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Motion of Particles in Einstein's Relativistic Field Theory.
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If we represent particles through singularities in the field- we shall call such particles ideal
particles-the field equations of Einstein's theory of the nonsymmetric field (unified field
theory) can be solved step by step with respect to the powers of a parameter which measures
the "strength" of the singularities associated with each particle. In paper I we develop the
above-mentioned approximation procedure and show that ideal particles in an isolated region
of space-time interact with each other as if each particle were acted on by a force which de-
pends on the particle's kinematic and structural properties and on a certain external field in
the neighborhood of the particle. The approximation procedure allows one to find, to any or-
der of approximation desired, the equations of motion satisfied by each particle, the equations
of change satisfied by those quantities which characterize the structure of each particle, and

the field equations satisfied by the external field which acts on each particle. The equations
are Lorentz-covariant in form.

I. INTRODUCTION

In the year 1915 Albert Einstein completed his
relativistic theory of the gravitational field. Ein-
stein regarded the construction of this theory as a
first step in an effort by him to construct a theory
of the total field, a theory which would describe
all of nature through one continuous field. In such
a theory the particles of nature appear as limited
portions of the space-time continuum in which the
field strength is particularly high or the field very
inhomogeneous. Such a theory has sometimes been
called a unified field theory. It was not until the
last years of his life that Einstein felt that he had
found the natural generalization of his gravitational
theory and thus a logically satisfactory theory of
the total field. Einstein called this generalization
of his gravitational theory the relativistic theory of
the nonsymmetric field. ' This is the theory we
shall be investigating.

In the relativistic theory of the nonsymmetric
field, nature is described through a second-rank
tensor field which satisfies certain logically simple
structural laws. These structural laws take the
form of nonlinear partial differential equations. No
nonsingular solutions satisfying realistic boundary
conditions have ever been found to these partial dif-
ferential equations, and whether such solutions ex-
ist, is not known. In this paper we shall assume
that such solutions do exist, and furthermore,
that they can often be approximated throughout a
finite region of the continuum, except near a parti-
cle's center, by solutions in which each particle
in the region is associated with a singularity in
the field. By considering a particle as being in a

certain four-dimensional region of the continuum
we mean that we are only concerned with that seg-
ment of the particle's world line which is enclosed
in that region. Particles associated with singular-
ities in the field will be known as ideal particles,
providing the particles are stable and are located
in a perfectly isolated region of the continuum.
The terms "stable particle, " "isolated region, "
and "perfectly isolated region" will be defined
later.

If we represent real particles in an isolated re-
gion of the continuum by ideal particles in a per-
fectly isolated region of the continuum, an approxi-
mation procedure can be found which allows one to
solve Einstein's field equations step by step with
respect to the powers-of a parameter which mea-
sures the "strength" of the singularities associated
with each particle. Such an approximation proce-
dure can of course only be valid if the particles are
not too near one another. In this paper we develop
the above-mentioned approximation procedure' and
show that ideal particles interact with each other
as if each particle were acted on by a force which

depends on the particle's kinematic and structural
properties and on a certain external field in the
neighborhood of the particle. The external field
can be regarded as produced by the other particles
in the region. The approximation procedure allows
one to find, to any order of approximation desired,
the equations of motion satisfied by each particle
in the region, the equations of change satisfied by
those quantities which characterize the structure
of each particle in the region, and the field equa-
tions satisfied by the external field which acts on
each particle in the region.
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In paper II we apply the above-mentioned approxi-
mation procedure to the case of certain simple ideal
particles located in a perfectly isolated region of
the continuum and we find the equations of motion
satisfied by these particles to certain low orders
of approximation. We also find the equations of
change satisfied by those quantities which character-
ize the structure of each particle in the region and
the field equations satisfied by the external field
which acts on each particle. We find that there are
simple ideal particles which, in a finite region of
space-time, interact wi.th each other, to a good
approximation, according to the laws of Maxwell-
Lorentz electrodynamics. In a higher order of
approximation we find an additional interaction
among the particles which can be looked upon as a
Lorentz-covariant generalization of the interaction
given by Newton's gravitational theory.

A. General Discussion

The body of this paper begins {in Sec. II) with a
description of Einstein's theory of the nonsymmet-
ric field. In this section certain concepts and def-
initions needed for a general understanding of Ein-
stein's theory are presented.

As indicated in Sec. 0, the physical meaning of
the various field quantities which appear in Ein-
stein's theory has been until now vague and specu-
lative. One reason for the writing of this paper is
therefore to find physical meaning for the various
field quantities which appear in Einstein's theory.
In particular, one reason for the author's investi-
gation of the interaction of particles in Einstein's
theory is to find out (assuming the theory is cor-
rect) what field quantities in the theory correspond
to the quantities we observe in nature as the electro-
magnetic field and the gravitational field. Since the
electromagnetic and gravitational fields are in prac-
tice defined through the observed interaction of
particles, one reasonable way of finding what field
quantities in Einstein's theory correspond to these
fields is to investigate the interaction of particles
in the theory and to compare the results with ob-
servation.

The representation of particles through singular-
ities in the field (which is discussed in Sec. III) has
been used in the paper for three basic reasons.
First, interacting particles interacting over macro-
scopic distances seem to be well represented by
point particles (Newton's gravitational theory and
classical electrodynamics can be considered as
based upon the concept of the point particle). Sec-
ond, the representation of particles through singu-
larities gives satisfactory results in Einstein's
theory of the pure gravitational field (neutral parti-
cles interacting over macroscopic distances}.

Third, there is no known way to systematically de-
rive nonsingular solutions in Einstein's theory
which might represent interacting particles. The
author would like to point out that this idealization
(particles represented by singularities) is used ex-
tensively in general-relativistic theories and is
well known.

In order to solve the field equations of Einstein's
theory over a region of the continuum containing
singularities (particles), the author is forced to
expand the field in powers of a parameter which
measures the "strength" of the singularities in the
field. (This is developed in Sec. IV. ) This type of
expansion is, in effect, used in all "fast-motion"
approximation schemes. ~' The author then shows
(in Sec. V) that the resulting equations of Einstein's
unific. d field theory can be solved step by step to
any order of approximation desired. The equations,
when solved, lead to equations of motion and equa-
tions to be satisfied by several quantities which
characterize each singularity. Other of the quanti-
ties which characterize the singularities can be
chosen arbitrarily. The technique is developed for
the most general kind of singularity which can rep-
resent a particle (a. discussion of the meaning of
this statement is given in Sec. V and in the foot-
notes). The technique presented in the paper for
obtaining the equations of motion of interacting
particles is not quasistatic and never involves in-
tegrals over surfaces. It is not the conventional
Einstein-Infeld-Hoffmann (EIH) technique' applied
to a new theory. It is a new "fast-motion" approxi-
mation technique. It is Lorentz-covariant at each
step' and applied with complete generality (most
general singularities) to a theory never before (to
the author's knowledge) analyzed using a Lorentz-
covariant technique.

The published Lorentz-covariant technique, used
to analyze the Einstein-Maxwell equations and due
to Kerr, might be considered a "natural" Lorentz-
covariant generalization of the EIH technique, as
it uses surface integrals to obtain equations of mo-
tion. The author's technique avoids such integrals
and the troubles they bring. The equations of mo-
tion obtained by Kerr in the Einstein-Maxwell
theory, if they are carried out far enough, seem
to involve infinite divergences which must be ar-
gued away (renormalization}. This problem also
occurs in the published Lorentz-covariant techni-
que developed by Havas and Goldberg' for pole
particles in the pure gravitational theory. ' The
author regards such troubles (infinite divergence)
as due to unsatisfactory analysis. The author' s
technique never gives rise to such divergences.
The author regards his technique as the only logi-
cally satisfactory Lorentz-covariant technique of
which he is aware. It is also the only Lorentz-
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covariant technique of which he is aware ever de-
veloped for Einstein's unified field theory, a the-
ory which is not identical with the Einstein-
Maxwell theory or the pure gravitational theory
and thus demands a separate analysis.

Also, in contrast to the other Lorentz-covariant
techniques, it appears that the author's technique
can actually be used to find the equations of motion
of particles to any order of approximation desired.
All differential equations which need to be solved
when using the technique appear to be of a form for
which an explicit solution can always be found.
There is also, as mentioned earlier, no ambiguity
resulting from infinite divergences. Only tedious
labor seems to be involved in finding the equations
of motion of particles to higher and higher orders
of approximation. There is, of course, always a
certain ambiguity in the higher orders of approxi-
mation due to the freedom one has in- choosing co-
ordinate systems. '

Because there seems to be some confusion with
respect to this point in the literature on approxi-
mation techniques, the author would like to empha-
size the fact that in his approximation technique
the equations of motion of particles (and thus the
motion of particles) are not changed from one order
of approximation to another. The equations of mo-
tion (and thus the motion of particles) are just
found, using his technique, step by step to higher
orders of approximation. The above statement al-
so applies to the equations of change satisfied by
quantities which characterize the structure of parti-
cles.

In this paper, the author specifically avoids as-
signing any specific (exact) correlation between the
fields appearing in the theory and the physical
fields of nature until after he has obtained the form
of the equations of motion for the most general sin-
gularity in the, theory. In paper II, the author finds
that singularities will interact as the particles of
conventional classical electrodynamics (over cer-
tain distances and in the lowest order of approxi-
mation), and only then does the author identify cer-
tain quantities characterizing the singularities with
what are known in nature as charge, mass, etc. '
This assignment is of course based on the assump-
tion that Einstein's theory is correct and that parti-
cles can, at least over macroscopic interaction dis-
tances, be represented by singularities in the field.
The author, in this way, also finds a field which can
be identified with the electromagnetic field observed
in nature. The field to be identified with the gravi-
tational field is found in an analogous way. Of
course, because of the relationship of the theory
of the nonsymmetric field to the theory of the gravi-
tational field, there are no surprises here.

The author does —and this may lead to some con-

fusion —assign names (labels) to the various quanti-
ties characterizing the most general singularities
(particles) and to certain field variables appearing
in the theory before their relationship to any quanti-
ty appearing in nature is shown. This freedom to
assign arbitrary names is used throughout this pa-
per. Only at the end of paper II, where the theory
is compared with observation, are the concepts
and quantities given names in the theory by the
author seen to correspond generally to the identi-
cally named concepts and quantities in nature.

