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We present a model of symmetry breaking for a field theory of currents through the diver-
gences of vector and axial-vector currents. The assumption of partial conservation of vector
current (PCVC) and partial conservation of axial-vector current (PCAC) for the nonvanishing
divergences allows us to make an explicit connection between the form of the symmetry-
breaking part of the energy-momentum tensor and the nonlinear realization of the internal
symmetry. It is shown that for SU(2) and SU{3) the vanishing of exotic commutators fixes
uniquely the symmetry breaking as well as the nonlinear realization for the divergences of
the currents.

INTRODUCTION

Assuming that strong-interaction physics can be
described by a set of m vector currents V„'(x)and
m axial-vector currents A'„(x), where m is the
number of generators of a special unitary group,
one can construct a "field theory of currents"
which is consistent with Lorentz covariance and
from which the Heisenberg equations of motion
emerge. ' Many of the currents defined above are
identified with the weak and electromagnetic cur-
rents and are therefore directly observable. "
The basic quantities defining the theory are the
equal-time commutation relations (ETCR) between
the components of the currents with the extra
assumption that the time-time component of the
energy-momentum tensor obeys the "Schwinger
condition. "' ' Then, the complete energy-mo-
mentum tensor can be expressed as a bilinear
function in those currents and is shown to be auto-
matically invariant under the underlying group
SU(n}8SU(n). This means that an energy-momen-
tum tensor that is a bilinear polynomial in the
currents and not invariant under the underlying
group is inconsistent either with the Schwinger
conditions or with the fact that the currents trans-
form as vectors (axial vectors) under the Lorentz
group. '

Therefore, in an attempt to obtain an energy-
momentum tensor which breaks the SU(n) (SSU(n)
symmetry while keeping the original assumption
of Sugawara' (i.e., equal-time commutation re-
lations among the currents, and the Schwinger
condition) one has to add new operators to the set
of the original vector and axial-vector currents.
Since in an invariant theory all the currents are
conserved, the most natural way to break the
symmetry is to introduce the divergences of the
currents [S'(x) = 2„V„'(x),P'(x) = B„A„'(x)]as new
members of the original set $V„',A'„j.

In Sec. I we review briefly the main features of
Sugawara's theory of currents. Then, in Sec. II,
along with a few algebraic assumptions, we mod-
ify Sugawara's energy-momentum tensor by a
term 6„„$(x)where P(x) is a scalar function only
of the divergences of the currents.

Then we establish a general formalism giving a
link between the form of the symmetry-breaking
part of the energy-momentum tensor and the
transformation properties of the divergences of
the currents. It turns out that the divergences of
the currents generally form a nonlinear realiza-
tion of the SU(n) SSU(n) symmetry. It is worth
mentioning that such nonlinear realizations are
obtained without going through Lagrangian for-
malism. One finds also that in the cases consid-
ered, the vanishing of the "exotic commutators"
uniquely specifies the symmetry breaking. Final-
ly, we notice that the existence of a canonical con-
jugate for the fields S'(x) and P'(x} is not incom-
patible with their equations of motion.

In Sec. III, we apply the formalism of Sec. II to
the cases where the underlying group structures
are SU(2) and SU(3), respectively. In a separate
publication, we will investigate the more realis-
tic cases of SU(2) SSU(2) and SU(3) ISISU(3).

I. REVIEW OF THE SUGAWARA THEORY
OF CURRENTS

As stated in the Introduction, a field theory of
currents of the type proposed by Sugawara' as-
sumes the existence of a set of m vector currents
V„'(x)and m axial-vector currents A~(x). The
underlying group structure of the theory is sup-
posed to be that of the group SU(n) SSU(n). (We
will consider in the following only the cases n=2,
n=3. ) The equal-time commutation relations of
the components of the currents are postulated to
be
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[V„*(x),V,'(y)] =[A„'(x),A'„(y)]= t;, {a„,v,'(x)+-,'a„[v„'(x)+g„,v'(x)]]a(x —y) + ca"(a„,a*„+0 B*„)a(x —y)
(1.1)

[V„'(x),A', {y)]= t, ~, (5„+",(x) + -,' a„,[A'„{x)+g„+', (x)]]a(x —y),

where the t;,„arethe structure constants of the
group SU(n), ' c is a c-number constant, the met-
ric used is (}„„(p=1, 2, 3, 4), g„„=(1,1, 1, -1).

The Schwinger condition' ' must also be satis-
fied, i.e.,

where J~(x) is either V„'(x}or A'„(x)and

[t„„(x)]„„=[x„a,-x,a„]a.„+[a„„a,„-a„„a„.].
(1.8)

P„andM„,satisfy the well-known relations
[8„(x),8„(y)]= [e„(x)+ 6„(y}]B,*a(x —y)

(a = 1, 2, 3) . (1.2)

Here and in the following all the commutators
considered are understood to be equal-time com-
mutators. Then, the energy-momentum tensor
8„,(x) is found to be'

[PV, PU] =0,

[pg, Mq, ] =i(ap, pq —ay„p,},
[M„,, Mp„]=i(aq gM, ~ —B„M,g

(1.9)

e„,(x}= ——({V„'(x),V,'(x)j + Q„'(x),A,'(x)j
-a„„[V,'(x) V,'(x) +A', (x)A', (x)]}.

