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J.Bjorken, Phys. Rev. 148, 1467 (1966).
K. Johnson and F. E. Low, Progr. Theoret. Phys.

(Kyoto) Suppl. 74, 37 (1966), find that [Vp(x), Vp(0)]6(xp)
= 0 in their model.
' For example, in R. Jackiw, R. Van Royen, and G. B.

West, Phys. Rev. D 2, 2473 (1970).
t30ur example of an h» {x,p) which has ()(xg sop(x p)

&0 leads to a T&*„which cannot be Wick rotated. However,
if h»(x, p) is modified to

h„„(x,p) = i (g„„O—a „a„)~(p e)2-m& ]Z(x, ~,

then the expression for boo(x, p)d{xo) remains unmodified
but the T&*„obtained from it can be Wick rotated. This
example clearly indicates that the condition that hpp(x, p)
x 6(xp) vanish in all frames is a sufficient but not a
necessary condition for Wick rotation of the contour to be
permitted.

Doing the qp integration first is the "natural" thing to do
as it leads to Feynman rules in a perturbative framework.
We would like to thank J.Sucher for pointing this out to us.
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Given the two leading eigenvalues and eigenfunctions of the resonance (low-subenergy)
component of a multiperipheral kernel and assuming lower eigenvalues to be unimportant,
it is shown how the mixture corresponding to the Pomeranchon eigenfunction may be cal-
culated from considerations of self-consistency. The method is illustrated in a multi-
peripheral model with pseudoscalar-meson links by associating the two leading unperturbed
eigenstates with the 2+ particles f(1260) and f '(1514).

I. INTRODUCTION

A recently developed multiperipheral model de-
scribes the leading Regge singularity with vacuum
quantum numbers, the so-called "Pomeranchon, "
as arising from a self-generating perturbation that
splits an idealized "primitive" Regge-pole spec-
trum into fine structure. " The primitive spectrum
belongs to a simplified multiperipheral integral
equation whose kernel is truncated so as to lack the
Pomeranchon-generated long-range correlations in
longitudinal rapidity When .only short-range (reso-
nance) correlations are included in the kernel,
the generated Regge singularities consist entirely
of well-spaced poles. Inclusion of the weak but
long-range Pomeranchuk component of the kernel
introduces a weak branch point in crossed-channel
angular momentum, and in the associated multi-
sheeted J Riemann surface, poles occur at slightly
different positions on the different sheets. This
combination of branch point with closely spaced
poles, first identified by Frazer and Mehta, ' is
what we have called "fine structure. "

lt has been conjectured that the Pomeranchon (P)
should be identified with a real pole on the first
(physical) sheet of the J surface while the nearest
pole on the second sheet, whose position is slightly
complex, should be identified with the P'. The
lower-lying P" would similarly be located on the
second sheet. If the separation between P and P'

is small compared with the distance to other poles,
it can be shown that the ratios of P and P' cou-
plings should be almost equal —that is, the P and
P' "vectors" should be almost "parallel. " A rough
parallelism between P and P' couplings is an es-
tablished experimental fact, but the observed P and
P' vectors appear not to be exactly parallel. ' For
example, the P' is often associated with the 2'
f(1260) and described (e.g. , in the quark model) by
a vector whose KK component has half the ampli-
tude of the wf component, while the observed P
seems closer to being an SU, singlet, with equal
wf and KK components. Recently it has been sug-
gested by Carlitz, Green, and Zee' (CGZ) that the
P vector should have a significant component par-
allel to the f'(1514) as well as a component paral-
lel to f(1270). The special model employed by
CGZ, however, is inconsistent in its treatment of
the Pomeranchon vector in that these authors be-
gin by assuming the Pomeranchon to be a pure SU,
singlet while their finally calculated vector has a
substantial octet component. The present paper
explores the general CGZ suggestion within a mul-
tiperipheral framework and shows how self-consis-
tency can be achieved for the Pomeranchon cou-
pling ratios.

II. MIXING OF THE UNPERTURBED
EIGEN STATES

We employ the notation of Sec. V of Ref. 2 where
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the partially diagonalized multiperipheral equation
is written schematically as

A =V+ VSA. ,

the "potential"

V= V'+ VP

(2.1)

(2.2)

being the sum of a large "resonance" component V"

and a small "Pomeranchuk" component V . The
diagonal operator S may be described as a "propa-
gator. " The compact notation of Eq. (2.1) has sup-
pressed a variety of conserved crossed-channel
quantum numbers, including angular momentum J,
squared momentum transfer t, charge conjugation,
and natural parity, as well as internal quantum
numbers like charge, hypercharge, and baryon
number. Also suppressed are nondiagonal indices
labeling the particle types and masses that charac-
terize a particular link in the crossed-channel
chain. It is the dependence on the discrete parti-
cle-type indices that is the special concern of this
paper. Dependence on the continuous link mass
(momentum transfer) has been dealt with else-
where.

