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Remarks on the Validity of the Cottingham Formula for Electromagnetic Mass Shifts*
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We discuss the effect of Schwinger terms on the Wick rotation necessary to derive the
Cottingham formula for electromagnetic mass shifts. We give a simple condition which
allows us to construct a covariant and gauge-invariant virtual Compton scattering amplitude
on which the Wick rotation can be performed.

The Cottingham formula' relating the electro-
magnetic self-mass 5M of hadrons to integrals
over the forward virtual spin-averaged Compton
scattering amplitudes' T„*„(v,q') for spacelike
values of q' only has been widely used to calculate
electromagnetic mass shifts of hadrons. ' It has
also been the starting point of discussions relating
to the divergences which appear in electromagnetic
self-mass calculations. ' In view of this interest
we would like to comment in this paper on the va-
lidity of the Cottingham formula. ' We will prove
the following theorem.

Theorem. Define

h„.(x,P) =
& P I[1„(x),&.(0)jp),

where j„(x) is the Heisenberg electromagnetic cur-
rent operator and Q) is a single-hadron state of
momentum p. If h»(x, p)5(x, ) is well defined' and

ho, (x, P)5(x,)= 0 in all Lorentz frames, then it is
possible to find a covariant and gauge-invariant
T„*„(v,p} such that the contour rotation necessary
to get the Cottingham formula is valid and the en-
ergy integral is finite if the rotation is performed
before doing the spatial-momentum integrals.

We will critically examine our assumption
hoo(x, P}5(xo)=0 and show that, although the assump-
tion is plausible, it is possible to construct simple
forms for h„,(x, p)5(x, ) which are consistent with
general symmetry requirements and which have
the property that h„(x,p)5(x, )c 0. We will also
discuss briefly the order of integrations for the
spatial and time components and indicate that the
conditions of the theorem do not imply that the
mass shift is finite.

Lemma 1. If h«(x, p}5(x,) = 0 in all Lorentz
frames, then h«(x, P)5(x, ) and h;&(x, P)5(x,) contain
at most one derivative of a 5 function. A slightly
less general version of this lemma has been proved
by Gupta and Rajasekaran. '

x„xa5(n x)n qh ~„(x,p) = 0 . (4)

Differentiating with respect to n„, using the con-
straint of current conservation on h~(x, p), and
then setting n&, =g„o gives

x„xa5(xo)h„„(x,p) +x„xaxp aoho„(x, p)5(x )

-x xax„5(x )a„h„,(x, P).

(5)

Setting n=l, P= m, p, =i, and v=j, we get

x,x.a, [x,5(x,)h„]= 0.

Substituting the general form

Proof. The statement that h«(x, P)5(x,) =0 is true
in all Lorentz frames implies that n„n„h»(x, P)
x5(n x}=0, for all n& timelike. Differentiating
this with respect to n~ and using the constraint
imposed by current conservation on h„„(x,P), we
get

(g, , +a x, )5(x,)h„(x,p) =0.
Assuming that h„,(x, p)5(xo) is well defined, the
most general form for 5(xo)h, j(x,p) is

5(xo)ho, (x,p) = Q &..a, (a.P aopo} (o-- ao'}"5'(x)
m, n

QD„„P,(a p-a, p, ) "(~ a,')"5 ( )
m, n

(2)
where we assume a finite number of terms. Sub-
stituting (2) into (I) gives

(m+2n)C „=0,

(m + 2n)D „=0, with m, n ~ 0

which gives C „=D „=0, unless m =0, n=0 and
thus proves the lemma for 5(x,)h„(x,P). To com-
plete the proof of the lemma we must show that
5(x,)h, &(x,P) has no derivatives of 5 functions higher
than one. We have just shown that

5( .)h„(,p)= Zl& "p.p (a p a.p.) +c:"(p.a +p-,a, )(a'p-a. p.)
m, n
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in this equation it is easy to establish the lemma.
Lemma Z. Under the conditions of Lemma 1 the most general form for h»(x, p)5(x, ) is

5(x,}h~(x,p) = 0,

5(x,)h„(x,p) = i[C(p,)a, D-(p, )p,(a .p- a,p,)]5'(x),

5(x,)h;, (x,p) = i[-D(p, )(a,p, + a+, ) C'(p-, }g,(a p a,p,-)+D'(p, )p,p, (a p-a, p, )]5'(x),

(8)

n„C„(n/Mn, p) = O.