(1.3)

The currents obey the following equations of mo-
tion:

a „v,'(x} —a„v„'(x)=—t...[(v„'(x),v,'(x)]

+ (A'„(x),A,'(x))],

a„A,'(x) a.A'„(x)=—' t„,[(APx), V,~(x)j
(1.4a)

a„V„'(x)=0,

B„A'„(x)=0.
(1.5)

This theory has been shown to be consistent with
Lorentz covariance and the Heisenberg equations
of motion. '

The generators of the Poincard group are in-
deed

+ ]V„'(x),A,'(x))] .
(1.4b}

From the form of 6„„(x),it follows that all the
currents are conserved:

II. SYMMETRY BREAKING IN THE SUGAWARA
THEORY OF CURRENTS

A. Assumptions of the Model

As explained earlier, we intend to break the
symmetry of the original theory by keeping (1.1)
and (1.2) and by adding to the set of vector and
axial-vector currents, a new set of operators

s'(..}= a„v„'(x),
P'(x) = B„A'„(x),

(2.1)

which are, respectively, scalar and pseudoscalar
quantities. It should be noted that some of the
S"s are identically zero for those i's which cor-
respond to conserved currents. Furthermore, ac-
cepting the common view in quantum field theory
about local operators, we regard S'(x) and P'(x)
as interpolating fields of physical particles. In
that sense, the relations (2.1) can be called PCVC
(partially conserved vector current) and PCAC
(partially conserved axial-vector current) rela-
tions. At first glance, one would think that the
simplest way to break the SU(n) 8 SU(n) symmetry
would be to write an energy-momentum tensor of
the form

P„=i e,„xd'x,

d x x„e„x—x'e„x

[P„,a(x)] = ta„a(x),
where B(x) is any local operator.

Lorentz covariance is expressed by':

(1.6)

The Heisenberg equations of motion are expressed
by

8„,= u" [V„'(x)V,'(x) + V„'(x)V„'(x)]

+ a" [A'„(x)A',(x) +A', (x)A'„(x)]

+ a„,[p"V'(x) Vq'(x)+ p "A'p(x)Aq(x)] .

However, such an expression for e„,is shown in
Appendix A to be inconsistent with Lorentz covari-
ance. Therefore, the most natural way to break
the SU(n) SSU(n) symmetry is to define a new en-
ergy-momentum tensor

[M„„4,'(x)] = i [l„„(x)],~J„'(x), 8„,(x) = 8'„'„'(x)+ a„,y(x), (2.2)
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where e„„(x)is defined by (1.3) and is the part of
the energy-momentum tensor which is invariant
under the group SU(n) (3(SU(n), while Q(x) is the
part which breaks the SU(n) (3(SU(n) symmetry
The form (2.2) of e„,(x) will allow us to obtain
local commutation relations from integrated ones
and provides a smooth extrapolation of matrix ele-
ments of the Hamiltonian to the zero four-momen-
tum limit. "" Since we add new operators to the
original algebra defined by (1.1}we need to make
some assumptions concerning the equal-time com-
mutators involving S'(x), P'(x), and P(x). It
turns out that the most crucial commutators are
[0'(x), 0'(y)] and [&p(x), Z,'(y)], where 0'(x) is ei-
ther S'(x) or P'(x) and 4„'(x)is either V„'(x)or

A'„(x). We will assume that

[0'(x), 0'(y)] =0,

[4 (x},J.'(y)] =O.

(2.3)

(2.4)

Now, we want to retain the original commutation
relations (1.1) and the Schwinger condition (1.2).
Therefore, we require that

[e„(x),e„(y)]= [e„(x}+ e (y}]B;5(x—y) . (2.5)

Using (1.3) for e„,' it follows that

[y(x}, 4 (y)) =[4(y), e,",'(x)]+[e,",'(y), y(x)] .
(2.6)

The form (1.3) of e(~~(x) implies

[&(» &(y}]= =,&{V'( } [V'( }, 4(y)]}- {V,(y), [V,'(y), 4 ( )]}

- {V.'(x), [ V.'(x), 4(y)]}+ {V,'(y), [ V,'(y), Q(x)]j + (V- A)) . (2 7)

[P(x), V,'(y)] = S '(x) 5(x —y),

[4((x),A,'(y)] = P'(x) 5(x —y) .
Then it follows that (2.4} and (2.9} imply

(2 9)

But the Heisenberg equations of motion (1.6) and
the relations (1.1) and (2.1} imply

S'(xl =f d'((((vl, (", (*)],
(2.8)

P'(*)=J d'((((y(, A,'( (1.