To sum up, the author feels that his papers are of
interest for three basic reasons. First, the author
develops a Lorentz-covariant technique for finding
the equations of motion to any order of approxima-
tion desired for the most general particle (repre-
sented by a singularity) in Einstein's unified field
theory. No such general technique for investigating
Einstein's theory has ever been published to the
author's knowledge. A general Lorentz-covariant
technique was developed by Kerr for investigating
the Einstein-Maxwell equations. His scheme makes
use of surface integrals and leads to divergent
terms in the equations of motion. Another Lorentz-
covariant technique due to Havas and Goldberg is
only developed for especially simple particles (pole
singularities) and only in the pure gravitational
theory. Their technique also leads to divergent
terms in the equations of motion. One of the pur-
poses of the author's papers is to develop a com-
pletely general technique (general singularities) for
finding equations of motion which, because it makes
use of only well understood mathematical proce-
dures, can lead to no divergent terms in the equa-
tions of motion. The author has accomplished this
task for Einstein's unified field theory and because
it is a special case of the unified field theory, for
Einstein's pure gravitational theory. The technique
can easily be taken over and applied to the Einstein-
Maxwell equations.

The second reason the author feels that his
papers are of interest is that prominent physicists
have used as an argument against the unified field
theory a "proof that Einstein's so-called unified
field theory leads to the wrong equations of motion
for charged concentrations of mass-energy, in the
sense that the object moves in external electro-
magnetic fields as if completely uncharged —an
argument against that theory. " This proof is based
on Callaway's analysis" using the EIH approxima-
tion technique of the equations of motion of parti-
cles represented by singularities in the unified
field theory. The author has shown that Callaway's
analysis was not general enough and that there are
singularities which not only interact through the
Coulomb force" but interact in the lowest order of
approximation over macroscopic distances through
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the complete laws of classical electrodynamics.
The radiation reaction force even comes out cor-
rectly and there are no divergent terms in the eq-
uations of motion. The above argument used
against the theory is not valid.

A third reason for an interest in the papers is
that the author's technique for finding the equations
of motion of particles in Einstein's theory allows
one to find, in addition to the classical interactions
(electromagnetic and gravitational), the corrections
to these interactions which are demanded by Ein-
stein's theory. One of these corrections may in
fact be observable over astronomical distances.
The possibility of observing this "astronomical in-
teraction" is discussed in some detail in two appen-
dixes of paper II. In addition to this interaction one
also finds that there is a very complicated interac-
tion between elementary particles which is likely
to become important over distances & 10 ' cm. An

estimate of its range and strength is given in one
of the appendixes of paper II." The author is at
present attempting to find the explicit form of this
interaction. Does this interaction have any relation
to quantum effects or does it indicate the break-
down of the idealization used in the paper (particles
represented by singularities} or the incorrectness
of the theory itself? The point of all of this is that
the approximation procedure developed in this pa-
per allows one to systematically investigate the
interaction of particles in the Einsten unified field
theory and to compare the results with observation.
The author knows of no other analysis of the theory
which provides such an opportunity.

In the final analysis the author believes that the
physical meaning of the quantities appearing in
Einstein's theory can only be determined through
attempts to correlate the theory with observations.
In order to do this in such a mathematically com- .

plex theory as Einstein's unified field theory, one
has to make certain idealizations and approxima-
tions. The ones the author has made in his papers
do not seem to the author to be unreasonable. In
any case the author has shown that all of classical
physics (electromagnetism and gravitation) can be
obtained in a natural way from Einstein's unified
field theory. The author has also opened the way
to much further investigation of possible observable
consequences of the theory.

E' 1P 61234 1P
1234

123
= 1.

(1.2)

If A„,... is a field possessing at least two indices,
we shall use the notation

Note that

A». .. —-A(~,) ... +A), )

If the field A». .. is symmetric with respect to
the interchange of the indices p and v, we shall
often use the notation A~„,& ... to indicate this fact.
If the field A„,... is antisymmetric with respect to
the interchange of the indices p, and v, the notation

At„,~... will be used. If the indices associated with

any quantity are enclosed in parentheses, that quan-
tity is understood to be symmetric with respect to
the interchange of those indices.

Labels after a comma signify variables with re-
spect to which differentiation is performed. Thus

(1.6)

The abbreviations

0= 1" 4, vv ~ (1.7)

(1.8)

will be used in this paper. If A» is a field posses-
sing only two indices, the abbreviation

At-pv, p]
= At-p~l p+ Al-~pl &

+ A~pp], v

will be used.

of indices will imply summation. Unless otherwise
stated, all raising and lowering of indices will be
performed with the Minkowski metric.

The Minkowski metric t7„„will be defined through
the equations

~s4 ~4s 0& ~44

where 5„ is the three-dimensional Kronecker. 5.
By definition, q"'= g„„. The four-dimensional Kro-
necker 5 will be denoted by 5„'. The Levi-Civita
symbols c„,p„r"', and c„,will be chosen so
that,

B. Notation

We shall use the following notation in this paper.
Unless otherwise stated, all lower-case Latin in-
dices will take the values 1, 2, and 3, and will re-
fer to space coordinates only. Lower-case Greek
indices will refer to both space and time and will
run through the values 1, 2, 3, and 4. Repetition

II. THE CONTINUUM

A. Structural Laws

In Einstein's relativistic field theory, nature is
regarded as a four-dimensional space-time conti-
nuum whose structure is described through a funda-
mental tensor field g„,. Simple structural laws are
assumed to exist in this continuum. They can be ex-
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pressed through the general covariant equation sys-
tem

F

trav]

Rc.pv p] =Oy

R (py)
—Op

(2.1a)

(2.1b)

(2.1c)

B. Space and Time
/

The parameters x', x', and x are chosen to be
the space coordinates within the continuum. The
parameter x' will be the timelike coordinate. Time
t will be defined through the equation

x4=ct, (2 4)

where c is a constant having the dimensions of a
velocity and a magnitude which depends on the units
used to measure time. We shall later show that
weak electromagnetic disturbances (light) propagate
in empty space with the velocity c.

Occasionally we shall denote the timelike indices
associated with a tensor by a zero. Thus

g44 =goo. (2.5)

Differentiation with respect to time will always be
denoted by a zero. Thus

gpv, 4 =
~gatv, o ~ (2.6)

where FP„and R„„are defined through the equations

R„,= F„, ,—F„,.—FP.F,, + FP, F,. (2.3)

Although the field FP, is not a tensor with respect
to general (analytic) coordinate transformations,
both FP& ]and R„,are tensors with respect to such
transformations. The fields FP, and R„„are known,
respectively, as the displacement field and the con-
tracted curvature tensor.

tional field if g&„,&t g„„.
D. Isolated Regions

where g"' is defined through

g'ypg' =g"ppg = &p ~ (2.10)

and g denotes the determinant of g„„. We are as-
suming g & 0 throughout the continuum.

Equations (2.9) are easily seen to be equivalent
to

The structure of a region of the continuum can be
determined through Eqs. (2.1}only if the boundary
conditions over the three-dimensional surface of
the region are known. In general one does not know
these boundary conditions. There are certain
cases, however, where the boundary conditions
over a region of the continuum can be adequately
specified without a detailed knowledge of the con-
tinuum external to the regiori. If a region is suffi-
ciently limited in size and sufficiently distant from
those particles which do not pass through it, then,
to a good approximation, any deviation from flat-
ness within the region can be considered to depend
only on the structure of those particles which are
within the region or which pass through it. A re-
gion of the continuum for which this approximation
is adequate will be known as an isolated region.
An isolated region containing no particles can be
considered, to a good approximation, flat.

Ha~moni c coo~donates. When investigating the
structure of an isolated region of the continuum,
we shall find it convenient to use a specific set of
coordinate systems within the region. The coordi-
nate systems we shall find convenient are called
harmonic coordinate systems. A harmonic coordi-
nate system is a coordinate system in which the
coordinates x" satisfy the equations

&~"(=( g) '"[-( g)'"g"-'~",) .j=o, (2.8)

where

A. =c '
&

(Pi/)

where
pv ( g)x/Rgpv

(2.11)

(2.12)
(C. Particles and Physical Fields

A region of the continuum will be called flat if a
coordinate system can be found so that

gpv ='9pp (2.8)

throughout the region. Particles are limited por-
tions of the continuum —limited at least in the spa-
tial directions —which have a very nonflat structure.
Those portions of the continuum between the parti-
cles and possessing a nearly flat structure will be
known as empty space or vacuum. The slight de-
viations from flatness in such portions of space-
tixne will be taken to indicate the presence of an
electromagnetic field if gt„,]e 0, and of a gravita-

Under a transformation from one coordinate sys-
tem (unprimed) to another coordinate system
(primed}, the field components (t

("') „satisfy the
transformation law'

8x'."
( gl} I 2g/l(PP) ( g) I/2g (pP)

exp ,V

&'x'"
+ .(-g) '"S"'. (2 13)expex

Since, by definition, (2.11}is valid in every har-
monic coordinate system, it follows from (2.13)
that the transformation equations between two har-
monic systems must satisfy the differential equa-
tions
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2
(pfy) ~ X

0
e~pax

(2.14)

Field equations. If we use harmonic coordinates
when investigating an isolated region of the conti-
nuum, the field g» will be subject to the coordinate
conditions (2.11) in addition to the structural equa-
tions (2.1). This means, making use of the identi-

15

&(uv) Z'8 = &
1:uvj

[vp] 0 (2.15)

that in a harmonic coordinate system the field gu,
must satisfy the equations

&
[uvl 0

uv, p

R(uv) =0.

(2.16a)

(2.16b)

(2.16c)

(2.16d)

III. PERFECTLY ISOLATED REGIONS

A. Ideal Particles

It should be noted that the field equations (2.16) are
not covariant under the group of all continuous (an-
alytic) coordinate transformations but are covari-
ant under all continuous (analytic) coordinate trans-
formations which satisfy (2.14).

only nonsingular solutions to the field equations
are realized in nature. This means- that we must
assume, if our solutions are to be realistic, that
there are acceptable nonsingular solutions to the
field equations, describing an isolated region of
the continuum containing stable particles, which
can be approximated, except near the center of a
particle, by singular solutions, solutions in which
each particle in the region is represented by an
ideal particle.

The use of ideal particles in a perfectly isolated
region to represent real particles in an isolated
region may eliminate the possibility of understand-
ing quantum effects through Einstein's relativistic
field theory, as the understanding of these effects
may depend on an accurate knowledge of the struc-
ture of a particle near its center. In fact, if Ein-
stein's theory could provide us with an understand-
ing of quantum effects, it is quite possible that
these effects would be found to be closely associ-
ated with the very requirement that no singularity
appear in the continuum.

The use of ideal particles in a perfectly isolated
region of the continuum to represent real particles
in an isolated region of the continuum almost cer-
tainly eliminates the possibility of understanding
the actual values of mass, charge, spin, etc. , as-
sociated with the particles observed in nature.