We choose all the diagonal internal quantum num-
bers to be those of the vacuum, leaving J and t as
the only diagonal parameters to be varied. A

Regge pole occurs at values of (J, t) where one of
the eigenvalues p. ; of the kernel VS is equal to uni-
ty. Near such a point the solution behaves as

feet of V on the leading eigenvalues and eigenfunc-
tions of V S. We shall assume, generalizing
slightly the reasoning of Ref. 1, that the two lead-
ing eigenvalues of the resonance kernel correspond
to Regge trajectories of normal slope (=1 Gev ')
passing, respectively, close to the 2' particles
designated f(1260}and f'(1514). The basis for such
an assumption is the smallness of the perturbation
V except close to the infinite Amati-Fubini-Stang-
hellini (AFS) logarithmic branch point. ' Hear J= 2,
t=m&', mf, ', one is far from this branch point so
the physical and unperturbed amplitudes may be
presumed there to be nearly equal.

We interpret the Carlitz, Green, and Zee sug-
gestion, ' within our context, as the assignment to
the two leading unperturbed eigenvectors ga, and

g, of the same dependence on particle-type indices
near t=0 as at the physical J=2 point. In other
words, everywhere along the "primitive" trajec-
tories these authors propose adopting coupling ra-
tios equal to the ratios of f and f ' (reduced) partial
widths. Given this, or some other specific as-
signment of the unperturbed couplings, we now set
ourselves the task of determining the consequences
for Pomeranchon coupling ratios.

Neglecting all but the first two unperturbed eigen-
vectors, one may easily calculate the mixing in-
duced by the perturbation VP, as well as the corre-
sponding shift of eigenvalues. Defining a mixing
angle 8 such that

I4;&(0 I

1 —p.
(2.3} $, = cos8 tt), + sin8 $"2,

$2 = -sln8 $ 1 + cos8 $
(2.'t)

where g; is the eigenfunction of VS associated with
LLj, „normalized so that

we find

(0;I sit, & =5;, . (2.4)
gP

—,
' tan28 =

+1 11 ~2 22
(2.8)

The eigenvalues p, , are analytic functions of (J, t),
apart from isolated singularities, so from Eq. (2.3)
it follows that Regge-pole residues are determined
by the eigenfunctions g;. That is,

(2.5)

o, (t) being that value of 8 for which p, = 1, while

where the symbol 'U;,. has the meaning

+ y=-(0 lsy sl tt't& .

The corresponding shifted eigenvalues are

p, , = cos'8 (p, , + u„}+sin'8 (p., + Q„)
+ 2 sin8 cos8 U»,

(2.9)

(2.10)

k(t)-=—
( ~'); (2.6)

p. , =sin'8(p, +V„)+cos'8(p,, +'U„)

—2 sin8 cos8 'U» . (2.11)
We are, in particular, interested in the eigenvalue
which becomes equal to 1 for the largest real J
corresponding to the Regge pole designated as P.
The associated eigenfunction contains the coupling
ratios of interest to us.

The "unperturbed" (resonance) kernel V S also
possesses a spectrum of eigenvalues p, ;, with as-
sociated eigenfunctions g", , and our objective may
be described as understanding the perturbative ef-

P'012
tan8 =

P1 —P2 —022
(2.12}

which may be deduced from formulas (2.8) and
(2.10) .

The reader may be puzzled as to where the ad-
vertised fine structure will appear since the per-

Also useful is the following unsymmetrical formula
for the mixing angle:
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qR (2.14)

The answer to the originally posed question evi-
dently resides in the value of the mixing angle 8p
for J=ap.

III. STRUCTURE OF THE PERTURBATION

The perturbation V has the structure shown in
Fig. 1, where m and n are the heretofore-sup-
pressed link indices, while k and L represent phys-
ical particl. es in the unitarity sum underlying the
multiperipheral equation. To simplify that problem
let us assume that the Pomeranchon couples only
to particle-antiparticle pairs, so the link index can
be taken to be a single-particle index and Fig. 1
replaced by Fig. 2. To the extent, furthermore,
that the logarithmic singularity dominates V, the
dependence on m and n approximately factorizes
and we have

turbation of the eigenvalue spectrum is following
the adiabatic rule in preserving the number of
eigenstates. The splitting occurs in the mapping
between eigenvalues and J poles, which is not one-
to-one. In formula (2.10) the matrix elements of
V contain a logarithmic singularity in J depen-
dence at J= a„where e, is the AFS branch point.
There is then more than one point in the J Riemann
surface where p, „ for example, assumes the value
1. Presumably only a single such value occurs on
the physical sheet, at a point J = n~(t) real and
slightly to the right of e„but according to the hy-
pothesis of Ref. 1 the eigenvalue p, , will again be
equal to 1 at a second sheet point J = n~, (t) that has
a small displacement from the real axis.