The existence of a c-number Schwinger term in
the commutators of the right-hand side of (2.8)
can be shown to be inconsistent with (1.1) and
Jacobi identities for [[Q(x), V,'(y)], V,'(z)] and
[[Q(x),A,'(y)], A,'(z)] . Therefore,

zero in the symmetry limit [i.e., when S (x)
=P'(x) =0]. Consequently, it is natural to assume
that Q(x) is a function of the P's and S's only.
This assumption is further supported by the con-
ditions (2.3) and (2.10}. All the assumptions in-
troduced up to now are consistent with the Jacobi
identities. At this stage, it is interesting to no-
tice that an important consequence of assumption
(2.4) is that the equations of motion for the cur-
rents retain their original form (1.4). We further
point out that sum rules not inconsistent with ex-
perimental observations have been derived"
from equations of motion of the form (1.4). The
equation of motion for P(x) is readily obtained by
the use of the condition B„B„,(x}=0.

Indeed the condition B„e„„(x}=0 alone implies
that

[Q(x), 4(y)]=o. (2.1o)

Furthermore, we expect 4((x) to be identically

B„e'„'„'=B,4(x)

and the form (1.3} of e„~,(x) gives

(2.11)

B„(t((x}= (1j2c)[{S'(x),V,'(x)}+{V '(x), B V„'(x)—B„V'(x)}+ {P'(x),A„'(x)j + {A' (x), B A„'(x)—B„A'(x)}].
(2.12}

Since, as noticed earlier, the equation of motion
for the currents retain their original form, one
finally obtains after successive use of (1.1)

B,P(x) = (I/2c}[{S'(x), V,'(x)}+ {P'(x),A„'(x)j] .
(2.13}

Equation (2.13) can also be obtained in a more
straightforward manner from the Heisenberg
equations of motion and the use of the relations
(2.4), (2.9}, and (2.10). However, in order to

[O'(x), J,'(y)], (2.14)

where 0'(x} is either S'(x) or P'(x) and where
J~(y) is either V,~(y) or A,'(y).

completely define our theory of currents with
breaking of the symmetry, one needs to know the
equations of motion for the operators S'(x) andI"(x).

One can easily see that the equations of motion
we are looking for are completely governed by
the knowledge of commutators of the type
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Indeed, the Heisenberg equations of motion for
0'(x) are

(2.15)

one has from (1.1) and (2.9)

[4 (x) J'(y}1]=[J.'(&), o'(x}]5(x- y}

=[J,'(z), 5 J'(x)]5(x —y) .

But from the assumptions (2.4) and the Jacobi
identity for (2.15),

iB„O'(x)= [P„,0'(x)]

and therefore B„O'(x)involves only commutators
of the type

[O'(x), y(y)], [o'(x), J.'(y)1, [o'(x), J.'(y)] .
But [0'(x), Q(y)] = 0 according to our assumptions.
On the other hand, if we look at Jacobi identities
for quantities of the type

[J.'(z), [y(x), J,'(y)]]

(2) In the symmetry limit, all these functions
must vanish identically.

(3} By commuting both sides of (2.19) with Q
one has

[y(x},M" (y)] = [P(x), N" (y)]

=[/(x), R"(y)] =0. (2.21)

5ks'(y) =2 [(kt,.P "(3)+M'(y), vk (y))

Therefore, it is reasonable to assume that
M" (x), N"(x), and R"(x) are functions of the
P's and S's only. This assumption shows that the
P's and S's form a nonlinear realization of
SU(n) SSU(n) if they correspond to interpolating
Heisenberg fields. (Nonlinear realizations of
chiral symmetry in particular have been investi-
gated by Weinberg. ") The equations of motion
for S'(x) and P'(x) can now be obtained:

[O*(x),J.'(y)] = O. (2.17)

%e now study further the commutators of the
type (2.14) by taking the time derivative of the
time-time commutator in (1.1). We obtain

[J.'(z), [ P(x), J.'(y)]] = -[4 (x), [J.'(y), J.'(x)]] = o

(2.16)

Therefore,

+tN '(y), A„(y))],

~„P'(y)=
g

[(-.' t .P '(y) +Rj (y), A„(y))

+[t, ,P'(y)+N' (3), V„(3)]].

B. General Constraints on the Functions
ij ~ij gij an

(2.22)

(1) When i corresponds to a conserved current
[i.e., S '(x) = 0]

M '=-2t;jPij 1
(2.20}

[S'(x), Vj(y)]+[V,'(x), S'(y)] = t...S'(x)5(x-y),

[s '(x), A,'(y)1+ [ v,'(x), P'(y) ] = t;,kP'(x) 5(x —y),
[P'(x), A,'(y)] +[A,'(x), P'(y)] = t...S'(x) 5(x —y) .