In order to solve the field equations over an iso-
lated region of the continuum, we shall make cer-
tain assumptions about the structure of the region
with which we are concerned and about the boundary
conditions over its surface. First we shall assume
that the region is perfectly isolated. By this we
shall mean that any deviation from flatness within
the region can be considered to depend only on the
structure of those particles which are within the
region, or which pass through it. Secondly we
shall assume that the particles within the region
are stable so that each particle within the region
is an individual thread of very nonQat structure
running through the region. Finally we shall as-
sume that the deviations from flatness which make
up the threads of very nonflat structure running
through the region become not only very large, but
infinite, along a world line within the thread.
These world lines are assumed never to cross.
Particles which are within a perfectly isolated re-
gion of the continuum and which satisfy the above-
mentioned conditions will be known as ideal parti-
cles.

Both the assumption that the region is perfectly
isolated and the assumption that the particles with-
in the region are ideal must be considered as ideal-
izations. Regions of the continuum are never per-
fectly isolated, and if Einstein's ideas are correct,

A,'

guv ~ K (k)guv ~

0=0
where

(o)guv = ~uv.

(4.1)

(4.2)

We shall always work in such harmonic coordinate
systems.

Although it will not usually be stated, whenever
we use the expansion (4.1) it is to be understood
that we are investigating the field gu, only at points
which are sufficiently far from the world lines
(singularities) associated with the particles in the
region, so that (4.1) is valid. The order of magni-

IV. METHOD OF APPROXIMATION

A. Basic Assumptions

In our analysis we-shall make the assumption
that the region of the space-time continuum with
which we are concerned is perfectly isolated and
contains only ideal particles. We shall also assume
that the field gu, within the region, excluding of
course the world lines associated with the particles
in the region, depends continuously on a positive
parameter K in such a way that as K- 0 the region
becomes flat. Furthermore, we assume that there
is a harmonic coordinate system in which the field
gu„at points in the region-sufficiently far from
any world line, can be expanded in a power series
in K such that
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k
Rpa

——Q K (k)Rpp
k=p

where

g
pu -@au

(4.4)

(4.5}

(k) N 9 9 (k)gap + 2g 0 (k)gpa +(k}0 (k &0)i

(p)R pu Op

1 poI
(k)Rpv 20 K(k)gpss, vo+(k)g pv, po (4.6)

(k)gvp, pa {k)Spa,pv) +(k)R pu (k &0)

The fields (k)a
Nvv a d(k)RNuv conta n only terms

nonlinear in {k.)g„„(0&k' &k). The subscripts to
the left of a field indicate the order.

Using (4.3) and (4.4), we find that the field equa-
tions (2.16) take the form

[pv]
(k)S,u (4.7a)

tude of such "distances" will be discussed later.
I'ield equations. If we expand g

"' and R„„ in a
power series in «, we have, using (4.1) and (4.2)
along with (2.2}, (2.3), (2.10), and (2.12),

(4 3)
k=p

(0) ypv
1

(k) Ypu (k)gvp+ 2 1pv 1 (k)gpa+(k) Y pu (k &0)~ (4 12)
N Npo

(k) Y pu 1pp Qva {k){t (k )'

The fields (»y „,contain only terms nonlinear in

(, )g„„(0&k' &k). Using (4.11) and (4.12) we find
that

gpu = Q K (k)gpv ~ (4.13)

where

(0)gpv ~p»

(k)g 2 {k) Y u + 29pv9 (k) ypo+(k)g p (k & 0)
N' Nap Npo

(k)g pu Opp uo (k)S 20pv9po (k)G (k &0).

The fields (k)g „,contain only terms nonlinear in

(k )y» (0 &k' &k). Their explicit form can be found

as needed through the use of an iteration process
involving (4.14}.

Field equations The f.orm of Eqs. (2.16) and

(4.7}suggests that it might be easier to solve them
in terms of the field y„,, than in terms of the field

g„,. After solving the equations for y„„one can
then use (4.13) and (4.14) to determine g„, from y„, .

In terms of y„„ the field equations (4.7) take
the form

(k)R[ pu, p]

(p)
(k) S,v

(k)R(vu) =O.

(4.Vb)

(4.7c}

(4.Vd}

B. The Field y„

%e have succeeded in breaking the field equations
up into equations for each order.

(k) y[ {itu]

(k)R[„,, p] =0,
n

(k) y(pv)

(k) R(pv)

where

p)R pv

(4.15a}

(4.15b)

(4.15c)

(4.15d)

Since the field g
"" transforms as a contravariant

tensor under Lorentz transformations, the quanti-
ties g

"'—q"u can be regarded as the contravariant
components of a second-rank tensor field with re-
spect to such transformations. This field will be
denoted by y"". Expanding the field y "v in a power
series in ~, we have 1 po

(k)+au 2((k)Rpp 2qpv9 (k)Rpa)p (4.17)

1 2 1
(k)Rp 2{-) ((k)r„. 2q»n"{»r—pa) (4.16}

1 , p 1 , p2(k)rpp, 2(k) Y p, 2+(k)Rp (k &0)

The fields (,)R"„,contain those terms of (k)R„„which
are nonlinear in (, )y„„(0&k'&k).

If we introduce (k)K„„where

r"'= Q «'(k)rp'~
k=p

where

(4.8) we find that Eqs. (4.15) are equivalent to the set of
equations

(»r""=o (»r"'=(.){)
"' (»0).

A field y„, can be defined as follows:

pa
ypv ='Opp0vay ~

(4.8)

(4.10}

(k) y[pv]

(k)+C pv. p]

(k) y(pu)

(k)+({(Iv)

(4.18a)

(4.18b)

(4.18c)

(4, 18d)

ypv ~ ~ (k)ypv ~

k=p

where

(4.11)

This field transforms as a covariant tensor under
Lorentz transformations. From the definition of
y„„and using (4.3) and (4.5) we see that

where

-(k)you+(k)yap fv+(k)yvp f p

, pa N'
lpv (k) ypa +(k)+pu s

N' N' 1 pa N'
{k) 2 2((k)Rp 2 12 7 (k}Rpo)'

(4.19)
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If we then write out explicitly the terms which are
linear in {»y», Eqs. (4.18) take the form

(k) r[pv]

2 N
(k)y[jfv p] (k)K[jfv, p] ~

(4.20a)

(4.20b)

(4.20c)(k) y(p v) 0&

2
(k) y(jf v) (k)K( pv) ~

If we introduce the fields y*["']and y~, where[j v]'

(4.20d)

yg[pv] Z6j vpay yg ~ y[pa]
2 [pa] s [~v] ~ pvpa (4.21)

and make use of the power-series expansions

++{ &pJ p ((k ~g{pvJ +g —g)(k(k) & [tv] (k) [jfv] p
k=O k=o

(4.22)
we find that the field equations for y„, can be put
in the simple form

(pa)
y(pv) ~jfp0va~ 0pv ~ (4.29)

with the gravitational field. We shall later see that
this is a reasonable identification.

If we make the above identification, the electric
current density is given by j„. From (4.26b) we
see that electric charge is conserved.

From (4.26d) we see that there can be no magnetic
current density except at points where the electro-
magnetic field is singular. In fact, it follows rigor-
ously from (2.16a) that there can be no nonsingular
solution to Einstein's field equations in which a
magnetic current exists. This means that only
those ideal particles which do not give rise to a
magnetic current can be considered to approximate
the real particles of nature.

Integrability conditions. Equations (4.26a)-(4.26d)
can be solved at each order only if the conditions

2
(k)2 p (k)

(k)i jf

(k) y[»] -(k)~ j ~

0]
2

(k) y(j1v) (k) tjf v &

(k)y(p )

where
paK X ~N, ' ~N'

) S jf
=

6 'gjfpC (k) [KX, a] x (k) tjfv (k)K(jfv

Making use of the definitions

(4.23a)

(4.23b)

(4.23c)

(4.23d)

(4.23e)

(4.23f )

(4.24)

(k) p (4.30)

are satisfied. These conditions are always satis-
fied. This follows from the definition of (k)s„given
in (4.24).

Equations (4.26e) and (4.26f) can be solved at
each order only if the conditions

(k) tjlv (4.31)

are satisfied. We shall show that these conditions
are always satisfied if the field equations (4.26}
have been satisfied in all lower orders.

Einstein has shown that if the fields I'P, and R„„
defined through (2.2) and (2.3), are subject to (2.1a)
and (2.1b), then one has the identity"

k ~ k
{k) ps 2p Q (k)i »

k=o k=O

tpv Q K (k) tp„,
k=o

(4.25)

we can write Eqs. (4.23) in the more compact form

where
a a

(p(+)&(-))'p (p&) p (&&) pp (pa) pu & (4.33)

pa(g KR(p(+) a(-))l p (p(+) p(-))l a (jf(-) a(-))l pJ

(4.32)

2
jt&

kjf 0

k

y[ jfv]

y[ tv, p]
2

C-] y(jf v) = t jfv ~

kV
y( jfv) Os

(4.26a)

(4.26b)

(4.26c)

(4.26d)

(4.26e)

(4.26f)

R(jf(+)v(+)):p R(jfv). p R(av) ~ jap R(jt a) ~ vp~

R(jf( )v( )) p R(jfv) p R(av) F
pp R(jf a) L pv ~

(4.34)

(4.35)

From this identity it follows that if we have solved
Eqs. (4.26a)-(4.26d) up to the kth order, and Eqs.
(4.26e) and (4.26f) up to the (k —1)th order, then

)J ((k)+(po), p
—2{k)ff{pp) o) =0~ (4.36)

and from the definition of {k)K„,in (4.17),
We have from Eqs. (4.21)

g[pa] [jfv] &&pvpa
y[pv] 2~p p r, r =- &~ y[p ]

(4.27)
The form of Eqs. (4.26) suggests that we identify

y[*j,v] ~

[pa]r[ .]=" ~ &

w'ith the electromagnetic field and y(„v),

(k)K(pv)

From (4.19}we see that

(k) (jf v) (k) ( jt v)

so that (4.37) implies

(4.37)

(4.38)

(k&K~»)
' =0. (4.39)

Since (,)K("„,) contains only terms nonlinear in („)y„„
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(k' &k), and thus does not depend on &»y„„Eqs.
(4.39) will be satisfied as long as the field equa-
tions (4.26) have been satisfied up to the (k —1)th
order. From (4.24) and (4.39) it then follows that

(0) tpv (4.40}

if the field equations (4.26) have been satisfied in
all lower orders.

