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We use the t-channel ladder diagrams in a Q3 theory up to tenth order in coupling constants
as an example to study the possible connection between fragmentation and pionization and to
suggest a new approach to summing diagrams. We demonstrate that, at infinite energies, the
nonleading logarithms are associated with the degrees of freedom in the longitudinal phase
space of subsystems of two or more particles with small invariant mass, called the clusters,
just as the leading logarithms are associated with the degrees of freedom in the longitudinal
phase space of uncorrelated single particles. The sum of nonleading logarithms associated
with each cluster also exponentiates to a power of s. The resultant s dependence of the full
amplitude is the product of power dependences for individual clusters. In terms of fragmen-
tation and pionization, we find that the ladder amplitude factors into three parts, correspond-
ing to fragmentation of the target, pionization, and fragmentation of the projectile. Including
fragmentation events only modifies the scattering amplitude by an s-independent factor; all
the s dependence is contained in the pionization part.

I. INTRODUCTION

Hadron-hadron scattering at very high energies
is one of the central problems in strong-interac-
tion physics. Recently the parton model' ' of Feyn-
man and the limiting-fragmentation hypothesis of
Benecke, Chou, Yang, and Yen have been pro-
posed. The parton model seems to emphasize the
properties of those particles ("wee" partons in
Feynman's language) which have small momenta as
compared with the coQision energy v s in the cen-
ter-of-mass system, while the hypothesis of lim-
iting fragmentation tends to focus attention on those
particles which have finite energies in the rest sys-
tem of the target or the projectile. When Lorentz-
transformed to the center-of-mass system, these
particles acquire energies proportional to v s. As
Feynman and others pointed out, coordinate sys-
tems in which both incident particles have largp
(infinite at infinite energies) momenta moving op-
posite to each other are particularly suited for
study of high-energy scatterings. It is argued that
in such a frame internal motions of the virtual
constituents of a physical particle are slowed down
by relativistic time dilation on the one hand, and,
on the other hand, because of relativistic contrac-
tion the colliding particles are expected to have
almost instantaneous interactions as they pass

through each other. Although this simple picture
may not be completely correct, it nevertheless
provides a useful basis for applying our intuition to
an otherwise very complicated problem. Indeed,
explicit calculations have confirmed the usefulness
of this infinite-momentum technique in both ex-
tracting physical pictures and simplifying the ac-
tual computations. ' ' Since this technique employs
the physical momenta directly as natural mathe-
matical variables, the results are especially easy
to understand and to interpret in terms of the un-
derlying physical mechanism. For instance, the
eikonal picture and the lns factors emerge very
naturally from this approach. '0

The main purpose of this paper is to use t-chan-
nel ladder diagrams up to tenth order in coupling
constants as an example to study the possible con-
nection, if any, between fragmentation and pion-
ization at high energies, and to suggest an uncon-
ventional approach to the summing of diagrams.
For these purposes we first extend the infinite-mo-
mentum technique to calculate all the nonleading
terms of the type (1/s)ln"s as s- ~. This is ex-
plained in Sec. II. We then apply the idea suggested
elsewhere' that one should separate various terms
of the amplitude into different groups correspond-
ing to different physical situations rather than to
collect together strictly according to a perturba-

3012



LADDER AMPLITUDE AND ITS CLUSTER EXPANSION —.. . 30j.3

tion prescription those terms with the same order
in the coupling constant and the same high-energy
behavior. Therefore, pionization and fragmenta-
tion are treated separately in Sec. III and Sec. IV.
In Sec. III we consider only the pionization contri-
bution and we demonstrate that the nonleading log-
arithms can be associated with the degrees of free-
dom in the longitudinal phase space of subsystems
of two or more particles which have small invari-
ant masses and which act as single units (called
the clusters), just as the leading logarithms can
be associated with the degrees of freedom of the
longitudinal phase space of single particles. "
Furthermore, we present evidence which indicates
that these nonleading logarithms also exponentiate
to a power of s. In Secs. IV and V we study the
effects of including fragmentation events and find
that they modify the scattering amplitude only by
an over-all factor and do not change its s depen-
dence. An interesting connection between frag-
mentation and pionization is observed in this sim-
ple example of ladder diagrams. The conclusion
reached in Secs. III, IV, and V reveals a very
simple structure for the ladder amplitude. Name-
ly, the ladder amplitude can be factored into three
parts, corresponding to the fragmentation of the
target, pionization, and the fragmentation of the
projectile; all the s dependence is contained in the
pionization part. In Sec. VI we discuss our results.
In Appendix 8 we verify the results obtained in
Sec. II by the conventional Feynman parameter
technique. "

II. THE METHOD

A. Momentum Variables

In this section the infinite-momentum technique
is extended so that we can extract all the logarith-
mic terms of the form (1/s) ln"s as s —~ for t-
channel ladders. We shall ignore all contributions
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FIG. 1. (a) and (b). The general straight- and crpssed-
ladder diagrams with n internal rungs.

in each order of perturbation which decrease
faster than 1/s as s- ~. To maintain the s-u
crossing symmetry the crossed ladder obtained
from the straight ladder with the Mandelstam vari:-
ables s and u interchanged is always included. The
diagrams considered in this paper are given in
Fig. 1. For simplicity we shall only consider the
forward elastic scattering amplitude. The sixth-
order diagrams (Fig. 2) will be used as an example
to illustrate the method.

First, let us fix our terminology of an n-rung
amplitude. We shall refer to a ladder diagram as
an n-rung ladder if it contains n internal rungs.
Such a ladder is shown in Fig. 1. Thus, the ampli-
tude of Fig. 2 is referred to as T„and is given by

Z Z z

(2w)4 (2v) (k,2 —p2+ie)2 (k22 —p, +is) (p, —k, ) —g, +ie (k~ —k2)~ —y2+ie (k2+pq)2 —p~2yie

+(s- -s). (2.1)

The second term, which is obtained from the first
by the crossing substitution s- -s, corresponds
to the diagram Fig. 2(b). The meson mass is
designated by p. . For the moment we assume the
masses of the external particles a and b, includ-
ing the first and the last rung, to be different from p& =p'~p'

and the transverse components

(2.3)

the third axis. We will always work in the center-
of-mass system, with p, along the positive third
axis. For any four-momentum p„we use the "+"
and "-"combinations"

p2~2p2~2 (2.2) p=(p', p') (2.4)
The initial momenta p, and p, are directed along as our variables. These variables are particular-
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ly useful for hadron scattering at high energies.
A Lorentz transformation along the third axis
changes p, simply by an appropriate scale factor.
Furthermore, all empirical data suggest that final
particles have only very limited momenta trans-
verse to the collision axis. A decomposition of a
momentum vector into transverse and longitudinal
components is therefore meaningful.

B. One-Rung Amplitude

We may simplify T„ for instance, by integrating
over k, and k„by closing the contour either from

above or below. We find that there are three re-
gions of integration which contribute to the asymp-
totic limit of the amplitude T, . Let c, ~' be two
small s-independent positive numbers, ].» e,
c'&0. These three regions are specified as fol-
lows:

(a) 1k'«I) &p.+ = &M+ Ika-I «'ps-= &'W&

this region, the virtual particle 1 will be referred
to as a fragment of particle a, and is denoted
graphically in Fig. 3(a). The scattering amplitude
in this region is denoted by T,'~,

2 2w 2 2w k,+k, -k, —Pe +$6 k2,k2

Z z

(P, —k, ),(P, —k,) —k, —p, + it (k, —k~),(k, —k, ) —(k, —k )2 —p, 2+ ie

g Z

(k~+p()«(k2+p() -k2 —p(, +ze ( 3 p)))«( k2+p()) k2 p(, +zf )), «)),«, )), )&, J,

The expression in the square brackets under the given restriction on k„and k, reduces to

2 g 1 Z

(i. P,),P, -)i, —y, , ~ i ( «, +P,),P, -)i,' —g,
'

~ ic-Ws k„-F«'lWs ~ i~ -i„-lr,'lWs ' )

(2.5)

(2 6)

—[5(k„—k, '/Ws) + 5(k„+k,'/Ds)].
hf'gc g Ws

(2.7)

(2.8)

(2 9)

Thus, at large s, the real parts in Eq. (2.6) cancel and only the 5-function parts contribute. Equation (2.7)
implies that k„=sk,'/Ws. Consequently, k„ is small in comparison with k„and (k,'+ p')/k, , and hence
can be ignored in the remaining part of Eq. (2.5). This greatly simplifies our calculation. Note that the
reduction of the last two propagators in (2.5) to simple 5 functions of k„depends only on the kinematical
restriction I k, I

( e v s and is independent of the remaining part of the amplitude. This property is ex-
tremely useful in general discussion.