In order to justify the statements in the Introduc-
tion, it is necessary that the mixing angle 8 be
negligible for J near e p. even though significant for
J near e p. Such a circumstance is to be expected
if the "distance"

I o1, —o., I is much smaller than
the distance

I n1, —n, I
because all matrix elements

of the perturbation V are tiny except when J is
very close to the logarithmic singularity at a, .
Assuming a p and n, both to be near 1 while o.p. is
near 0.6, we may thus identify

(2.13)

4P' 0l (~ +P')

since each vertex in the diagram is proportional to
the vector gp. It follows from formula (2.9) that

(3.2)

with

g, ~ ~ Qg";(m)Iqp(m)]'S(m), (3.3)
m

the integral running over link momentum transfers,
as described in detail in Ref. 2. Because

$p = cos8p $ ~ + sin8p $ 2, (3.4)

it follows that g; is proportional to a linear com-
bination of quantities C,.», defined by the formula

C;,~
=— Q g, (m)g & (m)g„(m)S(m), i, j, k = 1, 2 .

(3.5)

(Note the lack of dependence on the permutation of
the three indices. ) Specifically,

g' ~C'pecos 8p+Cj22 sin'8p+ 2C;» sin8p cos8p

(3.6)

We shall see in Sec. IV that such a proportionality
formula for g; is sufficient for our purposes.

IV. PARTIAL BOOTSTRAP

V = g2/gz (4.1)

We then rewrite formulas (2.10}and (2.12) for the
special case of interest, using (3.2) and (4.1) and
remembering that p, , = 1:

1 = cos 8~ (i1g + Ugg) + S111 8p(ll2 + v U yy)

+ 2 sin8p cos8p v Uyy,

v Ull
P

1 —p. —v 'U

(4.2)

(4.3)

Finally, we have from (4.1) and (3.6) the following
equation for v:

We are dealing with a problem of self-consis-
tency, attempting to find a mixing angle 8p that
gives matrix elements 'U, , through Eqs. (3.2) and
(3.6), which then lead by Eq. (2.8} back to 8~. Be-
cause the unperturbed eigenfunctions and eigen-
values are regarded as given quantities, the boot-
strap is only partial.

Let us introduce a quantity v defined as the ratio,

&'„~
I e&(m) I'I e~(s) I',

P

Vmn = x -(
FIG. 1. Structure of the perturbation V .

(3.1) C„,cos'8p+ C222 sin 8p+ 2C)22 sln8~ cos8p
C», cos'8p+ Cy22 sin'8p+ 2C», sin8p cos8p

(4.4)

FIG. 2. An approximate
relation for V based on
Pomeranchon coupling only
to particle-antiparticle
pairs.
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2
112 26} 122 112V= + p 2
ill ill ill

To a corresponding order, Eq. (4.2) is

(4.5)

Given ratios of the C;» together with values for p
and p, , the foregoing three equations determine the
three quantities Ull v and 6}~. Provided there
exists a solution to these nonlinear equations, we
have in principle solved the stated problem. To
achieve a concrete numerical estimate for 0~, of
course, requires numerical specification of the
unperturbed eigenvalues and sufficient specifica-
tion of the particle-type dependence of the corre-
sponding unperturbed eigenfunctions so that ratios
of the C;,, can be calculated.

An approximate explicit solution to the foregoing
bootstrap equations is possible if we assume 'Ull

and 0~ to be small and of a common order of mag-
nitude. Linearizing in Hr, formula (4.4) becomes

exotic multiplets, not only to the pseudoscalar oc-
tet, but implicit in the multiperipheral model is the
assumption of kernel dominance by the least mas-
sive particle links. [A theoretical basis lies in the
propagator S(m} which is largest for the lowest-
mass particles. ] The simplest version of a multi-
peripheral model, in fact, would keep only pion
links. Such an approximation is supported by the
experimental observation that most of the produced
particles from high-energy collisions are pions,
but the consequence here would be 8~=0, because
the vanishing of g, (v) causes all the coefficients
Cz july except C 111 to vanish.

A natural next approximation is to keep both g's
and K's. We then calculate the following ratios
from (5.1) and (3.5):

112 (5.2)
111

R gP (4.6)
122

ill
(5.3)

where

C 112

C„,
2

122 112
2

ill ill

1 —ui(~=o~)
1 —p, , (J=n~) '

(4.8)

(4.9}

U. QUARK-MODEL UNPERTURBED
COUP LINGS

Following CGZ' let us take, for a specific exam-
ple of unperturbed coupling ratios, the standard f
and f ' couplings to the pseudoscalar octet. Trans-
lated into the notation of the present paper, the
quark-model ratios are

0'l(v}: 0'(K}:41(n): |}'2(v):42(K): ti'(n}
= 1:1/2: 1/3: 0:1/v 2:4/3R.