A procedure for finding y„„. We shall now show
how Eqs. (4.26) can be used to find the field y„„ to
any order of approximation desired. Let us assume
that we have found the field y„„to the (k —1)th or-
der of approximation so that the fields @ ~y„, (k' &k)
are all known. From Eqs. (4.26a) and (4.26b) we
can find (»jp. This is possible because (,)s„ is non-
linear in („.) y„v and thus depends only on the known

o, &y„„. Having found &»j„we can use (4.26c) and
(4.26d) to find &»y&* &, and the use of (4.27) will
give (~)y[pv]. The field (~)y(pv) can be found from
Eqs. (4.26e) and (4.26f). This is possible because
(»t „„is nonlinear in (, ) ypv and therefore, depends
only on the known (~.)yp„. Thus we have („)y„v. By
proceeding step by step, assuming such a procedure
converges, we can determine the field y„v to any
order of approximation we desire.

of an electric and magnetic part. From (4.27),
(5.1), and (5.2) we have

E N
y[ pv l

= y[pv] + y [pvl ~

where

E Ea p N N kf
y[pl

(5.4)

(5.5)

B. Homogeneous and Inhomogeneous Equations

g)RH 0

g2 yEH Pp 7

g2 NH 0
p

2 H
y( v)

and a set of inhomogeneous equations

U jp=s
.I, p H, p
p p

g2 EI ~

EI, pu EH, pv

(5.6a,)

(5,6b)

(5.6c)

(5.6d)

(S.7a)

(s.7b)

(5.7c)

(5.7d)

We shall find it convenient to divide the field eq-
uations (5.3) into two sets of equations, a set of
homogeneous equations

V. METHOD OF SOLUTION

A. Electric and Magnetic Potentials

We shall split the field y[*„,] into what we shall
call an electric part y[*„]and a magnetic part y[*„",].
This will be done in such a way that both the elec-
tric part and the magnetic part can be derived from
a potential. We have

[Pvl ~ y[pv] [Pvl (s.l)
where

NI 0
p

Nl, pv NH, pv
p p

2 I0 y(pv) tpv p

I ,v H ,v
y(uv) y(p»

where
~ H I
jp jp+ jp

(5.7e}

(5.7f)

(5.7g)

(5.7h)

(5.8)

gE E E gN Ala, p
[pv] p v " p' [pv] =&pvpay (5.2)

2
jp =sp2

p -0

CPy„=j„,
E, pV 0
p

N, pv
p

2j y(pv) pvx

v n
y(pv) 3

= u.

(5.3a)

(5.3b)

(5.3c)

(5.3d)

(5.3e)

(5.3f)

(5 38)

(5.3h}

The field yE will be called the electric potential
and the field y"„will be cal.led the magnetic poten-
tial. In terms of these potentials the field equa-
tions (4.26) take the form

H I+ y(pv) ~

Taken together, these two sets of equations are en-
tirely equivalent to (5.3).

The character of the entire solution to the field
equations (5.6)-(5.8) can be considered to depend
on the choice of functions we take as solutions to
the set of homogeneous equations. We shall there-
fore regard the solutions to the set of homogene-
ous equations as determining the basic structure
of the particles within the region under considera-
tion, while the solutions to the set of inhomogene-
ous equations give corrections to this basic struc-
ture. It is to be understood that no new quantities
characterizing the structure of a particle will be
introduced when solving the inhomogeneous equa-
tions.

The field ypv will be regarded as consisting of
two parts, a field y„, and a field y'„„. We have

The field y[„v] can also be regarded as consisting H I
ypv ypv +y pv ~ .(5.9)
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where

H H + H I I I
&(p )+&[p ] &p &(p)+&[p ] (5.10)

H EH. J](IH I EI
~[pv] &[pvl+&[pv] ~ ~ [pv] &[pvl ~ (5.11}

+EH & ~EHg» p
[pv] pvpo

NH J(IH NH EI ~ EIg, p[pv] " p p» [pv] pvpo

(5.12)

d pV' =gpvd $pd

Finally, we introduce the notation

(5.13)

(p) p p (p)(tt (P)/)r (P)(p d(P)((r/d(p)y (5 ]4)

Solutions to the homogeneous equations. Before
me discuss any solutions to the homogeneous equa-
tions me shaH introduce some notation. The num-
ber of particles within a region of the continuum
with which we are concerned will be denoted by N.
The coordinates of the singularity associated with
the Pth particle in the region wiQ be denoted by

The points P (P mill be considered as form-
ing the world line of the pth particle and will be
parametrized by a quantity P'T defined through the
equation

S
~H g(P) H

P=1

N~ (p) EH uH ~(p) ~H
&p ~ &p & &p

P=I P=l

H (p) H
]'()r v) Z &(uv) r

P=l
where

(p) H (P) H +{P) H
jp 2p ret+ ~p adv&

(P) EH (P) EH (P) EH
~p ~p ret+ ~p adv&

(P).&H (P)» +(P) uH
~ p ~p ret+ ~p adv~

(P) H (P) H + (P) H
~(pv) 1(pv) ret + ~(pv) adv&

(5.16)

(5.17)

(5.18)

(5.19)

(5.20}

(5.21)

(P)(+} (P)& (P)~p (P)( ) (P) (P) p (5P

A superscript (p) to the left of an expression
means that those quantities in the expression
which are associated with a particle are to be as-
sociated with the Pth particle. A dot over a quanti-
ty associated with the pth particle means the deriv-
ative of that quantity with respect to 'v.

As a solution to Eqs. (5.6) we can choose

(P) H 1 0) ~ (p) -1 (p) D- (p)2 p ret(adv) = a (tret(adv) H /f )Mrr(+ ) 1ret(adv)+» urer(adv) [( [pa ] rr /f }(r+) ]rat(adv)c c I

(5.22)
(P) » (P) E (P) E1 -1 1 ~ (P) E; (P) -1 g ~ ~ ~ O] p ret(adv) =

a ~ret(adv) ~e +)r(~~} jret(adv)+ a & @ret(adv) I e[pat] ~ ~ ~ e. (»'I) j rat(adv)
'

i=1

(P) N H (P) JI (P) Af -11 1"
(p) ~; (p) -I »ol o] )r ret(adv)= a ttret(adv) fe tt)t( ) ~ret(adv)+ a g ret(adv) le[star]'''trt(++) jret(adv)

i =1

(p) H
~(pv) ret(adv) 2 aret(adv) &~ p v+ p Sp pu uv+ 2Svpu up Jk&u/ Jret(adv)C

(p) c (p)r & »p+ a urer(adv) L(a~» p+» + aS»p+)r)(++) l rer (adv)c

(5.23)

(5.24)

1 o2 "oi
aret(adv) L~[pol][vo ] . .o-~ j &ret(adv) (5.25)

with

(P)S (P) Spv Vpl

structure, are constants. They satisfy the rela-
tions

(p) (p)
[pgl][vo3]' oi

= [vg2][pg ] oi

The quantities

(5.26) P)a +(P =1 (P E +(P)aE =1ret+ adv & aret+ adv

a + a =1 p)a + pa =1ret+ aadv s ret+ adv

(5.26)

(5.27}

(P) D (P) & (p) E {P) E
e[pol]. ~ oi t e[pgl] gi p

(P) ~ (P) J)I (P) c (P) Se e[p ]... i& m

(p) c
N[Pgl][Vg ] ~ ~ eg

in (5.22)-(5.26) describe the structure of the Pth
particle and may be functions of P 7. The quanti-
ties 'P'a„, and P'a,d„which further describe this

i +(P) i =1 (P)aEi +(P)
adv ret+

")a"i +("a"i =1 "'aci +")aci =1.tet+ adv ~ ret+
(5.29)

The quantity f has been introduced into (5.22) for
dimensional reasons and will be treated as a uni-
versal constant. The subscript ret indicates that
in the expression in brackets, quantities associ-
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ated with the pth particle are to be evaluated at the
"retarded point"

(P)(r2) 0 (P)r4)0 (5.30)

while the subscript adv indicates that the expres-
sion in brackets is to be multiplied by -1 and then
those quantities associated with the pth particle
are to be evaluated at the "advanced point"

(5.31)

The quantities 'e e, P e", 'm and P S»
will be known, respectively, as the coefficient of
diffuse electric charge, the localized electric

(5.32)

The reason for this has been discussed in Sec. IV.
From (5.16)-(5.26) we find that

charge, the localized magnetic charge, the mass,
and the spin of the Pth particle. A particle will be
considered neutral if e = P e =(P e"=0. The
quantity l will be known as the electromagnetic
dispersion length.

If we wish a solution of the field equations (4.26)
to approximate a nonsingular solution to the field
equations (2.16), we must choose

(p) u ~ (p)e Op et pg j g. 0
1

p=l
(5.33)

EH, )ll/ g (P) E (P) [OEH( )-1],p g (p) E (P) [OEH(r )-1],p
p=l p= 1

(5.34)

HH, )lu P (P) aH (P) [OHH(ru)-1] .Ij +P (P)aH (P) (OHH(ru)-1], P

p=a p=1
(5.35)

H, u g (P)aG (P) [OH(ru) 1] ~ P-(P) G (P) [OH(r )-I]
p=1

N N
+ Q a«, '[c" ](ru) ']„,' + g")a',„"'[eH[ „,(ru) ']

p=1

(5.36)

where

(P)OHH (P)ED/c2[2

(P) O
EH (P) EE/G2 (P) OHH (P) E'H/G3

(P)O (P) Jp / 2
P, y

[Pv] ( )lp S)lpu up +Sppu up)/2G

and

I' = (m u +S up).
P IIP

Note that

(5.37)

(5.38)

(5.39)

(5.40)

particle will not be considered here. Our investi-
gation will be restricted to finite regions of the
continuum containing only standard ideal particles,
and we shall always work in a harmonic coordinate
system such that (5.16)-(5.26) are valid. "

Solutions to the inhomogeneous equations. We
shall introduce some further notation. The sub-
script fk}. to the left of a field will mean that the
field contains only those terms which are of order
k or lower in the power-series expansion in x of
the field without the subscript. For example,

(P) uI 0i»]
The quantity P P„will be known as the momentum
of the Pth particle.