(2.18)

This set of relations implies the following forms
for the commutators (2.14):

[S'(x}, V,'(y)] = -', t„,S '(x) 5(x —y) +M"(x) 5(x —y),

[P'(x}, V, (y)] = t;, k(P)5x(x —y)+ N" (x)5(x —y),

[Sj(x),A,'(y)] = N" (x)5(x —y),

[P'(x), A', (y)] = ,'t;, ks '(x) 5(x——y) +R"(x)5(x —y),

(2.19)

where M", N", and Rij are Hermitian with M'j
and R" symmetrical in i and j. Also the right-
hand sides of Eqs. (2.19) are assumed to contain
no gradient terms. Therefore, the quantities
M" (x}, N"(x), and R"(x) must be (at least from
a purely algebraic point of view) only functions of
J„'(x)and 0'(x) with the following properties:

The functions M", N'j, R'j, and p are not in-
dependent of each other since there are numer-
ous Jacobi identities connecting them. Then, the
constraints imposed on those functions will take
the form of functional differential equations. In
order to have more compact notations, we will
drop the arguments of the operators as well as
the 5(x —y) and we will write J,'(x) as J'.

Thus, from the Jacobi identities for
[I s ', v'1, v'] [[s ', v'1, A'], [[P', v'], v'],
[[P', V j],A ], and [[P',A ],A ] one obtains, re-
spectively,

[M", V ] —[M', V'] = ,'t, k, t;, S + t,—k,M"
jl & Al+ gt;l„M —2t;jlM

[M",A'] —[N", V'] = t,.„N"— t...Nk'

[N j Vk] [Nik V j] t itNt Ntj t Nlk

(2.23)

[N*', A'] -[R",v']=-', t„,t„.s + t„P"
+ kt;k, M" —tj, jR ',

[R",A ] —[R', A'] = t;k, tj, P + tjkgN"

j l j lt l+-'t;,N —-'t;, ,N '.
The differential equations obtained from (2.23)
are explicitly written in Appendix B. Now using
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the relation (2.9) for the symmetry-breaking part
of the energy-momentum tensor, one obtains

S'= 2t;,S 8, @+m" g, Q+t, ,P 5, @+Ã"8,g,
(2.24)P' =-,'t, ,s 8,@+8"a, @+X"a,y,

where B, = B/BS ' and B, = B/BP'
In order to achieve a consistent field theory of

currents with symmetry breaking, the equations
of Appendix B and (2.24) are fundamental since
they relate, although not necessarily in a unique
way, the form of the symmetry-breaking part of
the energy-momentum tensor to the transforma-
tion properties of the divergences of the currents.
For example, it will be shown in Sec. III that
when the underlying group structure is that of
SU(2) or SU(3), the vanishing of those commuta-
tors [S', V'], which are exotic, determines Q
uniquely.

[w '(x), S'(y)] = —5"5(x —y),

[0'(x), P'(y)] = -5"5(x-y),

[ x '(x), x '(y)] = [x '(x), P'(y}]

=[x'(x), S'(y)]=0,

(2.25)

(2.26)

where x'(x} and Tr'(x) are defined only for those
i' s which correspond to S'(x) ««0 and P'(x) ««0.

By commuting w'(x} and Fr'( )xwith both sides of
the space part of Eqs. (2.22) we obtain equations
defining [x'(x), V, (y)] and [w'(x), A, (y)]:

C. Possible Existence of Canonical Conjugates
for the Fields S'(x) and P'(x)

Since, according to our PCVC-PCAC assump-
tion, we interpreted the nonzero fields S'(x) and
P'(x) as interpolating fields of physical particles,
it might be helpful in order to find, eventually, a
particle interpretation of a field theory of cur-
rents, to investigate whether or not such a theory
is incompatible with the existence of canonical
conjugates tt'(x} and fr'(x) such that

5"B:5(x-y) = (-[t...S—'(y}+2M' (y)][x'(x), V,"(y)] —[8;[t, «S (y)+2M' (y)]j V, (y)5(x —y)

+2N' (y)(x'(x), A. (y)] —2[B,¹ (y}]A."(y)5(x-y)), (2.21a}

-5"B,'5(x —y) = ([t, ,S'(y—)+2R' (y)][w'(x), A, (y)] —2[2 R™(y)]A,(y)5(x —y)

+2[t, «P (y)+N' (y)][w'(x), V. (y)] —2{8,[t, «P (y)+N' (y)] jA, (y)5(x —y)),
0 =[t, ,S'(y) +2M' (y)][m'(x), V, (y)] —2[B,M' (y)] V, (y) 5(x -y)

+2¹ (y)[t'(x), A, (y)] —2[B,N' (y)]A, (y)5(x-y),

0=[t, «S (y)+2R' (y)][x'(x), A, (y)] —(B;[t& «S (y)+ 2R'"(y)])A, (y)5(x —y)

+2[t, ,P (y}+¹ (y)][x'(x), V, (y)] —2[B,¹ (y)]A, (y)5(x-y).

(2.2Vb)

(2.27c)

(2.27d)

Thus we see from the above relations that there
is no obvious incompatibility between the equa-
tions of motion and the existence of the canonical
conjugates ( x)axnd Tr'(x). In fact, in some sim-
ple cases it is possible to find an explicit form
for the x'(x) and v'(x). We refer the reader to
Sec. III for a brief study of a particular form of
canonical conjugates in the case of SU(2) and
SU(3}, respectively.