We now integrate Eq. (2.5) over k„, k, , and k, explicitly. The k„ integral is trivial to perform. In
order that the k, integration does not vanish identically, the poles of k, in the three denominators should
not lie on the same side of the real axis. This implies that p., —k„and k„should be of the same sign.
Thus, the k, integral contributes only for p )k„)cp . Under this restriction, the following poles of k,
and k, contribute to the integrations:

k2~p 2

k =p, — '+jc,
Pg+ g+

(k, —k,)'+ p'
k2 =k, —

k -k +4~'
j.+ 2+

corresponding to the vanishing of (p, —k,)' —p,' and (k, —k,)' —p', where

p(i = p, /po«.

The amplitude, after k integrations, becomes

zg6Pg+Qkj2kg2kp2k2+p2k2~p22
16wv s J „(p.—k, ),k„' (2v)' (2w)' p p —k„k„

(2.10)

(2.11)
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In terms of scaled longitudinal momentum, x, =- k„/p„= k„/v s, we have

4s 4n' x v 2m 2 2m 2 k 2+](j.' ' k '+ 1 —x, p, '+x, 'p.

16v)(,~s 16s )(, E ~ (2v) J 0 x| (ki + (1 —x|))( +xi V a ) (kz +)( )

ig4 g2 1 n.ln--
16gp, 2g 16' 2

p,
2 ~ 3~3

(2.12a)

(2.12b)

(b) p & i k
~

& s'p, sp &
~ k„~. This region is the counterpart of (a) for particle b [Se.e Fig. 3(b).]

After k,, integrations, we find that the minus-momenta are ordered automatically p, ) -k, ) ~'P, . The
virtLIal particle 1 will now be referred to as a fragment of particle b. The scattering amplitude in this re-
gion is simply

(6 g's (6 'g' ' (2 )'. , y, [k,' (( —y, 4P (,'p, 'f' (f' g')') (2.13)

where y, = -k, /v s is the scaled longitudinal momentum of k, relative to p, .
(c) ~k„~&op, ~k, (&s p, . This region willbe referred to as the pionization region [Fig. 3(c)]. The

scattering amplitude in this region can be expressed as

(0) i(ig) ~ d k, d k~ Z

2 . (2w)4 (2w)' (k,' —)(.'+is)' (k,' —)(.'+is)' (k, —k,)' —p'+is

g 2 Z Z

(p, —k,)' —p, , +se (p, +k,} —)),'+i&
( (p(, +k~} —P(, +zs (p(, —k~) —))(,'+z (((„(«&~.~ )&e'p(,

(2.14)

where we have symmetrized the 1adder and the crossed ladder at both ends and hence included a counting
factor —,'. Based on the discussion given in (a), we find that the expressions in the square brackets reduce
at large s to

—5(k, ) and —5(k„),
vS vS

respectively. '4 With this simplification, we have

~g d k 1 d k 1 P&Ps f'6'vs
z

16v's J (2v)' (k,'+ p')'J (2v)' (k,'+p, ')'. , ". ..~ ' k„k, —(k, -k, )' —)(,
' ie +'

(2.15)

(2.16)

where the extra factor —,
' is canceled after we restrict the k„ integration to ky )0. In terms of scaled vari-

ables

x, =k„/p„=k„/Ws, y, =k, /p„=k, /Ws,

Eq. (2.16) reduces to

16v'~ (2v)' (k,'+)(,'}'~ (2v)' (k,'+g')'J, ', 'x,y, s —(k, —k, )' —p'+is' (2.1V)

Several features of the above expression are worth mentioning. First, the dependence of the amplitude on
the external particle masses p, and p, , drops out completely in this region. This is actually a general re-
sult for a pionization amplitude. Namely, the distribution properties described in a pionization amplitude-
are independent of the nature of the target and projectile which produce the scattering. Second, the xg
integrals are of the general form

01 1I„(s)= lim Jl dx, dx„s»1 0 "x x2 x„s+1 (2.18)

The asymptotic behavior of 1„(s) is worked out explicitly in Appendix A to the leading order in s and to all
orders in lns. In particular, we have

1 2 1I (s) = —In's+ —v'
2

=
2t 31 (2.19)
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Making use of (2.19), we obtain

EC I S 2
1r

2

16m's J (2v)2 (k,'+@~)2 (2v)2 (k,'+ p, 2)' 2 (k, —k )2+p2 6

g~ g "d2k~ 1 d k2 1 gg'g zp

4s 4v ~ (2v)' (k,'+ p, ')'J (2m)' (k,'+ p')' (k, —k,)'+p' (2.20)

where we have used the fact that

1n(-s) =1ns —iw. (2.21)

A fourth region given by ~ k, +~ & ep,+, ~ k, ~

& e'p,
does not contribute at large s. This is because of
the extra damping due to the propagator of particle
1

1 1 1

(k, —k, )2 —p2+ie -k,+k, ee's'

where

d'k 1
(2v) (P+I )

d2k~ d k2
hl ( ~ ) (2v)2 (27f)2 (k 2 p2)R(k 2 a)2

(2.23)

The contribution from this region is at least an
order of s smaller than the contribution from the

previous three regions, and can be ignored in our
calculation. Physically, this implies that the frag-
mentation regions defined in (a) and (b) do not over-
lap.

The dependence on ~ and e' disappear when

(2.12), (2.13), and (2.20) are added together to

give the final answer

Zg g
16wp's 16m'p, '

x a, ln —,+b, ——+F,' +F, , 2.22

E~ =4WQ '

( )~J~

d2k "'dy
F(b) 4 g 2

(2v)' ~, y,
1-yg 1r' ~ ~~-~ h~' ~ ~'v 'l' (i.' ~ ~')')

EQuations (2.22) and (2.23) show explicitly the sym-
metry with respect to the two particles a and b.

Using the standard Feynman parameter tech-
nique, we can write b, as

p -k
o

kI

2&( k —k Jipb+k2

v " (1 —x)'""
(1 ~) in'(1 —&)

dp

= -1.5626.

we have

(2.24)

S

k2

Pb

F(il) F

3
(2.25)

In Appendix B, we verify the result for T, using
the conventional Feynman parameter method. "

For completeness, we give the result for the
fourth-order diagrams (n =0).
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FIG. 2. (a) The straight-ladder diagram with one inter-
nal rung. (b) The crossed-ladder diagram with one inter-
nal rung.

FIG. 3. The contribution of the straight-ladder diagram
in Fig. 2(a) is divided accoW&~~ to its internal longitudi-
nal mornenta. (a) Particle 1 is in the fragmentation re-
gion of particle a; (b) particle 1 is in the fragmentation
region of particle b; (c) particle 1 is in the pionization
region.
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To-- ng

16n p.'s '

C. Two-Rung Amplitude

(2.26}

For more complicated ladder diagrams, we can
divide and evaluate the amplitude analogously. In
the following, we shall demonstrate explicitly how
the contribution from a two-rung ladder (Fig. 4)
should be divided. The important regions of inte-
gration for asymptotic behavior are classified in
Figs. 5(a)-5(f) as follows:

(a) I k„l, I k„l & ep, I k, I
& c'p, . In this re-

gion, both particles 1 and 2 are fragments of par-
ticle a. In analogy to the ordering in Fig. 3(a), the
momenta k„, k„are ordered according to

pfm+ & kj~ & k2+ & Cpe4. . (2.2V}

(b) lb. I, lk. 1&~'p, , Ik,.l«p inthi»e-
gion, both particles 1 and 2 are fragments of par-
ticle b. The momentum variables are ordered as

pI) & -k3 —
2 &'p (2.28}

+ CROSSED LADDER

P P

FIG. 4. The straight- and crossed-ladder diagrams
with two internal rungs.

(c) lk, +I &~p~, I k, I&a'p, . Both particles 1
and 2 are in the pionization region.

(d) k„ I
& up~, I k„&«p~, I k, I

& e'p,
(e) k„l«p.„ lkm- «p&, I k, l&e'p, The

two regions (d) and (e) describe one pionization
particle and one fragmentation particle.

(I) I k,.l
& ~p, I k., l «p„, I b. I

«'p, , I k, I

& e'p, . In this region, particle 1 is a fragment of
a and particle 2 is a fragment of b. It is straight-
forward to see that no other regions of integration
contribute at large s.