Fields j„, y„, y"„", and y~„,~, of the forms given
in (5.16)-(5.26), are not the most general solutions
to the homogeneous equations (5.6). We shall as-
sume, however, that in any region of the continuum
which we investigate a harmonic coordinate system
can be introduced so that j„, y„, y„", and y~„,&

do
take these forms. " Such a region will be consid-
ered to contain only standard ideal particles if the
structure of each particle in the region can be des-
cribed through a finite number of the quantities
(5.27). The possibility that a region of the conti-
nuum may contain a more general kind of ideal

(2)&2~ Z (( (2') &PP.
0'=p

(5.42)

[2122 =[ ]EH+HO(K )i

[2]jP [2]g)1 +O(K )

(5.43a)

(5.43b)

The world line of a particle and the quantities
(5.27) describing a particle's structure will depend
on ~, and we are assuming that they can be expand-
ed in a power series in H. The subscript [k] to the
left of a field will mean that the field is identical
to the field with the subscript (k) to the left of it,
except that the world lines of the particles in the
region and the quantities (5.27) associated with the
particles' structure will be treated as exact, and
not expanded in a power series in a'. In terms of
these fields the field equations (5.7) take the form
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(5.43d)

(5.4311)

(5.46)

From the work of Appendix A, an appendix in
which we assume that at each order Eqs. (5.43a),
(5.43c), and (5.43g) have solutions which can be
expanded in a power series in c ', it follows that
if all lower-order field equations in the set (5.43)
have been solved, then the kth-order equations of
(5.43a) have a solution over the region we are in-
vestigating such that

[-j [k»~ =[»j1+o(H (5.43c)

[A] &p [&] p
El Vv yEH 1 v +O(Hk+1)

[.]& p'=0 (5.43e)

I,rrv HHpv O( k+1) (5.43f )

[kiy[rrv~= [kit&v+O(8 ), (5.43g)I,lt H, ij 0+1

[kyar[„v)'

= [klr[„)' +O(H ),

where the expression O(H'") means a term whose
power-series expansion in ~ begins with ~"'. The
conditions

[k)s„"= O(H" 1), (5.44)

[kij„"=o(rr" 1), (5.45)

hold true by definition, and the condition

[kitlrv' = O(II"")

holds true if the field equations (5.43) have been
satisfied in all lower orders.

We shall now show how the set of equations (5.43)
can be solved step by step with respect to k to any
order of approximation desired. In order to do
this we shall assume that at each step with respect
to k Eqs. (5.43a), (5.43c), and (5.43g), equations
of the form of d'Alembert's equation, have solu-
tions which when expressed in terms of x' and t
can be expanded in a power series in c '. This
seems to be a reasonable assumption as we can
always, at least formally, construct such solutions
step by step with respect to powers of c '.

The expression "kth order of approximation"
will mean from now on an approximate solution
which differs from the exact solution by terms of
order k+1 or higher. The zeroth-order solutions
to (5.43) are

[0]&'p = o (5.47)

u 0' [0]~ ]tt
(5.48)

[0]&(pu) =0. (5.49)

N

j l, y g [kjgD [kI[ CDI(rs)-1]
P=l

N

++[ca ['[[kic '(ru) ']
d

+O(H'+1)

(5.50}

The [kic in (5.50) are functions only of ' T If.
(5.43b) is to be satisfied, we must choose

[PI CD O(P+1) (5.51)

where
(P) CD (P) CDH (P) CDI
[&]

—[&] + C&] (5.52)

AEI, pu[0]+ p
(5.55)

If (5.43d) and (5.43f) are to be satisfied, we must
have

",,',c'=o(H"'), [",,c"=o(H"'),

where
(P) CE (P) CEH (P) CEI
[n] —[a] + [a]

Ca]
—

C~]

The equations
(P) (P)
[~]C =0I, C~]C =0,

(5.56)

(5.57)

(5.58)

will be known, respectively, as the k'th-order
equation of localized electric charge and the
kth-order equation of localized magnetic charge
associated with the Pth particle.

The equation

(5.53)

will be known as the kth-order equation of diffuse
electric charge associated with the pth particle.

From the work of Appendix A we find that if
Eqs. (5.43) have been solved to the (k —1}th order,
and Eqs. (5.43a) and (5.43b) to the kth order, then

Eqs. (5.43c) have a kth order -solution over the re
gion we are investigating such that

N
yEI,pv p[k) E [k) [ CEI(& )-1],v

P=1

N

+ P[k) SE [k) [ CEI(r+) 1],v+ O-(+k+1)

(5.54)

The [kiC in (5.54) are functions only of [k~T. We
know that Eqs. (5.43e) have the solution [k~ y"„'=0,
for which

It is shown in Appendix A that if Eqs. (5.43) have been solved to the (k —1)th order, then Eqs. (5.43g) have

a kth-order solution over the region we are investigating such that

[kyar['vv}'"= Q arer [[k]cp(rg) ]rer+P Ilrer [[k]&p(rs) ]adv
P=1 P=I

N N

+ g a«r [[k~c[»i(1u) ']ref "+Q' arer [[k&c[„v&(ru) ']ep, '+O(H""), (5.59)
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where [,]C„and [,]C[„„]are functions only of(p) r (p) (p)

and
where a" and n"„are constants satisfying the
equations

(p)
[y]C[pv] Q = 0, (5.60) (5.71)

If (5.43h) is to be satisfied, we must choose

~(,')C„=O(~"'), ~(, )C(„,) =O(~"'), (5.61)

where
&(P~y) & P 0 (5.72)

and e" is a quantity nonlinear in the particle para-
meters (5.27) and satisfying the equations

(p) (p) a (p)[~]C~
= [g]C ~

+ [~]C ~,

(p) (p) H + (p) r
[0] [pv] [4] [pv] [k] [pv] '

The equations
(p) (p)
[y] p

—
y [y]C[pv] —

y

(5.62}

(5.63) x'" =x" +e" (5.74)

Coordinate transformations of the form

x'" =n" +n",x",
where n. " and a"„are constants and satisfy (5.71)
are known as Lorentz transformations. Coordi-
nate transformations of the form

(P) CD P (5.64)

the equations of'localized electric and magnetic
charge

will be known respectively as the 4th-order equa-
tions of mass and motion and the 0th-order equa-
tions of spin associated with the Pth particle.

It is clear that the inhomogeneous equations, and
thus the field equations (5.3), can be solved step by
step to any order of approximation desired if, and
only if, the standard ideal particles within the re-
gion with which we are concerned satisfy the equa-
tions of diffuse electric charge

where c" has a power-series expansion in ~ such
that e"- 0 as ~- 0, are known as gauge transform-
ations. The condition (5.72) along with the fact
that e" in (5.70) is nonlinear in the particle para-
meters (5.27) restricts the gauge transformations
with which we shall be concerned to gauge trans-
formations between inertial systems.

VI. EQUATIONS OF CHARGE, MASS, MOTION,

AND SPIN

A. Chargers, Force, and Torque

(p) CE p (p) CM p (5.65)
If we introduce the notation

and the equations of mass and motion and spin

(P) C P (P) C 0

We are using the notation

(P) CD (P) CD[]
(P)CE=(P) CE (P)CM (P) CM[~] [~]

(5.66)

(5.67)

(5.68)

Cu = [-]Co

in (5.64)-(5.66)."
(p) (p) ~

C[pv] [~] [J(fv] y (5.69)

C. Inertial Systems

x'" = n" +0.",x'+e", (5.70}

Within a perfectly isolated region of the conti-
nuum which contains only standard ideal particles,
we shall always use the especially convenient har-
monic coordinate system discussed earlier in this
paper in which j„, y„", y"„, and y("„,) take the
forms given in (5.16)-(5.26). We shall call such a
harmonic coordinate system a Cartesian inertial
system or, more simply, an inertial system.

From this definition of an inertial system, and
using (2.14), we see that coordinate transforma-
tions which lead from one inertial system to an-
other have the form

(P) D &2~2(P) Car
y

(».E =-.2(»CEr

( g ~ ()Cr (P)s 2C2( CJp =-C
py B'av=

—C

(6.1)

(6.2)

(6.3)

(p) eD (p) ~D (6.4)

the equations of localized electric and magnetic
charge take the forms

(p)e =(p)s' (p)e"=0 (6.5)

and the equations of mass and motion and spin
take the forms

(p) ~ (p) q
p Jps

(p)
' '

p
'

p (p) s(S„„—S„~u u„+S„~u u„) = n'„„
where

(P)~ (P)(~Gu +S uP)
PP

(6 6)

(6.7)

(6.8)

(p) Z.S (p) Z v (6 9)

The quantity ' s will be known as the diffuse e1.ec-

we find in an inertial system in a region of the con-
tinuum containing only standard ideal particles
that the equation of diffuse electric charge associa-
ted with the Pth particle takes the form
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(s) 0) (

and introducing n„„ the orbital torque acting on
this particle with respect to the point x ", by

(6.10)

(()P (()(r f (6.11)

we find, through the use of (6.6), that Eqs. (6.7)
take the form

(P)J (P)
/IV PV 0

where

(P)J (P) L y(P) $PV PV IIV P

(6.12)

(6.13)

(p) ~ (p) +z, +(p) +s (6.14)PV PV PV '

The quantity p J„,will be known as the total angu-
lar momentum of the pth particle with respect to
the point x ". The quantity n„, will be known as
the total torque acting on the pth particle with re-
spect to the point x ".

We see from (6.4) and (6.5) that the electric
charge, both diffuse and localized, which is as-
sociated with a particle does not in general remain
constant but changes with time. Of course total
electric charge is conserved. This follows from
(4.26b).

We shall now investigate the functional depen-
dence of ~'s, ~'s, "f„, and ~ n„, . A study of
the field equations for y„, (y~, is here understood
as computed using the approximation method of
this paper) shows that the field y„, over an iso-
lated region of the continuum containing N standard
ideal particles can be split into two parts, a part
P y'„", , which is singular along the world line of
the Pth particle, and a part y„'",', which is a solu-
tion to the field equations where one ignores the
existence of the pth particle except as it affects
the coefficients of diffuse electric charge, the lo-
calized electric charges, the masses, the spins,
and the motion of the other N-1 particles in the
region. ' The field P y'„",' is nonsingular along the
world line. of the pth particle but is singular along
the world lines of the other N —1 particles. We
are assuming the world lines of two different parti-
cles never cross.

tric charger acting on: the pth particle, (p)s

wiQ be known as the localized electric charger
acting on the Pth particle, (~~f„will be known a,s
the force acting on the pth particle, and n„,
will be known as the torque acting on the pth
particle about the particle's center (P) (". The
quantity P n„', will often be called the spin torque
acting on the pth particle.

The equations of spin can be put in a more famil-
iar form. Introducing L„„the orbital angular
momentum of the pth particle with respect to the
point x", through the equations

In the neighborhood of the world line of the pth
particle we thus have

(p) 3 elf (p) ext (6.15)+

where we shall call y„",' the self field and 'y'„",

the external field in the neighborhood of the pth
particle. A study of the field equations for j» y„,
y"„, and y(„,) shows that if these fields are evalu-
ated at a point in the neighborhood of (~' $" (where
(~' $" is a point on the world line of the Pth particle),
then these fields, in addition to depending on (P)x",

will depend on three kinds of quantities. First,
they will depend on those quantities which describe
the basic structure of the pth particle in the neigh-
borhood of (~~ (", that is, on the quantities (5.27)
and their derivatives with respect to T all evalu-
ated at P (" and on the constants P a„t and 'P a,d, .
Second, they will depend on those quantities which
describe the world line of the pth particle in the
neighborhood of (~' t", that is, on (~~u" and its de-
rivatives with respect to T all evaluated at
Third, they will depend on those quantities which
describe the external field in the neighborhood of
the pth particle, that is, on the fields 'p'y'„", ,

' 'y'„'„' ~,
etc. all evaluated at 'P' (".