The symmetry conditions require

C„„=Cq

(10)

Current conservation, a, h, (x,p)= e„h„„(x,p)=0,
gives

(12)

Taking the difference of these equations we find
that the quantity

Sg~ C Xvjf ~ Cjf)l.v

cannot depend on n. Because of (11) this quantity
is antisymmetric under interchange of p and v.
Thus,

where C(Pc) and D(Pc} are arbitrary real functions
of P, and the primes denote differentiation with
respect to P,.

Proof This r. esult has been established by Creutz
and Sen in another discussion. ' However, for the
sake of completeness we give a sketch of the proof.

General symmetry principles [e.g. , translation
invariance, Hermiticity of j„(x),CTP] imply h„„
x(x, p)= —h»(-x, p), i.e. , the equal-time commu-
tator can contain only terms with an odd number of
derivatives on a spatial 5 function. Consistent
with Lemma 1 the most general form for h„„(x,P}
would be

vn'5(n x)h»(x, p)=iC» (n/Mn', p)a 5 (x), (9)

where n„ is a timelike vector with nc&0. If h»(x, p)
is to have a well-defined equal-time limit the com-
binations of derivatives in (9) must involve no time
derivatives in a frame where n has only a time de-
rivative. This means we must require

d
C. „u= vn -d C».

C(

(15)

Finally, note that any C»(n/))n, p) satisfying (14)
will define through (15) a C»„which will satisfy
the constraints of current conservation. This
means the most general form for h»(x, p} at equal
times is given by

)(n 5(n.x)h»(x, p} =i)(n
d
—

d
—C»~, p 5'(x),n

(16)
with

Carrying out the differentiation in (16), we can
obtain the explicit form for the equal-time com-
mutator in terms of C and D given in the lemma.

Lemma 3. If T„„(v,q') is defined by

& (~') 2f~'* ,
" =&(*.)(Pl(),(*)') (()))lP), , .

(18)
then under the conditions of Lemmas 1 and 2,'
Tf„(v, q') defined by

T»(" q }=Tu '(v q ) +2C( po)(gu-gu()g o)

-2D(p.)(p„p.g,)(p. —p.g-,.) (»)
is covariant and gauge-invariant.

Proof. Following Bjorken, "we assume that T„*„
and T~ considered as analytic functions of q, have
the same absorptive parts so that they differ at
most by polynomials in q, .

Since we wish to construct a eovariant and gauge-
invariant T~„(v, q'), we write

&'(, s*)=&l(,q')(g, .— ".")

Cjfv ~ CjIA.v ~&
Ck,vjf ~

with

nuC„, = nv Catv =0

Hence,
(14)

while for T»(v, q') we have to write

T»= Tuguu+ Tapupu+ Tzququ+ T~nun„+ T5(p„q„+p q„)

+ T,(P„n„+P„n„)+T7(qunu+ q„n„), (21)



2986 M. CRE UTZ AND S. SEN

when n„=g„,. Here the T, are functions of q', v,

q n, p n. Because T„T,differ from T,*, T,*by
polynomials in q, = q n, it follows that T„T„and
T, are polynomials in q, .

From the definition of T„„using current conser-
vation it follows that

T.= 2C(P.)+2P.'&(P.),

' q' q'
T.= -»(P,)Po,

T —-2 dge n in&&»x, P- (22)
T, =O.

Using the form for h~(x, p)5(n x) given in Lemma
2 it is easy to show that

Therefore, we have

q r r'„=(r;—r;)=(q,.— '." ~ (r, r;) p„—q, ', )p„-q„, qc(p+) —,, q, q„+q„q„,)
1

q

(P q)'. p'q+»(P.) —,q„q. +Po'g, osvo-po(p„g, +P.g„o)+ 2 (P)(qv P.q, ) .-
q

(24)

This difference S» is sometimes called the seagull
term. For this difference to be a polynomial in

q, we must have

T.—T.*=»(P.)+ q'P. (q.),

T|-Tl = -2&(po) + q'P 1(qo) + (P q)'PQ(qo),
(25)