The simple examples studied in this section will
provide the basis for discussing the notion of frag-
mentation and pionization in the following sections.
We shall first study the contributions from pure
fragmentatlon regions such as in Figs. 5(a) and
5(b), and from pure pionization regions such as in
Fig. 5(c}. These results will then be generalized
to include the mixed regions such as in Figs. 5(d)-
5(f).

Our calculational technique developed here relies

mainly on physical interpretation rather ttmn

mathematical rigor. Extensive studies on the lad-
der amplitude and a more rigorous procedure for
treating these diagrams exist in the literature
(e.g., see Ref. 12 and references cited therein).
However, our main concern in this paper is to re-
veal some general features of this amplitude in
terms of the concepts of pionization and fragmen-
tation. In this respect, our approach has the ad-
vantage of presenting a clear physical picture
which enables us to understand the significance of
various contributions from different kinematic re-
gions leading to different high-energy behavior.
We feel that such a better understanding is impor-
tant. Our use of a more intuitive and physical ap-
proach at the expense of mathematical rigor is
therefore justifiable. The calculation presented in
Appendix 8 provides support for the correctness
of the infinite-momentum technique.
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FIG. 5. The contribution of the straight-ladder diagram
in Fig. 4 is divided according to its internal longitudinal
momenta. . (a) Both 1 and 2 are in fragmentation region
a; (b) both 1 and 2 are in the fragmentation region 5;
(c) both 1 and 2 are in the pionization region; (d) 1 is in
the fragmentation region a and 2 is in the pionization
region; (e) 1 is in the pionization region and 2 is in the
fragmentation region b; (f) 1 is in the fragmentation
region a and 2 is in the fragmentation region b.

III. PIONIZATION

A. Basic Propositions

In the example of the sixth-order diagrams con-
sidered in Sec. II, the amplitude T, consists of
three contributions of distinct nature. The contri-
bution T~~' arises from the kinematic region where
the two particles a and b retain their large momen-
ta during the scattering; only a very small fraction
e (e') of p„(p, ) is taken away from particle a (b).
The contribution T; (TP ) comes from the kine-
matic configuration in which particle a (particle b)
dissociates into two constituents with comparable



3018 CHANG, YAN, AND YAO

P,'s (P 's)." The mechanism responsible for the
first type of contributions is called pionization in
which the two energetic particles a and b retain
their large momenta during scattering. The par-
ticles inelastically produced by this mechanism
have only very small longitudinal momenta in com-
parison with (P,), or (P,), these are the pionization
particles. " The second mechanism responsible for
the type of contribution T]'l (d~l) involves the dis-
sociation of particle a (particle b) into several con-
stituents with comparable p, 's (p

' s). When in-
elastically produced these particles have momenta
proportional to v s, and they are called the frag-
ments of particle a (particle b) This. division of
particles into three groups, fragments of particle
a and particle b, and pionization products, is con-
ceptually useful as we will see in this section and
Sec. IV. Nevertheless, it is obvious that as the
momentum of a pionization particle approaches its
upper end or the momentum of a fragment ap-
proaches its lower end, the notion between pion-
ization and fragmentation becomes a matter of
definition. This point should be kept in mind as it
is important for our later discussion.

In this section we shall concentrate our attention
on the pure pionization contributions. Thus, we
restrict k„and k( z) to lie in the following do-
main:

&pa+ ~
I &a+ I

~ 0
~

&'pg ~
I &(~g)

(3.1)

What we would like to accomplish in this and Sec.
IV is to use explicit calculations for diagrams up
to g" to demonstrate and support the following
propositions for the elastic amplitude of ladder
diagrams.

(a) Instead of the complete forward scattering
amplitude T, we introduce a simplified amplitude
T. Each lns factor in T arises from the degree of
freedom in the longitudinal phase space of a sub-
system, called a cluster, of one, two, . . . par-
ticles. It is possible to define a basic amplitude
associated with each individual cluster consisting
of a number of particles with a small invariant
mass. Such a basic amplitude has the form
a, In(s/p') + b„where a,. depends on the number
and nature of the particles involved and b,. depends
on the particular definition of fragmentation
adopted.

(b) For a diagram involving pionization only, T
can be decomposed into a sum of several terms;
each term is a product of the basic amplitudes as-
sociated with individual clusters. If the same ba-
sic amplitude appears n times, a statistical factor
I/n! must be included.

(c) One can also define a basic amplitude for par-

P
0

I

I

I

I

I

l
k

I

k

I

k k
n I n+I

I

k jk
I

Pb

FIG. 6. The straight-ladder diagram with n rungs in
the pionization region.

ticle a or particle b to dissociate into clusters with
comparable momenta. These basic amplitudes are
independent of s.

(d) In a diagram involving both fragmentation and
pionization, the amplitude T can be expressed as
a sum of several terms. Each term is a product
of three factors, corresponding to fragmentation
of particle a and particle b, and pionization.

(e) Each basic amplitude associated with a sub-
system of pionization particles exponentiates to a
power of s. The entire s dependence of the ampli-
tude T comes from the pionization contribution
only.

(f) The complete amplitude T can be obtained
from T by a simple substitution to be described
below. It turns out that T and T differ only by a
signature factor !Eqs. (3.29}and (3.33}],and T is
the imaginary part of T. Both T and T therefore
have the same s dependence.

B. General Properties of T(

We now proceed to verify these propositions us-
ing diagrams up to tenth order in the coupling con-
stant g. If T(' denotes the pionization contribution
to T„, then from the result of Sec. II we have

(0) Sg g fE S . 7T

16gp g 163 2/2 & p2

(3.2}

with a, and b, given by (2.23). This defines the
basic amplitude associated with a single particle
to be a, in(ee's p/. ')+b, Recal.l that T„represents
the ladder amplitude with n internal rungs. The
first and the last rungs are excluded in the count-
ing. As we shall see later, only those momentum
integrations associated with internal rungs contri-
bute to the longitudinal phase-space factor lns.
Hence, T„contributes to a maximum power of
(Ins)" to the longitudinal phase-space integrations,
rather tlmn (Ins)

The scattering amplitude for an n-rung ladder in
Fig. 1 can be written as



LADDER AMPLITUDE AND ITS CLUSTER EXPANSION —.. . 3019

I'dk„dk, d'k, dk(„„),dk(, ) d'k~,
2(2v)' 2(2v)'

g g' g

(p, —k,)' —)(,,'+is (k,' —)(,'+ie)' (k, —k,)' —p'+is
g2 g g' g p ~ ~p

()', 4 + &)' ()'. —)'.„)'—V E (~, P ) ((', —k, )' —g,' ~ i o ),——p, )
'

In the pionization region (Fig. 6), we have the additional restriction,

I k„l & ~p„=e&s, ) k„, (
& e'p, = e'Ws.

(3.3)

(3.4)

As was demonstrated in Sec. II, the amplitude T„will be greatly simplified if we average both the first and

the last propagator in T„over the straight and the crossed ladders. These propagators, after averaging,
reduce to'4

g 1 g g

——5(k, ) for ~k„~&eWs
Ws

(3.5)

g 1 g g

——5(k(~, ),) for
~ k(~, ) ~

& E )t s)vs
(3.6)

respectively. Expressions (3.3)-(3.6) are still manifestly symmetric with respect to particles a and b, and
to plus and minus components. In an explicit calculation, however, it is convenient to carry out either all
k, or all k integrations. This will lead to an expression which is no longer manifestly symmetric with
respect to particles a and b. Of course, the final answer should still be symmetric. To be specific, we
carry out the k, integrations for all i (=1, 2, . . . , n). As we have demonstrated in the one- and two-rung
amplitudes, only the region in which all the k,'s are positive and ordered, i.e.,

P~& k+& k2+& . & k~& 0, (3.7)

contributes. These k loop integrations put a restriction on k s. For instance, there are three propaga-
tors in T„which contain k„, namely,

g g g

(k„,—k„)' —)(,'+ is ' " k„' —g'+ic ' ' (k„—k„„)'—y, '+ is ' (3.8)

In order that the k„ integral does not vanish, the poles of k„ in d„, d and d„„,should not lie on the
same side of the real axis. By the use of k&„„&,=0, the above restriction implies

I k(„ ,), I
&

I
k

I and sgn(k(„, ),) =sgn(k ) . (3.9)

Repeating this argument on the k(„», k(„2), . . . integrations and using p & 0, we arrive at (3.7).
Carrying out the k( y) integration and k, integrations for i =1, 2, . . ., n, we find that the following poles

of k, contribute:

k, =0,

k,

(k.
k2 —k3

-ka) +)(,' —ie
k~, —k2,

—ks) + p —if
k2, —k„

(3.10)

Equation (3.10) corresponds to the vanishing of the propagators associated with the rungs. Substituting
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(3.10) into (3.3) we have the amplitude in the pionization region,

g ~ d pj f' dX "1dX "~n1dX 1
4w, =, & (2w) ~p x, , x, ~p x„., «, (x, —x,)x,(x, —x,)x,. ~ ~ (x„,—x„)x„

k,'+ p,
' ' (k, —k,)'+ p,

' k,'+g'
X1 X1 X2 X2

(k, -k, )'+p' (k, —k,}'+p' (k„,-k„)'+»». k„'+p' -'
X1 X2 X2 X3 Xn-1 Xn

~ ~
~(ki —k }*+»' (k. —k~,)'+» '

X -X1 2 x -0
n

(3.11)

where x, —= k„/p~=k„/v s and y—= -k&» /p, =-k&„,» /v s are scaled longitudinal momenta. The symmetri-
zation between straight and crossed ladders is now reflected in the y integration, which runs from 0 to e'
and from -e' to 0.