The chargers ("s and (~'s, the force ("f„, and

the spin torque P n„', can be regarded as depending
exclusively on the three kinds of quantities de-
scribed above. This follows from their definitions
in (6.1)-(6.3), and from (5.50), (5.54), and (5.59).

Two procedures for finding the chargers, force,
and spin to~que. We have seen that the chargers,
force, and spin torque acting on a standard ideal
particle will depend on the quantities which char-
acterize the particle's structure and motion and
on the external field in the neighborhood of the
particle. In this section we shall describe two
practical procedures for finding this functional de-
pendence to any order of approximation desired.

A straightforward way to obtain this dependence
is to solve Eqs. (5.43) step by step to the order of
approximation desired. Such a procedure, how-

ever, appears to be impractical. A practical pro-
cedure for obtaining this functional dependence is
as follows.

Expand the solutions to the homogeneous equa-
tions (5.16)-(5.26) in a power series around the
position of the pth particle at time t, that is, in a
power series in (

~
r (, where

(0)
~
r

~

(0) (r sr s )x /2 (6.16)

Solve Eqs. (5.43) in the neighborhood of the Pth
particle step by step to the order of approximation
desired, which we shall denote by k, keeping only
those terms in ~„~j» ~„~ y„, and ~„~ y(») which,
when one forms I-~jj v f&lyp ', and ~„~y(„,)' in~ I,p EI,p I,V

an inertial system in which the pth particle is at
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rest, give rise to terms which become infinite as
(P) ~r ~-0. This procedure for solving Eqs. (5.43)
in the neighborhood of the pth particle can be car-
ried out with a finite amount of labor as one need
keep only a finite number of terms in the power-
series expansion in (P)

~
r ~. Next, form [»j'„",

[»yu ", and [»y(„„)'in an inertial system in
which the pth particle is at rest, keeping only
those terms which become infinite as (P)

~
r

~

0.
We see from (5.50), (5.54), and (5.59) that we will
find, if Eqs. (5.43) have been solved properly,

[k]2 u [» r +, P C (P) pi-1+O( 0 1)
(6.17)

y''='(']C '"' ~r
~

'+O((("')+const,

[„]y('„,)'= [ [)]Cp—4),]C[„,]$ „(5,i+r'r'/~r~')]

x'"(r( ' '['„']C[„-, "'(r[ ' +O(K"')

(6.18)
In (6.18) we have made use of the fact that in an
inertial system in which the Pth particle is at rest,
(p) 0) o» ~
[k l [uo l y [k l [u 4l, 4 [k lC [us l ~,44 (6.19)

These equations follow from (5.60).
We have described a procedure for finding to the

DI (&) EI (0) I (0) Ikth order [„lC, [»C, [„lCu, and [klC[u l in an
inertial system in which the Pth particle is at rest

[),]C[„,] in (6.17) and (6.18) are found as functions
of the quantities which describe the structure and
motion of the pth particle and of the external field
in the neighborhood of the pth particle. Since the
transformation properties with respect to Lorentz

[klC[„,l and of all the terms appearing in them are
known, it is possible, through the use of a Lorentz

[„lC[„,l in any inertial system having the same
gauge as the original rest system. The use of
(6.1)-(6.3}will then give to the kth order [,]s,
[„]s, [,]f„, and [),]n„, in such a coordinate system.

After having completed most of the work pre-
sented in this paper the author came to realize
that the procedure described above for finding
&e) D 0) E (a) 0) S[,]s, [„]s, [,]f„, and [,]np, in an arbitrary iner-
tial system is not necessarily the most practical
procedure to use when seeking these quantities.
It certainly is not the most elegant. A more ele-
gant procedure and a procedure which makes use
of Lorentz-covariant notation at each step of the
analysis is as follows.

Expand the solutions to the homogeneous equa-
tions (5.16)-(5.26) in a power series around the
world line of the pth particle, that is in a power
series in ~ e, where

(p)g (p)
( r rp}l/2 (6.20}

The vector 'P'r" which appears in (6.20) should al-
ways be chosen to be a spacelike vector. Solve
Eqs. (5.43) in the neighborhood of the world line
of the Pth particle step by step to the order of ap-
proximation desired, which we shall denote by k,
keeping only those terms in [klj'» [,lyE', and

[k]jy(Iuv) which, when one forms [klj Iu u
[kl yEuI up

and [„ly(„,)', give rise to terms which become in-
finite as ~e-0. This procedure for solving Eqs.
(5.43) in the neighborhood of the world line of the
pth particle can be carried out with a finite amount
of labor, as one need keep only a finite number of
terms in the power-series expansion in e. Next,
form [kl j„', [»y„', and [,ly(„,)', keeping only

~ I, u EI, u I,v

those terms which become infinite as ~ e-0.
From (5.50), (5.54), and (5.59), we know that we
will find, if Eqs. (5.43) have been solved properly,

' P =(P)( „,C"[I+((t.u)'] '")(P)e '+O((("')

[),] r ' = ([))]C [1+ (Qu) ] ]' e + O(i( ) + coils't

[g] y(„»
'" —— ([9 ]C p + p[y] +][p( ) + [~] [p ] + [~] [p ] + (( )}][1+ (nu) ]

-' ']
+(P)g[„]C[ „](i."+O((nu))] [1+((tu)'] ' 'j' )e '+0((("')

(6.21)

(6.22)

(6.23)

where

(0) & u (p)&u (I()) &-& (6.24)

each step of the analysis. The use of (6.1)-(6.3)
(~) D 0) E (~) (P)will give [»s, [~]s, [„]f„,and [,]n„, .

(p) ( ) ( ) (p) p
P (6.25)

In arriving at (6.23) from (5.59) we have not made
use of the fact that [,lC[u„l is antisymmetric in p,

and v and that (5.60) is valid. "
We have just described a second procedure for

[klC[u„l in an arbitrary inertial system. Note that
this procedure uses Lorentz-covariant notation at

B. Simple Ideal Particles

The equations of charge satisfied by a standard
ideal particle form a system of three independent
equations for the three independent quantities which
describe the charge associated with the particle.
These three independent quantities are the coef-
ficient of diffuse electric charge, the localized
electric charge, and the localized magnetic charge.
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The equations of mass, motion, and spin satis-
fied by a standard ideal particle form a system of
seven independent equations for the ten independent
quantities which describe the mass, motion, and
spin associated with the particle. The motion of a
particle is understood as being described by the
particle's velocity. If no additional conditions are
placed on the structure of a particle, then its
world line will not necessarily be restricted by
these seven independent equations. If, however,
the particle's structure is not regarded as arbi-
trary, but at all times the structure changes in
such a way that the particle has no mass dipole
moment, that is, if

(6.26)

then the equations of mass, motion, and spj.n do
restrict the motion of the particle. This is so
because in this case the equations of mass, motion
and spin, along with (6.26), form a system of ten
independent equations for the ten independent quan-
tities which describe the mass, motion, and spin
of the particle. "

(&) g =(&)g+ =(&)g+ =(&)grer rei rer rer &

(P) g& (P) g@ (0) g& (P) g&
adv adv adv ~ advs

(6.27)

will be known as a simple ideal particle. We shall
study simple ideal particles in more detail in
paper II.
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We note that of the quantities given in (5.27) char-
acterizing the structure of a standard ideal parti-
cle, only 'e, ~ e, ~ e", ~'m, and 'S„,must
satisfy restricting equations. The mass dipole
moment ~ S„, ~ u' along with the quantities
(t) (t) s (t) ~

[tea ] o e[pa ] "o ) e[i[fa ]".a1 i~ m~„][„]..., may be chosen arbitrarily. Apop vfy2 ' ' oi
standard ideal particle for which these quantities,
which can be chosen arbitrarily, are zero and for
which

APPENDIX A: ON SOLUTIONS TO THE FIELD EQUATIONS

The inhomogeneous field equations (5.43) are very complicated and must be solved step by step with re-
spect to k. In this appendix we shall show that in a perfectly isolated region of the continuum containing
only standard ideal particles, the inhomogeneous field equations can be solved step by step to any order of
approximation desired. In order to do this we shall assume that at each order, over a perfectly isolated
region containing only standard ideal particles, Eqs. (5.43a), (5.43c), and (5.43g), equations of the form
of d'Alembert's equation, always have solutions which, when expressed in terms of x' and t, can be ex-
panded in a power series in c . We shall restrict our investigation to such solutions.

We regard the inhomogeneous field equations as having the zeroth-order solutions (5.47)-(5.49). This
means that if we wish to show that the. inhomogeneous field equations can be solved to any order of approxi-
mation desired, we need only show that one can always solve the kth-order field equations (k )0) of (5.43)
if one has already solved al lesser-order field equations. This we shall do.

Let us first look at Eqs. ( .43a) and (5.43b}. The assumption that the field equations have been solved to
the (k —1)th order means that [,]s„ is known and satisfies the kth-order equation

, fl 0(+0+1) (A1)

If we expand

[a] 0
l=o

the fields [,]s„and [»j„ in a power series in X, where X=c
l+2 l+3

+2) [k]Spa [k]Sm = ~ + (l+3) [k]Sm t
l=0

(A2)

~ l+2 o

[a]lo Z ((+2] [a])oi [a]3~ Q ((+s] [a] jm x
t =0 l =0

we find that the kth-order equations of (5.43a) and (5.43b} take the form
2 ~ I ~ I / k+lx

(t+2) [k]lo (l) [k]jo,oo (t+2) [k]So+0&K

2 ~ I ~ I k+ ly
(l +3) [k]2 m (l+ y) [k]~ m, pp (l+ 3) [k]Sm +0« /y

~ I ~ I ~ H
(l+3) [k]2 m, m (l+2) [k]~ 0,0 Qt+3) [k] ~m, m (l+2) [k]2 O, OJ + ~«

where

k+ &X
(l+3) [k]Sm, m -(l+2) [k]So,o+ ~«

Using (A6) we see that any set of solutions to (A4) and (A5a) will satisfy the equations

2/ ~ I ~ I ~ (+ i(t+3) [k]~ m, m (l+2) [k]j 0, 0&( i(t+1) [k]~ m, m (t) [k]dp, pi, Op+Os

(A4)

(A5a)

(A5b)

(A6)

(A7)
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or, what is the same thing,

2 j1, )L O(K a+a) (A8)

Equations (A4) can always be solved step by step with respect to I. This can be seen from the fact that
at each step the right-hand side of the equation is known so that the equation to be solved takes the form of
Poisson s equation, an equation which, over a finite region of the continuum, always possesses a solution.
Let us denote by [,]j, a particular solution to (A4) which we obtain in this way. Equations (A5a) can also
be solved step by step with respect to I. The question we must answer is whether Eqs. (A5a) can be solved
step by step with respect to l so that (A5b) is satisfied. In the next few paragraphs we shall show that they
can.