(5 1)

while Eq. (4.3}becomes
2

P ~112
~P ~ l 2 ll C ill

2
~P 112 2g

~ 122 ~ 112
11 P 2ill C ill Clll

(4.7)

These equations may be solved to yield

c„,
ill

if the difference between S(w) and S(K} is ignored.
Attention to the m-K mass difference presumably
would make all the foregoing ratios smaller, but
for the sake of simplicity in our illustration here
we proceed without regard for such complications.
The linear approximation to ep, given by formula
(4.8}, is then

1 +—,&aft (5.5)
49

Inclusion of the q according to (5.1), with status
equivalent to m and K, does not significantly change
this result.

It may be noted that the quark-model ratios (5.1)
do not correspond to orthogonal vectors g", and tIt),

if the vector space is strictly limited to (v, K, q).
The two "eight-vectors" given by (5.1) are roughly
orthogonal to each other, nevertheless, in the
sense that g, points predominantly in the pion
"direction, " while g"2 contains no m component.

Since we expect the unperturbed eigenvalues to
lie between 0 and 1 when J is near 1, with p, ", & p."2,
it follows that the quantity R, as defined by (4.9),
lies between zero and unity. The result (5.5) thus
implies a positive value for the mixing angle, with
8J, sufficiently small as to justify a posteriori the
linear approximation. A positive sign for 6}~ means
that in the Pomeranchon vector,

Because each of the three pion types, m' ', is
equivalent, as is each of the four kaon types, we
may confine attention to three different components
rather than eight.

The quark model predicts couplings to all non-

4~- 41+ 0Ã2

the amplitude ratio,

4~(K)
g p(v) 2 V2

(5.6)

(5.7)
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is larger than the P' value of ~ (assuming gp P, ).
Such a shift would be in the desired direction,
Regge-pole analyses of high-energy data assigning
a value to the K: m Pomeranchon coupling ratio that
is less than unity but definitely larger than —,'.'

1 —Qy

1 Qyr
(6.1)

which is equivalent to our (4.9) if the unperturbed
eigenvalues vary linearly with angular momentum,
the constant of proportionality being the same, and
if n, = nz, n, = o.&, . Although the latter identifica-
tions are reasonable in view of the large distances
from the AFS branch point, even the crudest multi-
peripheral models do not give a linear relation be-
tween eigenvalue and J over the wide J range (from
I nearly down to 0) that is involved. It nevertheless

VI. CONCLUSION

We shall not attempt here a quantitative estimate
of R, this parameter being excessively dependent
on details of the multipheripheral model. CGZ'
suggest the formula

seems unlikely that formula (6.1) could be in error
by an order of magnitude, so the size of A should
be somewhere in the neighborhood of CGZ's esti-
mate of 0.6.' With such a choice formula (5.5)
leads to 19~= 0.2.

In view of the various uncertainties that have
been emphasized we do not propose taking seri-
ously such a value for the mixing angle, but we
point out that the corresponding CGZ estimate, '
ignoring self-consistency (with the same value for
R), was roughly twice as large. It therefore ap-
pears that self-consistency constitutes a significant
consideration.

When and if there is developed a detailed multi-
peripheral model for an unperturbed resonance
kernel, whose leading eigenfunctions are realisti-
cally associable with the f and f ', the methods de-
veloped in this paper can be used to predict the
corresponding Pomeranchon couplings. Con-
versely, experimental observations of the P, P',
and P" coupling ratios can be translated by our
methods into constraints on the multiperipheral
kernel.

*Research sponsored by the U. S. Air Force Office of
Scientific Research under Contract No. AF49(638}-1545.

)Alfred P. Sloan Foundation Research Fellow.
f.On leave of absence from the Department of Physics

and Lawrence Radiation Laboratory, University of
California, Berkeley, Calif. 94720.

~G. F. Chew and D. R. Snider, Phys. Rev. D 3, 420
(1970).

2H. D. I. Abarbanel, G. F. Chew, M. L. Goldberger,
and L. M. Saunders, Ann. Phys. (N.Y.) (to be published).

3W. R. Frazer and C. H. Mehta, Phys. Rev. D 1, 696
(1970),

4See, for example, V. Barger and D. Cline, Phenom-
enological Theories of High Energy Scattering (Benjamin,
New York, 1970).

5R. Carlitz, M. B. Green, and A. Zee, Phys. Rev.
Letters 26, 1515 (1971). We shall refer to this paper
as CGZ.

D. Amati, A. Stanghellini, and S. Fubini, Nuovo
Cimento 26, 896 (1962).