Another useful form of T„, which is expressed in terms of a new set of variables z, defined by

z, =—x,/«, „x,—= z,z, ~ ~ z, , g =1, 2, . . . , n

with all the z„ i ~ 2 restricted to the range between 0 and 1, is
2 n+1n+1 d2$ I

& 1
6'»=g' g g I

',
I dz, dz dz„, dy

4w
& ~ (2w) p '~p Jp Jp

, k,'+p' (k, -k )'+p' (k, -k,)'+ p'
I —z z,(l-z ) z,z (l-z, )

k, '+V' (k, -k,)'+ p'
X ~ 2 2'2 Zlz2 ' 'Znys — 1Z2 n i + Iw i +' ' '

(k„,-k„)'+ p' (k„—k,)'+ p'
+ +

z ~ ~ z (1-z) z ~ ~ ~ zn~l n 1 n

2

(3.12)

g 2+@2j
Z '''Z

1 j

+ XE + (S -S) ~

(3.13)

where we now restrict the y integration to (0, s') only and include the other half of the integration (-e', 0)
by an explicit (s- -s}crossing substitution.

A simple inspection shows that each of the z„.. . , z„ integrations in T„' contributes a factor of In(s/P)
arising from the integration region (0, z, ), where e, is a small but finite number. Thus, it is very useful
for the purpose of extracting the ln s factors to divide each of the z„.. . , zn integrations into two regions,
(0, s, ) and (s„ 1). These s' s can be chosen to be very small so that in the region (0, e,) this particular vari-
able z can be set to be zero everywhere except where it appears in the coef'ficient of s in the denominator
of the last factor in (3.13). It will be clear that to evaluate these z, integrations we encounter the integral
1„(s)at large s as introduced in (2.18). This integral is worked out in Appendix A, and gives an asymptotic
expression f„(s)pp(I/sn!)(Ins)". It will also be clear that a z integral over the region (s„1) does not con-
tribute to a lns factor. The significance of this fact wi11 be demonstrated in the following explicit calcula-
tions.

C. The AmPlitude T~20~

The amplitude dP» can be calculated easily from (3.13), and is given by

4w 4w & (2w)' (2w)' (2w)' (k, '+»», ')'(k, '+p')' ~ p ', 'J
p [z,(k, -k,)'+(1 —z,)k,'+»», ']'

I
x z,z,ys — ' [(k, -kp)'+ p'] —(kp-k, )' —p'+is +(s--s),

(3.14)

where we have neglected terms which vanish as ~, ~'-0. Choosing a small parameter c~ we can rewrite
T&" as
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T(p) 1 2 3

4w 4w J (2w)' (2w)' (2w)' (k,'+ g')'(k, '+ p')'

~ I"d. I" d., I"
dy

(k2 +0 ) z|zmyz (kg kg) —9 +i&

1-Z2

'2

z (k —k) +(1 —z )(k —k) +p.zzys-1 2 1-z2
+ i& +(s- -s)

g~ g2 dk, dk2dk3
4w 4w (2w)' (2w)' (2w)' (k,'+ p')'(k, '+ p'}'

(k,'+ p, ')' s ' (k, —k,)'+ p,
' + „'[z,(k, —k,)'+(1—z,)k,'+ p.']'

1 ce'sz, (1 —z,)
z, s ' z, (k, -k,)'+(1-z,)(k -k,) + p

The first term in the above square brackets gives rise to a factor

CC ~ (I/z)(ines'~, z)',
S '

k2 —k, '+g'

(3.15)

while the second term contributes only a (1/s) In'(ze's) factor. In forming the s-u crossing-symmetric
amplitude, we always encounter the following combination:

1 s s "
1 „s s

Jn 2 Jn 2 + 2 + 2 ~~ +
S P P, s JLL

inn „,s n-1 . „2sln"-' —,— (iw) ln" '—,+ ~ (3.16)

where J„is the function introduced in Eq. (A11). We note that keeping the first term is sufficient to keep
track of all the remaining terms. To recover the other terms from the first term, we make the substitu-
tion

(3.1'I)

(3.18)

This substitution works for two reasons. The quantities Z„(s/p') —J„(s/p') appear only linearly in T, and
(3.1V) is independent of g'. Namely, one can change the scale p' without affecting the final answer. To be
more precise, if we change p,

' to p, ,', after keeping only the first term of (3.16}, we have

(n-1)t ~' (n-1)t u.'
n- j. 2

I( — - I)I (n.') ( n* )
The substitution (3.1'l), when applied to the right-hand side of the above equation, gives

1 „~s 1~ 1 sln'A-l -J ln
(N —1)I p,

2 iw~mI n nI + 2 n-In
p

2

J —-J
which is identical to (3.17). The last step follows from the identity

J„(—,
)

= Q —J„,) In"
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This identity (3.18) can be easily verified for n & 4 and can be established in general by comparing the co-
efficients of g of the power-series expansion on both sides of the following relation between the generating
functionals for J„(s/p') and Z„(s/(((.,'):

p sln7Tg p. p o SIIl 1Tg

Identity (3.18}implies that after keeping only the first leading terms in the expansions of J„(s/p )
-4„(-s/i(, '}, one can simplify the resultant expressions by grouping the logarithms or changing the scales
of the masses without altering the final answer when the substitution (3.17) is made to recover the full am-
plitude. Now we introduce a simplified amplitude F„'& by keeping only the leading (ivy/s} ln" '(s/l(, '} terms
in I„' . We can recover T(') from T~' in the final answer by the substitution (3.1V) or (3.18).

From (3.15}, we have

g'g4 g» dk, dk d'
4s 4z ~ (2z)' (2v)' (2v)' (k '+ g')'(f '+ p, ')'

f E' szg(l —zg)
2! (k ' ~ IP) (f —f) ~ rP ., a, [z,(k, -K ) (1 —z)R ' lP]' (!—*,)(l4-f) ~ z, (k, —K )' ~ u, ')

(3.19)

Note that the sum is independent of &„and can be rearranged to yield the following form:

2 ~6 2 2 1 2 1 2 2 2j.67Tp, s 2 jl,

where

2

$6g ~p~ '

(3.20)

(3.21)

(3.22)

and

d'k l3
(

1 2

J (2v)' (2z)' (2z)' (k, '+ (u')'(k, '+ p, ')'

zz [z,(k, —k )~+(1 —z, )k ~+p']~ (k ~+p')~ (k —k,)~+g'

(1 —z )[(k —k, ) +p ]
[z,(k, —k,)'+ (1 —z, )K,'+ p']' z, (k, —k,)'+ (1 —z, )(k, —k,}z+p,

' (3.23)

To arrive at (3.23) we have used the results

~, z, [z,(k, —k, )'+ (1 —z,)k,'+ p']' (14'+ 0')' (g'+ &')' &' (k, —f,)'+ p,
' (3.24)

and

(3.25)

Thus, from (3.20), the (Iuantity a, in(zz's/y. ')+I), is seen to be the basic amplitude associated with a sub-
system of two particles, since this contribution originates from the region where z, is not small. Perhaps
the result (3.20) constitutes nothing new since the leading terms are known to form an exponential series.
Therefore, the amplitude T~o) can always be written in the form as given in (3.20). The consistency of this
identification can only be appreciated by exhibiting the structure for T,' which we now calculate.
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D. The Amplitude T