Let us start with the case where I =0. We can always construct a solution to (A5a). Denoting this solu-
tion by (» [k]j ' we see from (AV) that it will satisfy the equation

((2) [k]j m, m (2) [k]j p 0) =O(K )

and thus we can write

(A9)

(2)[k]jo,o (2)[kl jm, m Q(2)[k]C""'lrl '+Q p'"((2)[k]C(a ~ .~ a.) lrl ')' "'&+(»[2])(' +o(K"'), (A10)
P=l P=l i =1

where the coefficients (»~„]C
' and (»I-»C(' ... ) may be functions of t and (»~„]g' is a nonsingular functionol ai

of x" over the region we are investigating. We are using the notation

(2) lrl (k)(r r )a/a

Next let us look at the cases where /=1 and /=2. %e can always const;ruct solutions (4) I-» j' and

«&[,]j"to (A5a). Through the application of (AV) we see that (2) [k]jp p (4}[„]j ' and ()[k]jp p (5) [k]j '

can always be written in the forms

(All)

(3) [k]2 0,0 (4) [2]jm, m g (44)
[k]C"'"Ir I

' + p p "'((4& [.]C(". " ., & I
r

I
') ""'

+(4) [k]X +O(K )y
P=l P=li=l 1

(A12)

Ã
~ gI ~ II (p) I (p) -1 d (p) DI (p) . Dr -l, al . ai

(4) [k]20,0 (5) [k]~ m. m (5) [k]C I
r

I
+

2 df 2 ((2) [k]C I
r

I ) + ((5) [k]C(a& "0&) Ir I
)'

P=l P=l P=l i=1

N 2

+Q Q2 dfa'"((»[k]C(a'. ..,.) Irl)' +(5)[k])(' +O(K"'),
p=l i=1

(A13)

(P) DI (P) DI (P) DI ID IDwhere, , C
& ] ( .. ), (,)&,]C, a d(, )&,]C(, ..., ) are functions of t only, and(4)[„]y and(, )t&]g

are nonsingular functions of x"over the region we are investigating.
If we continue step by step to higher order in A. and apply (AV) at each step, we find that [,]j'„' itself

can always be written in the form

M M (2&)! dt" '[k] ' ~ M ~ (2I)) dt2)
P=l l =0 P=l l=0 i=1

where the quantities I, ]C and ~„]C(, ...(P) DI (P) DI
al 'a

(P) CDI ~ yf+3 (P) CDI
[a] ~ (r+ 3) ['n]

1=0

(p) ~DI ~ yl+3 (p) ~DI
tlat]C(a a.) ~ ~ (f+3) [k]~(a ' 'a ) t1

(A14 )

(A15)

are functions of t only, and ~»y' is a nonsingular function of x over the region we are investigating. If
we make use of the power-series expansions

2l 2t

"'[[,]c '(ru) '],d„+'"[[,]c '(ru) ']„,=2+
( ), „''([k]c 'lrl" '),

t=0
2l 2l

[[k]C(a 0 )(ru) ]apv+ [[k]C( . ..0 )(ru) lia)=2 Q ( I)( df2) ([k]C(a ~ ~ 0() Irl ' ),
l =0

t» j '„"can be written in the form

(A16)

(A1V)
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(A19)

Equation (A19) follows from (AS) and the form of (A18).
Let us next introduce the field ~~~X,

N .N "
(p)jI'"= a g'"[[i,](= '(«) 'l...+2 Q"'[[i,]&"(«) '].d, +5 Q g"'[[a](-("~ "o.)(«) '],.&'

P=l P=l P=l i=1 2

[[a] (a "'a')( ) ]adv '+ [a]X + ( )i (A
P=l i=1

where &~&C
' and ~,~CADI ... ,~

can be considered functions of T and the field t~~y' satisfies the equation

ID g(+ 1+1)

where the quantities (~) a and (~) a ( in (A20) are arbitrary constants. Note that [»X will be nonsingular
over the region we are investigating and will satisfy the equation

g2 D ~(~ ih+ 1)

From (A1S) and (A20) it follows that [„]j '„'" can be written in the form

g (()&D (() [ gDI(«)-1] + P (P)uD (() [ ( D&(«)-1]

(A21)

N
+ g g(P)SD( (0)[ gDI (+ )-1],a1" a(

N
+ ~ ~(()uD; (P)[ [ Ds

(& )-1],o, ."a;+ D+0( i)+1)
P=l i=1

where we are using the notation

(A22)

(A23)

(A24)
(P) gD( 1(1 (P) ~D;) (P) uD; 1(1+(P) uD; )Q t=2 — 0 &» Qd

The constants ~'a„„~'a,d„(~'a„~„and ~ a,j in (A22) can be chosen arbitrarily except that they must
satisfy the equations

Eet + adv» ret + (A25)

We have just shown that the field [1,]j '„'" associated with any 0th-order solution [»j '„' of (5.43a)
(assuming that [~]j '„' can be expanded in a power series in c ') can be always written in the form (A22)
where (A21) and (A25) are satisfied. Except for the fact that they must satisfy (A25), the constants
~ aD „(~aD4„, (~) a„~„and (~, a d( in (A22) can be chosen arbitrarily.
Next, note that the equation

V' [,]y (x ', x', x ') = —[„]X,4(x ', x ', x ', 0), (A26)

(A27)

being Poisson's equation, can always be solved over a finite region of the space-time continuum for a non-
singular function ~, jy which can be used to define a nonsingular field t-» j '„",

~ pH ,H f D 1 2 3 D l 2 3
[k]j 0& 4[0]24 I [k]X (& i & i & i &)d+ + [k]V (&» + )i

which satisfies the equations

8 ~ rH g(+I)+1) . gH, p D

This means that if a kth-order solution to Eqs. (5.43a) exists which can be expanded in a power series in
c ', then we can always find another 0th-order solution ~, jj'„ to the equations,
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N N e)
~ I ~ /I ~ /H (p) D; (p) f' DI -11,foal

".ai (p) D; (p)r
[2)& u=ik)& u +ik)& u 2 Z rer [[» &a "a )( M) ]«I ' ' Z Z adv [[2) (ar" a}( II) ]adv' '

P=l i=1 P=l i=1

(A29)

for which
N NjI, u P (P) aD (P) [ CDI(2 II)-I] i P (P) aD (P) [ CDI(~a)-I] 0(K 2+1) (A30)

The field &k) j „, which is by construction a solution to the kth-order equations of (5.43a), will also be a
solution to the kth-order equations of (5.43b) if we choose the quantities ~P) a„r and ~P)a,d, in (A30) to be
those appearing in (5.22), and if the coefficients of diffuse electric charge ~P)e associated with the stan-
dard ideal particles in the region we are investigating satisfy the equations of charge

(P) D 2I2(P) CI 0( lr+1)fa]e (A31)

(A32)

where f„]C
' is a function of T only, and the constants P)a„, and P a,d, are arbitrary except that they

(P) ZI ~

must satisfy the equations

Since Eqs. (A31) can be always satisfied step by step with respect to k, we see that a solution to the
kth-order equations of (5.43a) and (5.43b) can always be constructed if one has already solved all lesser-
order field equations.

Next we must look at Eqs. (5.43c) and (5.43d). We are assuming that the field equations (5.43) have been
solved to the (k —1)th order, and because of the work above, we can also assume that the field I» j' is
known and satisfies Eq. (5.45). If we apply the same sort of arguments which were used in analyzing
(5.43a) to the kth-order equations of (5.43c), it is clear that if a solution to these equations exists which
can be expanded in a power series in c ', then we can always construct a kth-order solution f» y„' to Eqs.
(5.43c) so that ik) yu

' "' will take the form

(k»u'""= Q"'a... "'[(k)C"(III) '] '+ g'"a'g '"[i )C"(ru) '] '+0(K'+')
P=l P=l

(p) y(p) a ]aret+ a adv ~ (A33)

The field &»y„' will be a solution to the kth-order equations of (5.43d) if we choose the quantities ~P) aE,r and
P a,d„ in (A32) to be those appearing in (5.23) and if the localized electric charges associated with the stan-
dard ideal particles in the region we are investigating satisfy the equations of charge

(P) 'E 2IP} CEI g( k+1)fo]e — c fn]

These equations can always be satisfied.
Next we look at Eqs. (5.43e)—(5.43f). Equations (5.43e)-(5.43f) will be satisfied to all orders of approxi-

mation if the localized magnetic charges associated with the standard ideal particles in the region we are
investigating satisfy the equations of charge

(p)
(A35)

N

+ g Z "'a',.*r "'[„)C'u&.r. . .., ) (rM)-']..r"
P=1 i =1

N

+g P 'a ' [[k)cu&a "a)( M) ]adv' 1 +[ gru+kO(K )r
p 1 1 8 V 1 i

where i~]C„' and &„]C„« ...~.) are functions of P 7 only, and the constants a„„Pa,d» a i, and(P a iOl Oi ret& a v& tet~ eidv .are arbitrary except that they must satisfy the equations

(A36)

These equations can always be satisfied.
Finally we must look at Eqs. (5.43g)-(5.43h). The assumption that the field equations have been solved

to the (k —1)th order means that ~k)tu„ is known and satisfied Eqs. (5.46). The assumption that Eqs. (5.43g)
have a solution that can be expanded in a power series in c ' means, applying the same sort of analysis to
these equations as we applied to Eqs. (5.43a), that the field i» y(u'„) ' associated with such a solution &k) y(1,)
can always be written in the form

N N

[k) X(urr) P arer [)Ck)(IXrM) ]rer+ Q aadv [}k)ctr (2 21) ] adv
P=l P=l
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(n) c +(~)~a ~ 9) t"-; +9) c;ret+ adv t ret+

For i &2, the coefficients ~, ]C'p[, ... .] in (A36) may be replaced by the coefficients [[P,]C[„,][,
(P) I I (P) I (u) I (P) ~I
[&] (P&l)«2'"~t) [&]CP(foal& "'~-)+ [&]C~l(Ii&2~3" ~y )

™[~l &2(el&3'"~,) ~

which are symmetric in p, and c,. This means that we can write

(ASS)

ylr, v g [p)gG [p]I Crl(/tt) t] + g [p]gc~ [p)[ C/r(yg) t]

N

+ Q Q stet l[r. ]C[pa ][a . a ](rs) ]ret
P=l i =2 l 2

sed» ~[e]C[pat][ae ~ "a,](++) ]adv' '+[a]Xp+0(& )r
2

Where We haVe ChOSen ' ar lt= brett 0 dl gadv and are uSing the nOtatiOn

(IP) ~pI (P) ~I
[0] ]fU [0] P(v) '

