-
ishes at zero momentum transfer. It is of course
well known, for n„= 1, that such a vanishing is re-
quired for consistency with the constancy of as-
ymptotic total cross sections. However, our mod-
el has not in any obvious way taken this consistency
requirement into account. Moreover, the consis-
tency condition can be satisfied by a zero of any
order, whereas in the model we have found that
the zero is a simple one in n(t). The same feature
arises in the Veneziano model, where the results
closely resemble what has been found here On
the other hand, the vanishing of the triple vacuum-
trajectory coupling (with u„= 1}does not seem to
emerge from Amati-Fubini-Stanghellini (AFS)
type of model if one computes the discontinuity
function A(s, M', t) directly, in the manner indi-
cated in Fig. 4, where the cut is along the wavy
line. " We believe that this situation resembles
the one that arises in connection with the AFS" vs

III. COUPLING OF PARTICLES TO THE

VACUUM TRAJECTORY

The vanishing of the triple-Regge vertex function
at 2a(f} —u„= 1, 2, . . . has interesting implications
for the coupling of the vacuum trajectory to phys-
ical particles with integer spin greater than zero,
i.e., for the particle-particle-Pomeranchukon ver-
tex at zero momentum transfer. ' We are assum-
ing, of course, that the vacuum trajectory passes
through unity at zero momentum transfer. To see
how this goes, let us continue our discontinuity
function A(s, M', t) to positive values of t, a con-

p g P

- P

P - P

FIG. 4. The wavy line symbolizes one of the contribu-
tions to the M2 discontinuity.

Mandelstam" Regge-cut controversy. The diagram
in Fig. 4, if it is treated as a Feynman diagram,
has many M -discontinuity contributions other than
the one symbolized by the wavy line. Consistency
seems to require that these be taken into account
since, with e„=1, the zero must occur. We leave
it to the reader to deal with this confusion as best
he can.
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tinuation which we have already anticipated and
discussed in Sec. II. In this region, we are de-
scribing forward scattering on a spinless target of
momentum p of a diparticle (p„p,) whose invariant
mass is Wt. The s-channel energy variable is now
M', and we are in the region where M' is large.
Let 0 and P be the polar and azimuthal angles
which describe the orientation of the vector p, -p,
in the rest frame of the diparticle, with z axis
along the vector p in that frame. The amplitude
can be written in the form

(3.1)
We now continue in t to the particle pole corre-
sponding to o.(t) =j. We observe that the asymp-
totic variable s/M' is linear in z =cose. Thus, at
the pole, and for z -~, we find

(-1) -0 M'-~.j—nz! j+m t

This is the result which was announced in the
Introduction and discussed in some detail there.

(3.3)
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