The amplitude T~~' is obtained from (3.13) to be

4 2 3 d2$ d2y ~
& t & j. d

4w 4w 0 (2w)' (2w)' (k,'+ g')'(k, '+ 1(,'}'

(k, —k,)'+ P,
' (k, -k,)'+ 1(,

'
x z,z,z,ys- (k, -k,)'+ p, '+ z,z, ' +z,—

2 3

A similar calculation gives

} +(f (3.26)

—k,)'+ (1 —z,)k,'+ p,
'

(3.27)

where

1). =g w/16w '1(,',

4 ~'J' (2w)'(2 )'(k, ' ~ w')' . *. * (*.(),-).)' ~ ((-*.)).' ~ ~'I' (li, *
) ) }

(1 —z.)(1 —z.)
(2w)2 (2w)2 (2w)2 (k,'+1(2)' o z, z, [z2(k, -k)'+(1 —zw)k2'+1). ]

2
x ' '

[(k, —k )w+1(, ']+z,(k —k )'+(1 —z3)k3w+ g2 —[z3(k —k )2+(1 —z )k w+g2] 2
—

2

1-z, 1-Z3

(*,(k —k )' (1 —*,)k,' ~ 0'] (k 4 ) ( ,(k', —k, )' ~ (1 —*,)k,' ~ ll ) (k,' ~ ll')' ) ) '

(3.28}

and b3 is a very complicated expression which is of no special interest to us. The basic amplitude associ-
ated with a three-particle system is identified from (3.27) to be a, In(ss's/p') + b, .

The result (3.27) provides a crucial test of our previous assignment of a, In(ee's/g') +b, as the basic am-
plitude associated with a two-particle system. A different choice for a2 will change the coefficient of
In2(es's/p') and the decomposition of Tao (T21' ) into the form (3.27) will be impossible. The fact that T,')
(T~(')) comes out automatically in a structure as expected from our propositions is not accidental. It is a
nontrivial support to our suggestions. Our identification of a„a„and a, as the coefficients of In(ee s/p }
associated with a one-, two-, and three-particle cluster acquires more credence when we take into account
the fragmentation events. As we shall see in Sec. IV, not only these parameters consistently reappear in
the right places, but there is a striking resemblance between these quantities and the fragmentation ampli-
tudes. In fact there is a one-to-one correspondence, and we can infer one from the others. Vfe therefore
content ourselves to stop here and conclude that the pionization contributions sum up to a general result for
the amplitude T1'~ (T(")":

T = T1' = — ', exp 7 X"( al(new's /'(()(+ b„)
16m@,28

g( X.)

16wp. 's s,(X)
where

~b( X)/e( X)
so(1(.)

a(A) =Q 1),"a„, b(X) =P X"b„.

{3.28)

(3.30)

(3.31)

As we shall see later, a(A) is related to the conventional Regge trajectory function a(A, t) at t =0 through

(w(A, O) =a(X) —1. (3.32)

Thus, the trajectory function is expressed as a sum of contributions due to one-, two-, .. ., -particle clus-
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ters. It should be emphasized again that a(X), or the trajectory function (w(A, 0), is independent of the

masses of the external particles p., and p, Now

(,) ig' ~ a(Z)" ' „,ce's
16wp's ~ (n —1)! so

implies
ig' ~ a(a)" ' ee's

16wp s~ 2w so

ig 1 fs s EE s wa(A)

16wpms iwa(X) so s, sinwa(&)

(3.33)zg4 ~e's '&'~1- e-'"~"
16wp's s, i sinwa(A)

Thus, the substitution does not affect the power dependence in s. It only supplies us with the required sig-
nature factor. Important physics is all contained in the simplified amplitude T which has the intuitive in-
terpretation as suggested in our basic propositions.

The combination cc's which appears in all these results simply reflects the fact that at most only the frac-
tion ~~' of the total s is available for pionimation particles since k„and k&„,» are restricted to be less than

~p„and ~'p„, respectively.
IV. FRAGMENTATION

A. Fraynentation of Particle a

To describe the fragmentation of particle a, we restrict k„(i=1,2, . . . , n} to vary between (sp, p„). We

shall use the notation T('~ to denote the amplitude with (n+ 1) loops which includes the fragments of particle
a only (see Fig. 7). From E(I. (2.12), we have for n = 1,

where

a, =1,

a, ln — E,' (4 1)

(4 2)

" (ff('. . *, (f,* ~ ((-f (I * ~ *,*I.']' (k,' I ')') '

The fragmentation amplitude T~'~ for an n-rung ladder can be obtained in an analogous way as introduced
in the pionization region. The general n-rung amplitude was given in E(I. (3.3). After summing the straight
and crossed ladders, we obtain an important simplification on the last propagator in T&'~,

2 2 2w

(p(, —k~~) —jl(, + is Ql(, + k~~) —p, g + is (4 3)

We then carry out the (k, )-integrals for i = 1, 2, . . . , n+ 1 and find as in the pionization region that all k s
are ordered automatically:

e &k+» k &&p~.

The amplitude T~' then reduces to

(4.4}

(4.5)

with

f„(1,2, . . . , n) =f„(x„k„x2,K,; .-; x k„)

I/x„ k a+@ 2 k 2+@2
P+ 1 a 1

(( —*,(*,(*,-*.(*." (*. , —*.(*. ~ —*, ' *, )

( 1-xx xx x2 xn
(4.6)
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where x, —= k„/Ws are scaled longitudinal momenta.
There are two important differences between (4.5)
and its counterpart (3.11) in the pionization region.
First, the x integrations are restricted to (e, 1)
rather than (0, e ) which differentiate the fragmenta-
tion from the pionization. Second, the y integra-
tion, which plays an important role in understand-
ing the asymptotic behavior of T„, is carried out
trivially here. Therefore, we shall use a somewhat
different method to determine the ln"e behavior of
T (c)

P
0

k k

k k

S

n+ I I

a I

I n+il
k

I I

S. TheA pht AT~,')

The amplitude Tl'l is given by (4.5) as

$g g f d kl d k2 dxl & l dx2
16wg's 4w 0 (2w)' (2w)'~, x,

with

FIG. 7. The straight-ladder diagram with n (internal)
rungs in the fragmentation region a.

(4.V)(,k, ' k,' k, ' ~ k' ', k,' ~ k,' (k, —k, )' ~ 44' k,' ~ k')-'~1 2j= 2 &o+ + —
ftL~ + +

(1 —x,)x,(x, —x,)x,' ' 1 —x, x, ' 1 —x„x,—x, x,

The amplitude f,(1, 2) has the important factorization property that, for x,» x„
1 xl 1

2 ~ 4 [f 2+(1 x )l)2+x 2l( 2]2 (f 2~~2)2 2' 1' '

It is easy to see that the approximate relation f,(1, 2) =f,(1)f,(2) leads to

ig' X' 1—a ln —+r'&
16~F2~ 2

where

1-xl
[k,'+ (1 —x,) l(,'+ x,'g, ']'

is the corresponding one-rung amplitude. Thus, the deviation of f,(1, 2) from f,(1)f,(2), i.e.,
g.(1, 2) -=f.(I, 2) -f,(I)f,(2)

2 2 -21 1 2 2 2 2 2 lj 1 2~a
(k, +(1 —x, )l), +x,'p, , ] x, —x, x, —x,2 2 22 2+ (k 1 —xl ' x, -xs 1

1 —x3

[k 2+(1 x )p24. x 2p &]&

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)

measures the correlated part of the two-particle amplitude. Note that g, (1, 2) is the Mayers' cluster func-
tion introduced in statistical mechanics and has the property that, for xl » x2,

g, (l, 2) =O(x, /x, ) .

Equation (4.12) implies that the integration over g, (1, 2) contributes to a single 1ne factor,

J ( ), ( ), J 4, ((, 4) =(4,), a, ln k,' ~ —(4}, —,
where

(4.18)
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Note that the dx, /x, integration over g, (1, 2) is well defined and has a finite limit at x, =0. Thus, the dx, /x,
integral gives rise to a single Inc factor. Since the cluster function g, (1, 2) is nonvanishing when x, & c & x„
Eq. (4.14) includes the contribution from the region where the cluster function g, (1, 2) lies in the fragmenta-
tion region of one variable and in the pionization region of the other. R, is a correction due to this phenom-
enon. This term R, will be canceled by contributions from other mixed regions when they are added togeth-
er. This will be demonstrated later.