Next note that the equations

[k]9 r(x r x r x ) lk]Xt 1(0r x r x

[-] [e]4re(x rx x )=[e]Xe,e(x r Or x x )r

[ll]9 3( r r x ) [rr]X3,3( t x r 0r x )r

v'[„]ye(x', x', x') =-[,]X, ,(x', x', x', 0),

(A39)

(A41)

can, over a finite region of space-time, always 'be solved for a set of nonsingular functions [,]y„and that
these functions can be used to define a field [» y('„,),

xl
pH 2 3 4

[lr] V[11) [k]'Pl [e]Xl(~rr x r x r x )d+r
0

pH 1 3 4
[e]]'(a2] [a]'A

0
xs

pH
[g ] /(33) [g ]+3 [g ]X3(vt(r p X p Q p X gdQ p

0

IH l 2 3[»]«e]=[»me+ [»Xe(x x x &)«

[~]&(4.)
—

[A. l &(84)—"~

which satisfies the equations

sH r 0+ li pH, v+ [4]~(P») Ok& )~ [y] Y(PlP) [y]X,P ~ (A43)

This mes s that the field [,]&,I„„),

I pI (l() t" (&)r~ pI r iI p r II p[e]/[vv]= [el]'[pv]+[a]][pv] Q ret [([rr]C[pv] [e]C[pp]l Nv te]C[vp]@ Np)(+s) ]ret

N

rtadv I ([tr]C{pv} [e]C[pp] tr tr v [rr]C[vp]tr trp)( I) 1 edv
(~) a (u) r II iI p - a p -I]

P=l

N ~ (0) |"q (0') r r I I i-l]
+ret [k] (pv)(o2" a~) ++ ret

P=l i=2

(A44)

is a solution to Eels. (5.43g) for which
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]'e]]'Iu»]' = Z a„r [~e]c'„(rII) lrer+ Q rIadv [[e]cu(I'u) '],d,

+ g "'rI„,'"[I,]CI„„](~u) ']„," + g "'a„„"][I„C',„,]{rII) ']„,'+0(»"'),

r (P) Pl '&I P fI eP
Lrr]Cp (l'&]C p

+ 2I rr]C I p pl+ + 2l&]CI p p]+

(p) r (p) rr rr p pr p
Irr]CI pv] {]e]C[pv] l&]Clpp]II II»+ [e]C[vp]s +p) (A47)

(p) CI (p) v (A48)

The field I„]]II„,] above, which is by construction a solution to the ]'Ith-order equations of (5.43g), will
also be a solution to the kth-order equations of (5.43h) if we choose the constants IP]a~

r and IP]acd, to be
those appearing in (5.25} and if the mass, motion, and spin associated with each standard ideal particle in
the region we are investigating satisfy the equations of mass and motion

~p]f j 2 Ip] CI 0( e + 1)t&] p t'@] p
+

and the equations of spin

(A49)

(p)
'

I p 2 (p) r
(le]spv Irr]Spp I rrv+Ie]svprr IIp) 2~ [lr]C[pv]+O(» ).0+1 (A50)

Since these equations can always be satisfied at each order of approximation we have shown that the kth-
order equations of (5.42g) and (5.42h) can always be solved if one has already solved all lesser-order field
equations.

This completes our demonstration that one can always solve the fath-order field equations of (5.43) if one
has already solved all lesser-order field equations. Note that we have had to assume that at each order
Eqs. (5.43a), (5.43c), and (5.43g), equations of the form of d'Alembert's equation, always have solutions
which can be expanded in a power series in e '. This assumption appears to be a reasonable one as at each
order Eqs. (5.43a), {5.43c), and (5.43g} can always be solved, at least formally, step by step with respect
to powers of c

APPENDIX 8: ON THE FIELDS ]r AND IP]'I
v Ie] 1(pv]= le]tp» +0(» )r (83)

We shall illustrate some of the arguments %hich
can be used to show that the field y„, can be split

two f1elds (P) self d (P) ext
pv '

First we look at ~, ]y&, . This field can clearly
be Spl1t 1Qto the tWO partS )g]y~v and

I I]ypv S1QCe

the field ~,]y„„can always be written

(p) self (» ex&
tg]ypv tI]y]]iv +

t j]ypv 0

(P) s elf (»
]. y]ypv t. &]ypv &

ex~
(82}

[I]ypv Z Ir]] pv '
p'&p

The field Ip,' ],'eII ln (82) iS ObViOuSly Singular alOng
the world line of the Pth particle while the field
&,)]y'„",' is not singular along this world line. Note
that the field [y]y„'",

' is a solution to the first-order
field equations for y„, , where one ignores the
existence of the pth particle.

We next investigate the field I-»y(„,). This field
satisfies the differential equations

%'here t~]1~v ls b1linear in I,]y». Thequantity t2]t»
can be split into the two parts ~~]t'„'„' and &~]g'„"„',

(P) sel f (P) ex~
[2]~pv h]trav +I:2]~p» {84)

where t2]t'„"„' contains those terms in ~,]t» which
are bilinear in Il]] 'p",

' and I2]t'p'„' contains all other
terms. The quantity ~, ]t'p'„' is singular along the
world line of the pth particle while I2]t'„",' is not
singular along th1s %'ol ld 11ne.

From the above we see that I,] y(„„) can be split
into the two fields ~,] y('„'„') and(&P, ] y(e„"~),

(p) s elf (p) ext
I.2] y(pv) h] y(pv) + I:2] y(pv) & (85)

re
~2(» self (p) tself + ~(&sy

I:S]y(pv) I:2] pv +0~~ »

~g(p) ex' (p) text+ O(~sq
I.2] y(pv) [2] pv % r'

(85)

The field l, ] yI'„','] in (86) is singular along the
world line of the Pth particle while the field
Ie] QIprt] CR11 be ChOSe11 SO RS 110t 'tO be SiIlglllRI' R1OIlg
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this world line. We are assuming that the equa-
tions of charge, mass, motion, and spin given in
(5.64)-(5.66) are satisfied. We note that i2~y&'~,'& is
a solution to the second-order field equations
where one ignores the existence of the pth particle
except as it affects the coefficients of diffuse elec-
tric charge, the localized electric and magnetic
charges, the masses, the spins, and the motion
of the other N-1 particles in the region under in-
vestigation.

Applying the same sort of analysis as above to
the equations satisfied by [2]y[p ] one easily sees
that [,] y[„,] can also be split into the two parts
(0) s elf (0) ext
[2]r[p.] and [2] y[p, ]

If we continue to apply the same sort of analysis
as above to the field equations at each order of
approximation, it is clear that we shall find, as-
suming our approximation procedure converges,
that y„, itself can be split into the two fields ~ y'„'„'

and (&)
pv
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forms gjven in (5.33)—(5.36} jf (P) C
(p)C&H (p)C&& (p)C

&, and (p)CL»j are considered arbi-
ry except tha, t (P)C{-

&
(P)u" =0. By the term most gen-

eral we mean that any other set of solutions to the homo-
geneous equations will differ from those given in (5.16)-
(5.26] by only terms in yg, yg, and ygg which do not
contribute to g»~ or by terms in y(g»& which reflect the
use of a different harmonic coordinate system than that
used in (5.16)-(5.26). Of course one can always add to
the fields (5.16)—(5.26) arbitrary nonsingular solutions
to the homogeneous equations. Such additions to the
fields are to be considered as representing external in-
Quences acting within the region under investigation and
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isolated region. In this footnote we have considered
only fields which can be expanded in a power series in
c . The reason for this restriction is that the author
has not proved that the statements made in this footnote
apply to more general fields. The author has'no reason,
however, for believing that the statements made in this
footnote do not hold for more general fields.
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choose a solution to the homogeneous equations (5.6)
which indicates the presence of such fields. We shall
not investigate such regions in this payer.
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of x and t, then the solutions to the inhomogeneous
equations over a perfectly isolated region of the continu-
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geneous equations. This is so because at each step two
different solutions to the inhomogeneous equations. will
differ at most by a solution to the homogeneous equations
satisfying (5.50), (5.54), (5.55), and (5.59) where (5.60)
is valid. In a previous footnote we have discussed the
fact that such solutions to the homogeneous equations
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(5.16)-(5.26). This means that at each order, different
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perfectly isolated region we are investigating.

2 The splitting of the field y& into the two parts ( )y&„"
and (P)y&,"' is discussed in more detail in Appendix B.

If one has found arith-order solution L-„~y(») to the in-
homogeneous equations (5.43g) so that

[agy(pv)' =En are~ C&3 p («]'I ,v (p) C (p) I -1

+ Q), au)v [fy)Cg(«) ] adv

+g 0)aa, (»[&,&C'~ (~u]-(]

+g, (»ac~„(»[&»C'~„(ru&-']„„" O( +&g,

it is then a simple matter to find a k th-order solution

~~~y(~») to (5.43g) so that (5.59) and (5.60) are valid. If
we choose

{.&3~(p v) I 03~(pv) ~p +r et ~(Q jC(pe)
I .r ~(p) c (p)

{ uph" + {:&3 {.~pP +p)(+"), ~ret

—{-~)C{-„guPu„)(rL)~],d„+0(g +l),

we have such a solution as

~'[~~y('») =~'
»[~(y''g) '0("'"»

and

{ag&(pv)' ~p ret ~{kg p ( +) ~ret
I,v ~ (p) C (p) I

where

++) au)v [(-a)Cg («) ']g&„

+E.")a'.
~ ")[[.iC[g.l(«) ']-~'"

+g, ( & '„,()[„,C[(», (~ &
'] „"+O-(H"],

L&j p (L~j p +2L~j Lap' + {.~'j Lpp+ ) ~

I'
(p) tE zE p + rI p

{: jC{v j = {{:jCL~.~ -L»CL~~"". +L..jCL.g++p)-

Note that

(P) I (p
L~j CPffl

(p)$int & (p)$a (p)+p
pv =~»pa

(»8dg =(()D (P)g (()g (()g

with

(p)$ —j- q (p)$ pa (p)gp (p)gp =(p)$ (p) g~
p 2»pa Vlf

Note that

(»$ (P) ~=0, (P)D (» ~=0,
P

(P)$int (PQ 0

The equations of mass, motion, and spin will restrict
the motion of particles for which either (P)$&",' =0 or
(»8g+J' =0. The condition (»8g =0, a condition which
can be considered as equivalent to the demand that the
pth particle possess no mass dipole moment (p)D&,
seems to be a natural condition to place on the structure
of an elementary particle.

22The spin (P)$» associated with a particle can always
be a considered as made up of an intrinsic spin (»@"„'
and a dipole spin ( )Sg. It is easy to show that

(»$ =e')$'«+(»$
PP PP J[fV s

where