III. APPLICATIONS OF THE GENERAL
FORMALISM TO THE CASES

OF SU(2) AND SU(3)

A. The case of SU(2)

Let us assume that we deal with a world where
we have no axial-vector currents and no strange
currents. Then, the energy-momentum tensor
describing strong and electromagnetic interactions

is such that the third component of the isospin
current is conserved,

S'=a V'=0.
jf

Since we have no axial-vector currents, Eqs.
(2.19) reduce to the form

[S', V'] = —,'«„.«S "+M'~, (3.1}

V' = V'+ iV', V = V' —iV

Since S'=0, it follows that the S's transform
linearly with respect to V'.

Indeed S ' = 0 implies

where e;,«are the SU(2) structure constants.
At this point, it is more convenient to express

the equations (3.1) in terms of lowering and
raising operators. Therefore, we define in a usu-
al manner
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which leads to

(3.2) Eq. (3.10) becomes

S'=2S'[2(a f)(h+2fX)X+4fh —(3 h)(h+2fX)],
[S', V'] = e,„s'. (3.3) or (3.12)

Then, when expressed in terms of S', S', V',
V', the Eqs. (3.1) become

[s', v']=is',
[S ' V'] M" —M '+ 2iM"

[s, v ] =M" +M"
(3 4)

The remaining commutators are obtained by tak-
ing the Hermitian conjugate of (3.4).

Now, one notices that each commutator in (3.4}
belongs to the class of operators [T}of infinite
polynomials in S', S such that

1=2[2(B f)(h+2fX)X+4fh —(3 h)(h+2fX)].

It turns out that all the Jacobi identities of the
type (2.23) reduce to the same Eq. (3.12) which
therefore becomes one fundamental differential
equation. Thus Eqs. (3.9) and (3.12) tell us how

&e form of the symmetry breaking is related
to the transformation properties of the S's. In
particular, Eq. (3.9) shows that if the functions
h and f are known and obey (3.12), then 8j8 is
uniquely determined. For example, let us assume
that the so-called "exotic commutator" [S ', V'] is
identically zero (i.e., f =0). Then

[T, V'] =iqT,

[T, V'] = iqT (q=0-, 1, 2, . . . , n).

We show in Appendix C that

T = g(X)(s ')',
where

X=S'S

(3.5}

(3.6)

(3.13)

where a 880 and (82. —X)' ' is understood to be the
corresponding polynomial expansion in X.

From (3.9) one obtains

1
x4 2(& X}1/2

[ S ', V'] = 4f(S ')',
[S', V ] =ah.

(3 7)

and g(X) is any infinite polynomial function of X
which commutes with V'.

Therefore, we define two functions f and h,
which commute with V', such that

8}1= -(n —X)'"+ P .
(3.14)

It is easy to see that in this case f]e} transforms
like the third component of an SU(2} triplet. It is
interesting to notice here that Q can always be
made positive definite by choosing a+0 and P= Wn.

Then Q takes the form

It is easy to see that one obtains a first funda-
mental differential equation relating f3'} to f and h

through the relations
y=va ——+— — +—— + ~

, (3.15)

(3.8a)

(3.8b)

But, from (3.5) and (3.8b) 8}8 is only a function of
X so that according to (2.24) one obtains

2(3 y)(h+afx) = I. (3.9)

Since ft) is Hermitian as well as h, fmust also be
Hennitian. The other fundamental differential eq-
uations relating f and h are obtained by using
Jacobi identities of the type (2.23). For example,
the Jacobi identity for [[S', V'], V ] gives the rela-
tion

h+ 2fX= ilaa.
From the Eq. (3.12) one obtains the relation

1=8 —XB f —8 'X ~ —ff}.2 ~ 3
A

(3.16)

(3.17)

which ensures the positive definiteness of the en-
ergy spectrum. Conversely, if one fixes the form
of the symmetry-breaking 8j8(X), one can obtain
the transformation properties of the S's in a
unique way.

For example, let us assume that 8}8(X)= ex.
Then Eq. (3.9) gives

S ' = 2(S ')'[f, V ] + 8fh S ' —[h, V'] .
Since, for any function g(X)

(3.10) The first terms of the polynomial expansion in X
give

[g(X), v'] = —, [x, v'] = as '(h+ afx}a~, (3.11)
e 2n' 16
6 45 (7)(135) (3.18)
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B. Conditions for the Existence of a Particular
Canonical Conjugate

Let us now investigate the possible existence of
a canonical conjugate x'(x) (i=1, 2) for the fields
S'(x). We look for an operator w'(x} such that

[v'(x), S'(y)] = -5"5(x —y) .
From (2.22), the equations of motion for S'(y) are

&„S'(y)= (I/2c)[(-,'e, ,S (y)+M'"(Y), V„"(y)}].
(3.19)

Commuting w'(x) with both sides of (3.19), Eq.
(2.28a) takes the form

5"&,*6(x-y) = —([-,'e, ;+8;M' (y)]V, (y)5(x-y)

+[-'e,.P'(y)+M"(y)1[ '( },V. (y)]),
(3.20}

where use has been made of [[w'(x), V, (y)], $~(z)] =0.
Now Eq. (3.20) suggests that

linear realizations of the SU(2) symmetry.