We present a physical argument to support our using (4.14) as the appropriate definition for a two-parti-
cle cluster in the fragmentation region. The two-particle cluster function g, (1, 2) measures only the corre-
lated part of the two-particle amplitude. The effective invariant mass of a two-particle cluster is therefore
small, and its value is independent of the total longitudinal momentum of the two particles. Thus, it is nat-
ural to assign a correlated system to the fragmentation region whenever its total longitudinal momentum
exceeds a fraction e of the incident momentum. To be consistent, when that fraction is less than e the clus-
ter should be called pionization. This is exactly what our treatment of pionization amplitude in Sec. lII im-
plicitly implies. There all the h„ integrations, like (4.14), extend from zero to the maximum values al-
lowed by momentum conservation and our definition of pionization. This explains why we separate out the
constant A, in (4.13).

The coefficient a, can be determined easily from (4.14) by setting x, =0 in the integrand of dx, /x, integral,
giving

d kl d k2 x1. d

1

(2 )' (2 )' (iY,
' ~ v')'. . . [,(1, f ) ~ (i——.*'.)Ic.' w'[' (i7.'+v')')

.. .

' d &, d k, 1 (k~-k2)'+l]z
~ (2v)' (»)' (k '+ V')'(k '+ []')' (4.16)

where z, =—x,/x, . To arrive at (4.16), we have used (3.24) and (3.25). Note that we have encountered the
identical expression a, as appeared in E[l. (3.22) in the pionization region. This implies that the clusters
introduced in the fragmentation region are the continuation of the clusters introduced in the pionization
region.

The constant F~~'] can be calculated from (4.14) by subtracting our a, ln(1/z), giving

k~ d k2
" dX~

(2z)' (2v)' ~, x, , z,

1 x] 1 zg xgz2 g x z 2
X k2~ k P 2+ k2+ + 1 2 2

$,'+(1 —x)p +x p,']' 1 —z 1 —z ' ~ 1 —x, ' 1 —z, 1 —x,

1
Ã' ((-**)~'~ *' 'v']' (%' ~ ~')' [*(ic -K)' ~ ((-~.)k' ~ u']' (7c' ~ ~')') '

(4.1V)where we have ignored terms of O(e).
Putting (4.7)-(4.11) and (4.13) together, we have

T[']=— X' —a ln —+F['] +a ln —+F&'] -a,, 1 1, ' 1
2 16~~2s 2 j q 1 2 g 2 (4.18)

As we have pointed out earlier, R, will be canceled out by other contributions and does not play any signif-
icant role. This will be shown later on.

C. High-Order Amplitudes

The idea of cluster decomposition can be generalized to higher-order amplitudes. "~' Let us demonstrate
the technique with Ts~' . We have for n =3,
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1

( —*,)*,(*,—*.)*.(*.—*.)*.' (

X(+1).~ (k) —k2) + 1).
+

1 —x1 x —x1 2

(
k, +p, , (k, —k2) +pX -p, 1-x1 x —x1 2

k 2+/, 2 k 2+~2 -2
+ +

1 —x1 x

ic, ' rr'} '
X2

(k, —k,}'+p' k32+ 1(.
'

+ +
X2 X3 X3

(4.19)

The amplitude f,(1, 2, 3) satisfies the following factorization properties. For x, » (x„x,):
f,(l, 2, 3) =f,(1)f2(2, 3) + O(x2/x, or x,/x, ) .

For (x„x,)» x,:

f,(l, 2, 3) =f~(1, 2)f,(3) + O(x, /x, or x,/x, ) .

Equations (4.9) and (4.20) indicate that we should introduce a three-particle cluster function through

g, (1, 2, 3) =—f,(1, 2, 3) -f,(1)f,(2)f,(3) -f,(1)g2(2, 3) -f,(2}g2(1, 3) -f,(3)g2(1, 2) .

The cluster function g, has the property that, for either x, » (x„x,) or (x„x,)» x„

g, (1, 2, 3)-0 as O(x, /x, ).

(4.20)

(4.21)

(4.22)

Just as in the n = 2 case, Eq. (4.22) implies that the integral over g, (l, 2, 3) contributes to a single In(1/e)
factor.

(4.23)

where

a, K +F; =(4wl—)
(2w)2 (2 )2 (2w)2&~ J x

'g, (l, 2, 3) (4.24)

(4.25)

zg~ g' ' (' d'k d'k d'k ~dx *idx "2dx
16wp's 4w ~ (2w)' (2w)' (2w)', x, , x, , x, f'

a ln —+F(a) + a ln —+P(a) & ln +g(a) +0 ln +P(a) 0 ln +g(a)ig 31 1, ' 1 1, 1, 1
16m',2s,3! 1 ~ 1 2 ~ 2 3 ~ 3 1 ~' 1 2 3

(4.26)

and JIl3 is a correction term due to the possible overlapping of the clusters in the pionization region. The
coefficient a, can be computed easily from (4.24) as

( d k, d'k2 d2k3 "1dx, p"2dx3
a, = lim(4wl(, ')',

(2
)', (2 )', (2 )', 'Jt 'g, (l, 2, 3).

x1~0

In terms of z, =- x,/x, and z, =-x,/x„Eq. (4.25} can be brought into the same form (3.28) as obtained in the
pionization region. F31') can be calculated in an analogous way as in Eq. (4.1'I).

By the use of Eqs. (4.21) and (4.23), it is now straightforward to show that

k k
I „!l+ I

I

l

I

!k
n+1

I

k n+ 2
!

I
N+I

I

I

I kI+I

FIG. 8. The straight-ladder diagram
with n (internal) rungs in the fragmen-
tation region a and m ( =N —n) rungs in
the pionization region.
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with

+terms due to A' s, (4.2'1)

z('& () ) =-p ~"z')

D. Fragmentation Amplitude T

(4.28)

The method developed so far can be applied
equally well to the pure fragmentation amplitude
of particle b since the two particles a and b are
treated symmetrically. We can introduce various
cluster functions and their corresponding ampli-
tudes

a„ln —,+S('),1
(4.29)

These correction terms involving A's will be can-
celed out in the full amplitude after contributions
from other regions are included. Equations (4.1),
(4.17), and (4.26) and the generality of our meth-
od demonstrate that the pure fragmentation ampli-
tude also exponentiates,

Pa) g Pa)

, exp X a„ln —+F(Cg n 1 a)
16m', 's

+terms due to A' s

gg e~(a)() )
1 a( )(. )

16m p.2s

z(')(~) =-g vz(') . (4.31)

V. GENERAL AMPLITUDE

A. Amplitude from Mixed Regions

A general n-rung amplitude T„should include
integration regions consisting of both the fragmen-
tation regions and the pionization region. To gain
some insights into the amplitude covering these
mixed regions, we first restrict ourselves to inte-
gration regions associated with fragmentation of
particle a and pionization. The generalization to
cover all three regions is straightforward. The
N-rung amplitude in this combined region is de-
noted by T~„'~', while the partial amplitude for n

particles in the fragmentation region of particle a
and m particles in the pionization region is denoted
by 6") (see Fig. 8). Obviously,

Pa+2) p y(a, o) (5.1)

can be written down immediately as
y(2) Q +2)

a(X)
y(&)() )

16m p. 's c'

+terms due to overlapping effects,
(4.30)

with

just as in the fragmentation region of particle a.
Thus, we shall not repeat the calculation here.
The pure fragmentation amplitude for particle b

A general amplitude, T(", can be worked out
analogously just as in the pure pionization region,
glv111g

g2 N+I N+I + d2$ I'I d» aId»Paa) g2 &
a, ta 4N (22)2

~ ~ ~

with

"ff gdx„"~dx„+g,"~s-j.dxg
~ ~

Xn 0 Xn+1 "0 E" -e'
dy aN(1, 2, . . . , N; k„+„y),

(5.2)

oN(1 2 ' ' ' Nt kN+I y) uN( I It 2t 4 't tkN+It y)

1 k,2+p ' k 2+ p2

(1 —x,)x,(x, —x,) ~ ~ ~ (x„,—x„)x„"' 1 —x, x,

kI +)Ia' (kI —k2) +p, ' k2 +)IX -p, + X ~ ~ ~

1 —x, xx-x, x2

x — 2 k& +Ma k&-k2 +p, kgb+ p.
(Ia +

1
+ +'''+ kN~I +)I

xg xj x2 xp'

1 1 2 xN

where N=n+m, and x, =)t, /Ws and y =-lI(N,» /Ws are scaled longitudinal momenta. TN('~) is given by the
same equation (5.2) except that the limits of x integrations are replaced by

1&xx& ~ ~ ~ &x„&0 (5.4)
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If none of the x's are near the dividing point, i.e., if x„» e»x „we find that

a„(1,2, . . . , N; k„„,y) =f„(1,2, . . . , n)awol(n+ 1, n+2, . . . , N; k„„,y), (5.5)

where a~'l(n+ 1, n+ 2, . . . , N; k„„,y) is the analog of a„(1,2, . . . , N; k„„,y) appropriate for a pure pionization
amplitude. Under this condition, Tl'„'ol reduces to the product of Ti' and 8„",

4 1
pa, o) g po) y(o)

2S n m (5.6)

The possible correction to Eg. (5.6) is solely due to the contribution of those x integrations which are very
close to the dividing point. In terms of cluster functions, this correction originates from the possibilities
that clusters may overlap with the dividing point. As we shall see, this type of correction term will cancel
the corresponding terms -R„appearing in the fragmentation region. We shall demonstrate this cancella-
tion for %=2 in the following explicit calculation.