»(P.)(p„p.—g„.}(p. P.~-„,), -(27}

which establishes the lemma.
Armed with these lemmas it is easy to prove our

theorem. We recall that the expression for the
self-mass of a hadron is given by

d4q g (25)

Here f„*„differs from our T„*„byat most a gauge-
invariant and covariant term with no absorptive
part. Let us assume that no such extra seagull
term is needed. In order to get the Cottingham

where pg p2 are arbitrary polynomials in q, which
can depend on p„and q. Thus,

~gu = ~vv+ 2&(po)(g)pu -Zoogvo)

—2&(po)(pp -Pogoo)(p PoI0)-
+Pi(qo}(q gov qu qv)

+P.(q.}r(p q&g„.+ q'P, P, (P q)(P„q.+P-. q,H.
(26}

In order for T~, to be covariant, we must have T„*„
independent of timelike n with n =1. From this
it is possible to show that p, and p, do not depend
on n„. They are therefore covariant functions of
q' and p q. Thus it is possible to define a "mini-
mal" covariant and gauge-invariant T»* by dropping
p, and p, . This T»~ is given by

~~ = ~,.+ 2&(po)(aj,.-g„oS'.o)

formula the integration contour has to be rotated
in the q, plane (the so-called "Wick" rotation).
The contribution of T„*„along the semicircle at ~,
in the rest frame of the proton, is proportional to

~ ~

~)* (q, v)' ""v'-Iql'+f~ (29)

We note here that
~
v(- » and the integral vanishes

as long as T„*v(q, v) grows less than linearly in v

for fixed ~q(. We will now show that this is the case
for the T~» defined in Lemma 3. T~~ can be written
as T~~= T»+S„„where S» is the seagull term de-
fined earlier. By definition S~ contains all poly-
nomials in qo = v (in the rest frame of the proton)
so that the condition for Wick rotation is automa-
tically satisfied for T». Moreover S» itself, for
the class of currents for which h»(x, P)5(x,}=0, is
independent of q, and hence also causes no prob-
lems with regard to Wick rotation -which estab-
lishes the theorem.

Let us now examine the assumption hoo(x, p)5(xo)
=0. We start by noting that h»(x, p=0, po)5(xo)=0
follows just from invariance under parity and
translations and hence imposes no restrictions
whatsoever on the forms of ho, (x,P)5(x,) and h, &

x(x,p)5(xo). Thus the condition h„(x,p)5(x, ) =0
for all Lorentz frames is clearly a strong assump-
tion. It is, however, an assumption which is
quite reasonable and is; in fact, true in low-order
perturbation theory and in forms written down for
h»(x, P) consistent with scale invariance in inelas-
tic e-P scattering. "'" The condition h»(x, P)5(x,)
=0 does not, however, have to be satisfied by any
h„„(x,P}which one can construct, as the following
example illustrates. We start by listing general
symmetry and other requirements which any
hu„(x, P) is expected to satisfy:
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(i) Causality requires h„,(x,p) =0, for x &0.
(ii) Translation invariance requires h„„(x,P)

= -h„„(-x,P).
(iii) Hermiticity of j„(x) requires h„„(x,p)

= -h* (x, p).
(iv) Parity gives h„,(x, p) = ( )~&-&&""'h„„(x„-x;

pa, -p).
(v) Time reversal times parity gives h„„(x,P)

= h„*„(-x,p).
(vi) Gauge invariance gives s„h„,(x, p) =0.

Charge conjugation relates h„„(x,P) to a different
process unless [P) is self-conjugate in which case
charge conjugation is automatically satisfied here
since we have two electromagnetic currents. It
is easy to check that h„,(x, p) defined by

h„„(x,p) =f(ag„„—0„0,)(p 0)'a(x, m'),

where

d'q
h(x, m') = &'

&
&"*(q )5(q'- m )

(30)

satisfies all of these conditions and has

h~(x, p)5(x, ) = -2',V'(p '5)5'(x).

We would like to conclude by making a few re-
marks:

1. We have shown that it is possible to construct
a covariant and gauge-invariant T„*„(v,q') when

5(xa)h~(x, P) = 0 for all Lorentz frames so that the

Cottingham formula is valid. We would like to
suggest that the T„*,constructed in Lemma 3 is the

physical T„*„which goes into the Cottingham for-

mula. The reason for that is the following: T&„
differs from T~~ by gauge-invariant and covariant
terms which do not contribute to the absorptive
part. Such terms arise, in the language of field
theory, from contact terms in the Lagrangian. It
seems reasonable to drop such terms unless one
is forced to keep them to satisfy some physical
requirement.