C. The Case of SU(3)

The case of SU(2) gave us some ideas about the
manipulations involved in the applications of the
general formalism developed in the previous sec-
tions. The results obtained for SU(2) look indeed
very simple and we are encouraged to apply the
same methods to the case of SU(3).

In a theory where the underlying group structure
is SU(3) we will assume, in order to describe
strong interactions, that the total isospin and hy-
percharge are conserved, i.e.,

S 1 S2 S3 S8 0

Because of this fact, some of the operators M"
can be determined. Indeed [with f„,being the
structure constants of SU(3)]

[S', V ]= zf;,~$ +M" =0 (i=1, 2, 3, 8) (3.26}

implies

[v'(x), V, (y)] =F„' (x)V,"(y)5(x —y}+ G™()8;5(x —)(),
M" =M" = —' f;, $' (i = 1—, 2, .3, 8),

so that

(3.27)

v'(x) = —,'(a"(x), V,'(x)j, (3.22)

where H' (x) is a function of S's only. Thus we
look for the constraints imposed upon the function
H' (x) in order for w'(x) to be a solution of (3.20).
Putting

(3.21)
where F'„and t"' are functions of S's only. The
above equation suggests in turn that v( )xmight be
of the form

[S V ]~f()yS (j =1 2 3~8) ~ (3.28}

V'= V'+iV

S', =S +iS', S,'=S'+iS', (3.29)

This equation shows that the S's transform linearly
under the isospin and hypercharge generators.
Now, as we did in the case of SU(2}, we express
the commutators [S', V) ] in terms of raising and
lowering operator s:

Sk+M"jmk

one finds the following conditions:

6' = cH'

t 7S
En =H &kmn ~

(3.23)

(3.24)

v'= v'~iv',1

Then, when expressed in terms of (3.29), the com-
mutators containing the unknown M" are easily
seen to belong to the class of operators T for
which

which imply that H' must obey the constraints [T, V']=n ,'iT, n0, +-1, +2, . . .
(3.30)

H&mggm
7 (3.25) [ T, V '] =m i 2W3T, m = 0, +I, +2, . . . .

0=a,.a "+a"[e,„„a'+(a, w")X'"],
where we recall that i = 1, 2 and the other indices
run from 1 to 3.

Furthermore, the constraints (3.25) have to be
consistent with the differential equation (3.12).
For example, if one assumes that x'(x) = 8,$'(x),
one finds that such a canonical conjugate is not
compatible with (3.12). It also turns out that when
the exotic commutators vanish, Eqs. (3.25) are
incompatible.

Therefore, the form (3.22) for the canonical con-
jugate imposes additional constraints on the non-

e(n); —n) =
+, m-n&0

m -n&0,

Then we show in Appendix C that such an operator
can be written as

T —~(+ F}($'K++~)) E (n+ m)(n+I)/2($ e(m-n) ) e(m- n)(a- n)/0g 1 Q

(3.31)
+, n+m &0

e(n+n). ) =

n+m &0,
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[S„V,+] = 4f (S,'},
[S,', V, ]=2h,

(3.32)

where f and h are functions of X and Y only. Then
the rest of the commutators (3.26) can be gener-
ated by some Jacobi identities of the type [[S', V' ],
V']. One obtains

where g(X, Y) is some function of the variables

X=SySy and F=S2$2 .
Then, using (3.31) we can express the commutators
(3.26} in the following form:

2 = -(8»h)(h+EY) +F'Y,

~ = -F(h —FX),

0 =+ (8»F)(h+EY) +F'.
The most general solution to (3.40) is

(3.40)

where K and K are also functions of X+ 7 only.
Again, we see from (3.37) that if F, f, and h are
known, then Q is completely determined.

As a particularly interesting solution to our sys-
tem of differential equations (3.38) let us consider
the case when the exotic commutators" are zero.
Then, f = 0 and h obeys the differential equations

[s,', v,']=4fs,'s,',
[S,', V, ] =2FS,'S, ,

[S,', V,'] =4f(S,')',
[S,', V, ] = 2h - 2F (X—Y),

(3.33)

E= [[a-(X+Y)]' ' —Vaj, with o. &0

(3.41)

h = Q —(X+ Y)]'~' — ([a —(X+ Y)]'~' —v a),2(X+ Y)

where E= (8» —8„)h. The use of Jacobi identities
of the type [[S,', V,'], V '] =0 and [[S,', V, ], V ] =0 im-
poses further restrictions on f and h:

where use has been made of (3.39}.
Eqs. (3.37) give

(8 —8„}f=0,

(a —a„)'h=(a a,)F =o.
(3.34)

1
2(h+ YF) '

Similarly, from the fact that the symmetry-break-
ing part Q commutes with V

' and V, one deduces

the solution of which is

P=-[a —(X+ Y)]'~'+P, (3.42)
(a 8„)y=o. (3.35)

Then the conditions

[~, v;]=s:,
[y, v,']=s,'

(3.36)

1 = 2 8 (g (h + 2fX) + (F + 2f ) Y],

1=28»$[2f(X+ Y)+FY+ h].
(3.37)

It follows from (3.37} that f is Hermitian. Then
the remaining of the Jacobi identities of the type
(2.24} will provide differential equations relating
F, h, and f. Those differential equations are

-' = (2Xa„f—8 h)[h+F Y+2f (X+ I')]

+4fh+F(F+2f) Y,
(3.38)

—,
' = 2f h —F(h —FX+2fX),
0=(28 f —8 F)[h+F1'+2f(X+ Y)]+F(2f —F).