B. The Amplitude T
7

Equations (5.2) and (5.3} imply that

3 "(g'k y k d'k 1dx 'yx
7i a,o) 2

4w . (2w)' (2w)' (2w)' - x . x

where

(5.7}

(1 —x)x(x, —x)x, ' l-x, x, ' 1 —x, x, —x, x,

(k -k }2/$2 kg-kg)&A/2

1 2 2

The difference between a, (1, 2; k„y) and f, (l)a~~'l(2; k„y) in the region 1 & x, & s & x, & 0 can be written as

(5.8)

c,(1, 2; k„y)—:a2(1, 2; k„y) —f,(l)afar(2; k„y)

=(k + ) f,(1), (k, —k2) +P k2 +0
1 2} 2 1 2 2

(kg —k,}'+p' (k, —k,)'+ p,
'

X X2$S —X2 +ic
X] X2 X2

k2+ 2 -2
[x,y, s —(k, —k,)' —p, '+ is] (5.9)

2 X2

where we have ignored terms of O(e} or smaller. Note that c,(1, 2; k„y) =O(x,) at x, -0, as expected from
(5.5). Thus, the contribution from Ae small-x, integration region (x, «s) is damped out, and we can carry
out the y integration of c,(1, 2; k„y) by assuming that x, is always» 1/s s. Then we can extend the limits
of y integration to a~, giving

ce

X] X2 Xg X2

Thus, the contribution due to c,(1, 2; k„y) leads to

(2w)' (2w)' (2w)'J x . x . ' ' ' " s (4wp, ')'d c!12k )= —— R

where R, is defined in (4.13) and (4.15). Putting (5.7), (5.9), and (5.11) together, we have

4w . (2w)2 (2w)' (2w)a . yf, (1)a, (2; k„& +& 4
——

(4 2), R, ,

and consequently

(5.10)

(5.11)

(5.12)

where we have introduced a simplified amplitude T through the substitution (3.17). Indeed, R, in (5.12)
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cancels out a similar term in (4.18). Once we understand the origin of these terms, the cancellation among
these correction terms here and R„(and R„') appearing in the fragmentation amplitudes emerges naturally.

C. Exponentiation of a General Amplitude

Now we know how to calculate the amplitude for a general ladder once we know the pure pionization and

the pure fragmentation amplitudes. Let us summarize the amplitudes for %=2 associated with various
kinematical regions in Figs. 5(a) —(f):

X' —a ln —+F&'& +a ln —+F&'&-Rig 21 1, ' 1
2 16gp2S 2 1 ~ I 2 6 2 2 (5.13a)

T() g2 g In +F() +g In +F()b ~g b 1 b

161l'P,2 S 2 ~l 2 2 (5.13b)

—(0) ~g 2 1 ECS ffs
T, =-, A.

' —a, ln, b, +a, ln, +b, ,
16wp, s 2 (5.13c)

T{,0) ~g 2 1 {Q11Q +F Q1In 2 +$1 ++21 1
p

2 (5.13d)

—(Pb) Sg 2 66 S 1 (b)T1,' ———
16 2 A &11n 2 +b, Q1In I +F1 ++2

7TP S P E
(5.13e}

T(. ) ~ ~ I„+F() ~ I„+E(b)Zg 1 1
1 ~ 1 16~~2S 1 .~ 1 1 CI 1 (5.13f)

The only contribution which has not been obtained before is (5.13f), corresponding to Fig. 5(f). However,
the contribution from Fig. 5(f) is simple to obtain because the amplitude f, factors in this region. The
over-all amplitude T, is the sum of all six subamplitudes, giving

ag' 2 1 1, 1 b
ee's ' 1 1 E'6 ST = — A.2, —a In—+E(' +a ln —+E{ +a ln +b +a In —+F ' +a In —+E b +a ln +5

16m p2s
,

'2 1 ~ 1 1 ~I 1 1 ~2 1 2 6 2 2 6 2 2 2 2

g4 ] s 2 s~' —a ln —+E(')+b +E{') +a ln —+E{')+b +E(b) (5.14)

Note that all the e and e' dependences drop out. The only modifications of T, in comparison with the corre-
sponding amplitude T,' in the pionization region are

and

Gas s

V„-F{')+S„+E(b) .

(5.15a)

(5.15b)

The coefficient a„of lns is not affected. We have verified this point explicitly for n ~ 3. One can conclude
from the general property of the amplitude that Eq. (5.15) should be valid in generaL

Once we establish the relation (5.15), the sum over the general amplitude is straightforward. We have,
in analogy to (3.29),

T =~ T =- 'g
exp ~" a ln —+E{'+b +E(')

].Gap, 2s n ~2 n n n

n n

S a(X)
G~' (A} G~~~()L)

16n p, 's s,(A)

where

(5.16)

(5.17)
G '

(A.) = exp P )PE„",
G~'&(~} =exp' ~"F&'~,

and s,(a) and a(A} are defined in (3.30)-(3.31).
After making the substitution (3.17), we obtain the final expression for the sum of straight and crossed
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ladders.

a(k) I -iaa(X)
T =—,G(') )( G(')())

16v)),as s,()() i sinwa(X)

i 4 ()1,)G"(~)
* 0'"ii) ) - )a

"
}.16vg's s, ()() '"2 (5.18)

Equation (5.18) implies that Im(-T} is positive definite, as required by the optical theorem.
Equation (5.16) makes it clear that the constants I „' +b„+F„a can be written many different ways as the

sum of three terms without affecting the final answer. This is a manifestation of the arbitrariness, men-
tioned in Sec. III, of calling particle a a pionization or fragmentation product when its momentum is close
to the dividing point. To give an example, let us return to (3.11). Inspection of (3.11) shows that all the
x, 's have a natural cutoff at the lower end of order I/e's with an unknown finite squared-mass scale. An
alternative definition for the pionization amplitude can be made by restricting all the x, to be c & x,. & g'/e's,
with p. being the squared mass of the internal particles. This definition does not affect the values of a„,
but alters the values of F„', b„, and F~". This definition is used in Ref. 19.

VI. DISCUSSION

Based on the results up to tenth order in the coupling constant obtained in previous sections, we conclude
that the forward elastic amplitude for the ladder diagrams has the structure

4 1 -i aa (X)
T= —i, G('(A) exp+A. " a„ln —,+b„G(')(A) (6.1)

16m p. 's i sinva()(
n

where a„ ln(s/p, ) + b„ is the pionization contribution due to a cluster of n particles with a small invariant
mass. The factors G ' and G(a are given in (5.17) and describe the (s-independent) amplitudes for particle
a and particle b to dissociate into one, two, . . . particles. It should be appreciated that the simplicity of
the structure for the amplitude (6.1) is discovered by a very unconventional approach. We do not group
together as a single term all the contributions of the same order in g' (or A.) and of the same power in
In(s/(i ). Instead, we treat pionization and fragmentation separately In this .way it is discovered that the
pionization contributions sum up to a simple structure; so do the fragmentation contributions. It is clearly
very difficult to recognize the simple structure as given in (6.1) if it were expanded in a power series of
(g')" ln (s/)), ').

A similar situation may also exist in the case of the amplitude for multiladder exchanges. This was the
attitude adopted in Ref. 7. In that paper only the kinematic region where particles a and b retain their
large momenta is considered. Perhaps the basic structure obtained in this restricted kinematic region
will appear repeatedly in an improved approach that includes the fragmentation events. However, multi-
ladder exchange is much more complicated than the simple ladder considered in this paper. It is beyond
the scope of the present paper.