2. With some reservations, we suspect that if
higher derivatives are present in h„„(x,p)5(n x)
then the Wick rotation is not allowed. This can be
made plausible by the following argument. From
the higher-derivative terms in h„,(x,p)5(n x) we
would expect to get polynomials in Pq [ in the ex-
pression for T„,. In order to make T„*„covariant
one would then have to add on polynomials in q,
which would then spoil the condition for the Wick
rotation to be valid. This argument is wrong for
higher-derivative terms in h„„(x,P)5(n x) which
disappear in the rest frame of the hadron. "

3. The condition for Wick rotations to be valid
does not necessarily imply that 5M is finite. In
fact if C(m) e 0, 5M could even be a quadratically
divergent quantity. If 5M is divergent, the order
of integration can affect the validity of the Wick
rotation. Our theorem applies only if the q, inte-
gration is done first. ' Because of this, our re-
sult is not in contradiction to the work of Rabl, '
who claims divergent 5M is equivalent to not being
able to perform the Wick rotation. He gets this
result by doing the spatial integrals first.
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Given the two leading eigenvalues and eigenfunctions of the resonance (low-subenergy)
component of a multiperipheral kernel and assuming lower eigenvalues to be unimportant,
it is shown how the mixture corresponding to the Pomeranchon eigenfunction may be cal-
culated from considerations of self-consistency. The method is illustrated in a multi-
peripheral model with pseudoscalar-meson links by associating the two leading unperturbed
eigenstates with the 2+ particles f(1260) and f '(1514).

I. INTRODUCTION

A recently developed multiperipheral model de-
scribes the leading Regge singularity with vacuum
quantum numbers, the so-called "Pomeranchon, "
as arising from a self-generating perturbation that
splits an idealized "primitive" Regge-pole spec-
trum into fine structure. " The primitive spectrum
belongs to a simplified multiperipheral integral
equation whose kernel is truncated so as to lack the
Pomeranchon-generated long-range correlations in
longitudinal rapidity When .only short-range (reso-
nance) correlations are included in the kernel,
the generated Regge singularities consist entirely
of well-spaced poles. Inclusion of the weak but
long-range Pomeranchuk component of the kernel
introduces a weak branch point in crossed-channel
angular momentum, and in the associated multi-
sheeted J Riemann surface, poles occur at slightly
different positions on the different sheets. This
combination of branch point with closely spaced
poles, first identified by Frazer and Mehta, ' is
what we have called "fine structure. "

lt has been conjectured that the Pomeranchon (P)
should be identified with a real pole on the first
(physical) sheet of the J surface while the nearest
pole on the second sheet, whose position is slightly
complex, should be identified with the P'. The
lower-lying P" would similarly be located on the
second sheet. If the separation between P and P'

is small compared with the distance to other poles,
it can be shown that the ratios of P and P' cou-
plings should be almost equal —that is, the P and
P' "vectors" should be almost "parallel. " A rough
parallelism between P and P' couplings is an es-
tablished experimental fact, but the observed P and
P' vectors appear not to be exactly parallel. ' For
example, the P' is often associated with the 2'
f(1260) and described (e.g. , in the quark model) by
a vector whose KK component has half the ampli-
tude of the wf component, while the observed P
seems closer to being an SU, singlet, with equal
wf and KK components. Recently it has been sug-
gested by Carlitz, Green, and Zee' (CGZ) that the
P vector should have a significant component par-
allel to the f'(1514) as well as a component paral-
lel to f(1270). The special model employed by
CGZ, however, is inconsistent in its treatment of
the Pomeranchon vector in that these authors be-
gin by assuming the Pomeranchon to be a pure SU,
singlet while their finally calculated vector has a
substantial octet component. The present paper
explores the general CGZ suggestion within a mul-
tiperipheral framework and shows how self-consis-
tency can be achieved for the Pomeranchon cou-
pling ratios.

II. MIXING OF THE UNPERTURBED
EIGEN STATES

We employ the notation of Sec. V of Ref. 2 where