We notice that the conditions (3.34) and (3.35)
imply that F, f, and Q are only functions of the
single variable X+ Y and that h can be written in
the form

lead to two fundamental differential equations re-
lating Q, h, f, and F:

where P is an integration constant of no physical
significance. The positive definiteness of the en-
ergy spectrum is again obtained by choosing P = Wo.'

(a &0). Let us investigate further the consequences
coming from the conditions that the exotic commu-
tators are zero.

From (3.41) and (3.42) one notices that

Q(X, Y) = ~[2h —(X —Y)E]+ ~Wn+ P.
Defining

U, = -[2h -E(X- Y)],

it is possible to show, by using successively the
commutators of U, with V', that one generates
seven other quantities U' such that [U', V'] =f;»U .

Those U" s are

U'= F(S,'S, +S,s,')v -3,
U'=iF(S,'S, —S,S,')v 3,
U =-F(X—Y)v 3,
U =-v 3S
U'=v 3S
Ue W3S',

U'= ITS'.
h =K+XF =K —YF (3.39) Therefore, the fact that the exotic commutators
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are zero implies that (j](x) transforms like the
eighth component of an octet and fixes completely
the nonlinear realization of SU(3). Conversely, it
is well known that if (j](x) is proportional to the
eighth component of an octet, then the exotic com-
mutator vanishes.

Finally, what we have said about the existence of
canonical conjugates in the case of SU(2) applies
also in the case of SU(3), i.e., there exists a class
of nonlinear realizations of the SU(3) symmetry
which is not compatible with the existence of canon-
ical conjugates of the form (3.22).

CONCLUSION

In this paper we presented a model of symmetry
breaking in a field theory of currents. It is very
interesting to notice that starting with a few simple
assumptions we were able to develop a complete
framework of symmetry breaking which has many
common features with nonlinear Lagrangian theo-
ries.

In fact, once we fix the scalar and pseudoscalar
interpolating fields by the PCVC-PCAC assumption,
we find [at least for SU(2) and SU(3)] that the van-
ishing of the exotic commutators fixes the symme-
try breaking as well as the nonlinear realization in
a unique way. This uniqueness property is beyond
the restrictions of group theory and shows that the
above PCVC-PCAC assumption is a very strong

one. Although the examples considered in this
paper are not physically very interesting, many of
the features discovered appear also in more real-
istic cases. Indeed, in a subsequent paper" we

investigate in detail the case of SU(2) (2] SU(2) [with
SU(2) conserved] and find that the formalism pro-
posed above leads uniquely to the 0-model type of
nonlinear realization of symmetry breaking. There
are many problems to be investigated in this mod-
el. The basic question is that of the realization of
the algebra and we believe that the existence of a
canonical conjugate for some of the variables will
help in this respect.

One can also investigate the breaking of scale
invariance in this model. In fact, within our as-
sumptions, scale invariance is obviously broken.
Since fII) is only a function of S's and I"s and 6„,
is only a function of V's and A' s, e» cannot be
zero.

Finally, it should be pointed out that there have
been many attempts to introduce symmetry break-
ing in Sugawara's model. " " Those attempts,
among which Refs. 18 and 19 display great simi-
larity with our work, deal with linear realizations
for the divergences of the vector currents while
we allow a more general transformation. A com-
mon feature of all these models including the pres-
ent one is that the equations of motion for the cur-
rents are unaffected by the symmetry breaking.

APPENDIX A: COVARIANCE AND THE FORM OF THE ENERGY-MOMENTUM TENSOR

We show in the following that an energy-momentum tensor bilinear in the currents is inconsistent with
Lorentz covariance when the internal symmetry is broken.

Consider the most general form for a symmetrical energy-momentum tensor bilinear in the vector and
axial-vector currents'.

e„,= n"[ V'„(x)V', (x) + V„'(x)V'„(x)]+n"[A„'(x)A'„(x)+A,'(x)A'„(x)]+5„„[P"V ~(x) V~p(x) + P "Aq(x)A~p(x)] .

Then, using the Heisenberg equations of motion,

(A1)

2, V,'(*)=fd'y[e„(v],V,'(*]] ant(

one obtains

(],V,'(y) =[(2n" + 0")f„,+ (2n" + p")f,.„.) V,'(y) V, (y)+[(2n" +p'')f . , + (2 'n+i]")f .]V'(x)A'(y)

+(&"f'a(+&"f a )V'(y)V.'(y)+(P"f, a]+ 0"f,a;)A.'(y)A.'(y) —c(P"+0")~.V', (y), (A2)

(]~A,( y) = [(2n" + p ")fi((+ (2o." '+ p")f,(„]A~(y) V,'(y) + [(2n". +. p")f,.~, + (2n~'+ p' ')f», ]V4(y)A~(y).