To conclude, we make two remarks:
(1) Since the sum of nonleading logarithms corresponding to clusters of two or more pionization particles

also exponentiates to a power of s, these contributions are comparable to the sum of the leading terms if
the coupling is not weak. We learn again that summing the leading terms only is not quantitatively mean-
ingful. This suggests that a nonperturbative approach is essential to a quantitative understanding of high-
energy scattering of hadrons.

(2} The remark just made above also implies that, in general, correlation among pionization particles
may be important since the probability for several pionization particles to form a cluster of small invari-
ant mass is not negligible. Thus, the number distribution is no longer a simple Poisson distribution. For
example, inelastic two-particle events now involve processes in which the two uncorrelated particles are
produced and those in which the two particles are strongly correlated. In a separate note, we shall apply
the considerations here to the prong distribution in p-p interactions to extract the information about the
two-particle cluster. "
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APPENDIX A

In this Appendix, we evaluate the integral of the general form

1 1
I„(s)= lim dx, ~ ~ ~ dx„

s~ 1 p "xlx2 xns+

for large s up to the accuracy of 1/s. To simplify (Al), we introduce the new variables

(Al)

X1 ~ ~ X, =e '&,

then

i=12 . . n (A2)

)(~ OO oo p oo e-&n
I„(s)=

) dy, dy, J~ dy„
1 "n-1

(A8)

Interchange the order of integrations and we get

(A4)

This gives

1 " e"I ( ) — d n

(n —1)!, y y s-'s+ 1

1 1 ' ln" 's/x
dx(s-1)!s o x+1

To evaluate (A5), it is convenient to consider the generating function
oo 1

I(s, g) = g g"1„(s), I,(s) -=1, Igl&1.
n=p

Then

(A5)

(A6)

1 g ' sg
I(s, g) = + — dx-s+1 s p x x+1

(A7)
g, ' (x+1) ' !" x-' —(1+x)-'-

+ S dx + dxs+1 s, p x+1 1+x
Since we only keep terms up to 1/s or larger, we can replace the upper limit in the last term by infinity.
The resulting integral then becomes a standard one. We get finally

(A8)

The original integral I„(s) can now be expressed as

d"
I„(s)=—, „I(s, g)

Pg t ~ p

The results for m=1, 2, 3, 4 will be needed for our discussion. Explicit expressions for these cases are

1
I,(s) =—lns,

1 1 2 1I (s) =——ln's+ —w'
s

(A9)

1 1 ~ 1I (s) =——ln's+ —s s lnss 3t 3

(A10)

1 1 ~ 1 2 2 7l, ( )=- n, ln', n,
'ln'n

nnn ').s 41

We shall denote the expression in the large parentheses of (A10) by J'„(s), i.e.,
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&„(s)=-&.(s), &„(s)= sf.(s}
1

s

Clearly, J„(s) is an nth-order polynomial in lns.
A slight variation of (Al), which appears repeated in this paper, is

f'n-1 ~n 1
lim

I

dx, '
l dx„-, dx„

s&&l +0 "0 X1X2 ' ' ' X~S + C
n

(Al 1)

(A12)

In terms of z,. =x(/e, , Eq. (A12) reduces to

f 1

s&&1 ~0 0

1

1 2 n
Zl+2 ' '2„+1

C

1 2 n I 1 2 n

C C

(A13)

By the use of

In(-s) = lns —iv,

the expression in the square brackets of (A13) can be reduced into an (n- l)th-order polynomial in lns.

APPENDIX B

In this Appendix we shall work out the scattering amplitude associated with Fig. 2 by means of the con-
ventional Feynman parameter technique. In our notation, this amplitude is denoted by T, and is

dk, de 1 1
(2v)~ (2v)~ (p, —k, )' —p2+ie (k, —k, )2 —p'+is (p +k, ) —y. '+i& (k,' —p2+is}' (k' —p'+iep

(I)
where for simplicity we choose !(.,=!(., =!(,. The seven propagators in (Bl}can be combined through a set
of Feynman parameters Q„Q„.. . , Q, :

d'k, d'k,
T( =-8 6!II dn(5 ~ u( —1

(2 )4 (2 )~

x [a,(p, —k, )2+a, (k, —k )2+ a, (p, + k }'+(n, + n, )kz+ (u, +n, )k ' —p'+ie] '+ (s--s).
It is now straightforward to carry out the d'4, and d'k2 integrations, giving

2g'T' = -
((((, (

n f d

where
Ql + Q2+ Q4 + Q5

and

, —( . , ~ ( --s(),
(D is)'—

Q2+ QZ+ Q6+ Q~

= (n~ + n~+ u4+ u5)(n2+ n~ + u((+ a7) —n~

Ql + Q2+ Q4+ Q5

D(s}= — n2-
~Q P

~Q2

Q2+ Q~+ Q6+ Q7

Q3&o

~Q P
Qsk

(1 —n~ —us)

= -u, u, u, (s —2!(,') + p'I (I —u, —u, )b. + n, '(n, + u, + n, + n, ) + n, '(n, + u, + u, + u, )j . (S6)
It is easier to carry out the n integrations for D(-s) first because the latter is positive definite. We can
obtain the final expression T, by adding the contribution from D(s) through the crossing substitution (s--s)
as before. For terms of order (lns/s} and 1/s, it is enough to integrate over the regions

(1) 0& a, & eO& u2& s2, 0& a, & s, ,

(2) e, & a, &1, 0& u, &e„O&u, &e, ,

(3} 0& n, &e„0&u, &t„e,& n, & 1,
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(4) 0» Q~ &s~, s~» Q2» 1, 0» Qg& eg ~

The integrations are quite simple, and they yield

T&n= — » 2
ln —, +ln —,(1ne,e,s, +2) +(s--s),

16s'p, ' s 2 p.' p,
* (B6)

g6
(16v'p')'s

(16''p, ')'s

S S-ln —inc -ln —1+ + (s--s),
p2 1 p2 3q3

S S-ln —in' —ln —1 + ~ + (s --s),
p

2 3
p

2 3 3
(B8)

T&e ———(» -ln —
2 (in@2+ 1)+ 1n—~A

S
16m2p, ' s p. '

where

(B9)

A=- xdx'

= -1.5626 .
We have ignored in (B6)-(B9)terms of order e or smaller. Finally, the resultant amplitude is

T, = T (~) + T(2) + T(3) + T (@

III—, —ln —, 1.5628) +(s —s)

16m p. 's 16m'p. ' ln p2
—

3W3
—1.5626 —

2

g S . W (tf) (y)
16m', s 16m p,

+»—2+&x-&2+~i +~i

which is exactly (2.22) with"

2'
bz +Ej +Ey ~ 1 5626

(B10)

(B11)

We have compared the infinite-momentum technique with the n-space method up to (lns)'/s and (lns)/s
for the two-rung ladder and crossed ladder [i.e. to O(g')]. They also agree with each other. This gives
us confidence that the two approaches are equally valid.
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We consider the question of subtractions in a spectral representation which, we argue,
should be regarded as a dispersion relation in energy (the Low equation) for the true prop-
agator function, rather than as a dispersion relation in the square of the momentum for some
suitably covariantized version. We demonstrate how a generalization of the theorem of
Bjorken, Johnson, and Low to subtracted spectral representations yields a vacuum expec-
tation value of the equal-time commutator which, together with the propagator function,
satisfies a sequence of partial differential equations in momentum space. We Qnd that the
commutator corresponding to a subtracted representation contains singular terms which
are not completely specified by the spectral functions. As an application we consider any
model in which currents are represented by bilinear forms of free spinor fields. There
such singular terms can invalidate, for example, the usual statement of universality of
weak interactions and the simple SU&XSU& algebra of quark charges.

In this note we would like to discuss an impor-
tant topic, which has not received sufficient at-
tention before, concerning the question of subtrac-
tions in spectral representations. Subtractions
might be required, for example, if, defining the
vacuum expectation value of an equal-time com-
mutator by means of the Bjorken-Johnson-Low

(BJL) theorem, "we were led to a divergent spec-
tral integration. This would mean that the (possi-
bly frame-dependent) propagator A(P) with which
we started converged more slowly than P, ' in the
limit Po- with p fixed. To illustrate our con-
clusions, for a once-subtracted A(P), we find the
corresponding equal-time commutator to have a