+[f)"f a(+ 0"f,';]V.'(y)A.'(y)+[0 "f,&i+ fi"f,~.]A!(y)V.'(y) —c[P"+ 0"13&!(y). (A3)
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Therefore, Lorentz covariance implies

n"f, ki+n"f;k =0

OT"fjkl+ &"fjki =o

O7"f jkl+ OT"f jki =O

fjkl+ + fjki
P"+ P"= (1/c) 5",
pkj+ p

jk= (1/ C)5

(A4a)

(A4b)

(A4c)

(A4d}

(A4e)

(A4f )

one has

n" V'„(x)V', (x) = ——v'„(x)V.'(x)

+-,'(n" —n") lim[V „'(x),V'„(y)].

(A9)

But from (A4a} it is easy to see that (n" —n"}f,»
=0. Similarly, from (A2) one deduces that

But the conditions (A4a) and (A4c) imply P "fjkl + P"fjk,. = 0 "fjk; + P"fjkl (A10)

Q =Q

Now the Heisenberg equation of motion

B.v,'(v)= f d v[e.I'v)v, ,'( ),]

gives

vk+ nkv (ly )yk

where use has been made of the relations (Al).
Now assuming that

V'„(x)V'„(x)= V', (x) V'„(x)+lim[V',(x), V',(y)],

(A7)

with

so that

(P"—P")f,;,=0.
Therefore using (A4e) one has

P"V'k (x) V'„(x}=—V'„(x)V 'v(x) .

Similarly,

p "A'„(x)A',(x) =—A„'(z)A',(x) .

Consequently,

(Al la)

(A11b)

lim [V'„(x),V', (y)]

=f „„
lim]5„,V', (x) + —,'5„,[V'„(x)+ V „'(x)]}5(x—y),

(AS)

e„'*,' = ——((V'„(x),V,',(x)j + [A'„(x),X„'(x))

—5„$V', (x) V', (x) +A', (x)X', (x)]) .
(A12)

APPENDIX B: DIFFERENTIAL EQUATIONS RELATING THE FUNCTIONS N'j, N'~, AND R ij

,'(t, ,S a,M" ——t, ,S a,M")+(M"a,M' M"a,M")+(t,P a, M t...p a,M"}+(N"a,M'-N'&a, M'k)

m il j 7 1 kl—~ jkltilmS + tjk, M + 2tiklM —2tij, M

(B1)
—t,S 87M" +R' B,Mij+N 'B,M" ——'t. ,S B,N' -M'jB,N' —t. ,P B,N' —8'"B,N' = t. ,N

' ——t.j,N '2 jml l l jml l

(a2)

(-t ,S B,N" — t;,S B,N' )+(M' B-,N" M' B,N' )-+(t ,P B,N" —t, ,P"B,N'")+(N' B,N" —N"B,N' )

= tjk, N" + t;„,N" —tijlN' y

&t pm' Nij+Rlkg Ni j Nklg Nij &t gmggik Mljg Rik t Pm/ ~ik Nljg Rik2 jml l jml 7

1 m il= ~t;kltj, mS + t,.k,R''+
batik, M ' —t; jlR

( ,'t, ,S "a,ft"- ,'t, ,S-a,~*k)+(g"a,ft'v tt"B-,& )+(N 'a~'v N''Bp' )

tj klti lmP + tj klN + ~ tiklN gi jlN ~

(»)



2976 LE MONNIER DE GOUVILLE, PAPASTAMATIOU, AND UMEZAWA

T= Q C,„,(S,')'(S, )"(S,')'(S, )'
a,r, s, t

(ci)

APPENDIX C: STUDY OF A CLASS OF OPERATORS
CARRYING GIVEN ISOSPIN AND HYPERCHARGE

QUANTUM NUMBERS

We will consider only the case of SU(3) but the
'"arne reasoning can apply to SU(2).

Let us define an infinite polynomial function of
the nonzero S's by

r,s
(S+)r+(m+n) /2(S )~(S+)8(S )8+(m-n)/2

where Cr, s= Cr+(m. +n)/2, r, s,s+(m-&)/2

But (C4) can be written as

Let us consider the case m+n&0, m —n&0.
One can write

(c4)

with the following properties: T=(S1) '" (S ) ZC, ,(SiS )(S SB)' ~

r's

[T, V']=i ,'m —T,

[T, V'] =i 'v 3nT-.
(C2)

Putting X=S yS y Y S2$2

(C5)

Since the S's transform linearly with respect to
the conserved generators one obtains

q-r —s+ t=m,

q-r+s- t=n

or

g(X, Y) =g Q„,(X)"(Y)',
r,s

one has

T (S+)6ll+5)/2(S )6II Fl)/2 (X y)

(C6)

(Cv)

q —r = 2(m+n),

f s= —,'(m ——n).
(C3)

Following the same reasoning for different signs
of m + n and m —n, one obtains the desired result
(3.31).
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