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Spherically symmetric time-dependent solutions are presented. One class of solutions
could represent the interior of an incompressible sphere undergoing at its surface a process
of condensation or evaporation. A large class of solutions of the equation T~2 =0 is also ob-
tained. A generalization of the Oppenheimer-Snyder solution is found. Two solutions obey-
ing an equation of state are described.

We shall suppose that the reader is aware of the
importance of time-dependent solutions. ' We shall
therefore not elaborate on this subject and shall
present directly our results. It can also be written

, 2 A' -2A' 4 4A
2g +g —g + — + ~ 2r A=2A r-r. (4)

I. CONDENSATION AND EVAPORATION AT THE

SURFACE OF AN INCOMPRESSIBLE BODY

Let us consider the element

ds' = A(r)dr' -r'(d82+-sin28dg) +C(r)dt, (1)

which will be written alternatively as

This equation was solved giving A in terms of an
arbitrary function g. However, if we consider
Eq. (4) as a differential in o (A being an arbitrary
function), it becomes a Riccati differential equa-
tion that can be solved only if we know a particular
solution gp. Taking the particular solution as a
parameter, we can solve Eq. (4}and obtain

= ~+dr r dg (2)
2

C =e' = e'o h rv A e 'pdr + g (5)

The equation T', = T', reduces to' (h and g are arbitrary constants). A is given by'

gp dre'0(2+ra', }'exp -4
2 +rgp

4r -—( 2r+)oe xp-4 dr + const xr
eop g,'dr

2.r' p 2+rgo

(6}

The interesting thing is that Einstein's time-de-
pendent field equations remain satisfied if we con-
sider h and g as arbitrary functions of time instead
of being constants. The relevant equations are'

bitrary constant occurring in C and not occurring
in A is replaced by an arbitrary function of time.
Therefore, the equation

g' 1 1-SwT'=e —+ ——— C=e~=e'o h(t) rvA e 'Odr+g(t) (5')

gl l ~lgl gl2 gt ~l
-SmT2=e + ~ +

2 4 4 2r

+

4 ~ (gp' 1 1
SwT =e ———+—4 r r2 r2 y

8vT'= -e (w/r}.

(6)

(10}

together with Eq. (6), represents a comoving time-
dependent solution for a perfect fluid.

More specifically, every static solution for A =e
and e'0 of Eqs. (7)-(10) generates a family of time-
dependent solutions given by A and e, the latter
being defined by (5'}.

An interesting feature of these solutions is that
they cannot be joined to the vacuum solution. It
is shown in Appendix A that the junction conditions
reduce in our case to

A look at the field equations shows that the equa-
tions T,'=T,' and T,'=0 remain satisfied if any ar-

dZ—=0 and p=0dt 7
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in which r =R(f) is the equation of motion of the
junction surface. The junction surface must there-
fore be comoving and, on it, the pressure of the
interior solution must be zero. It should there-
fore be possible to find a constant value R for r
for which the pressure is zero at all times. How-
ever, we would have on one hand from (7)

which implies that, for the same valueR of r, 0'
is time-independent. However, we have from (5')

go+ 2h(t)r&A e
pg(t)fr&Ac 'odk+ g(t)

'

This l.ast expression can be time-independent only
if h(t)/g(t) is a constant. In this case C =e reduces
to a function of r multiplied by a function of t and
therefore corresponds to a static solution.

Equation (9) shows that p = T, is time-indepen-
dent, while Eqs. (7) and (8) show that P= -T',
= -T', is time-dependent. The proper mass within
a constant coordinate radius is time-independent
(since p and the 3-geometry are time-independent).

This can be seen also by writing down the mass
function4 giving the total energy enclosed in the
sphere of coordinate radius r. In the case of our
metric this function m(r, t) is given simply by

2m(r, t) =r(1-e ),
which is time -independent.

The sphere must be made of incompressible mat-
ter (since density is not affected by changes in
pressure); moreover, the incompressible matter
must be inhomogeneous since the density varies
along the radius.

We could choose a constant arbitrary value for
the radius R of the sphere and consider the solu-
tion as describing the interior of a sphere of con-
stant mass (and incompressible matter) when its
surface is undergoing time-dependent pressures
given by Eq. (7).

We may also consider the case of the sphere
being surrounded by a gas exerting a constant
pressure p, on the surface of the sphere. The ra-
dius of the sphere would then be given by solving
for r the equation [deduced from Eq. (7)]

0' 1 18' =e —+-r r' r'

undergoing a process of evaporation.
It may be objected that, in the case of condensa-

tion, the condensed matter would have different
densities according to the coordinate radius at
which condensation occurs. This objection cannot
be held in case the interior solution is of constant
density.

Such will be the case if we start with the Einstein
static solution with A=(1-r'/a') ' ande'0=1. We

obtain through Eq. (5')

C =e = [h(~)(I -r'/n')'"+ g(~)]'

This solution is the Schwarzschild interior solu-
tion with two of the arbitrary constants replaced
by functions of time. For such a solution the con-
densation at any coordinate radius will always give
us matter with the same constant density.

II. SOLUTIONS WITH T2 = 0

Einstein' has studied the case T,'=0, T', c0.
The inverse case, T,'=0 and T', 0, is also worthy
of interest. Let us consider, for instance, a
spherical body of variable mass. Such a body can-
not be imbedded in vacuum. However, the junction
conditions' with an appropriate exterior solution
do not involve T, so that we may in principle join
a perfect fluid for which T,'= -p at its surface with
an exterior solution for which T,'= 0 provided some
conditions involving the discontinuity of T', are sat-
isfied. Another instance of interest is that of grav-
itational collapse; an interior solution with Ty40
and T', =0 would be an improvement to Oppenhei-
mer and Snyder 's solution with zero pre ssure. The
Oppenheimer-Snyder solution does not allow the
study of the effect of pressure on the gravitational
collapse. However, a solution introducing a radial
component of pressure would permit the study of
its effect on the evolution of a collapsing body.
This effect, though different from the one produced
by the isotropic pressure of a perfect fluid, would
nevertheless give good indications, since the ra-
dial component of pressure is the relevant one in
radial motions [the two other components, p, =p„
are absent in the expression of the time derivative
of the mass function m, =r (T,'r, T4r, )4v] . —

We will consider the following metric:

ds'= -Adr' B(d6 +sin Odg )+-Cdt

or
in which 0' is the time-dependent function deduced
from Eq. (5'). We shall therefore obtain a time-
dependent solution r =R(t). If y is a time-increas-
ing function we could say that some of the external
gas has condensed on the surface of the sphere.
Similarly, if r =R(t) is a decreasing function of
time we could say that the surface of the sphere is

s' = ~~gr'- e ~ g @2+ea

for which the equation T,'=0 may be written'

e -~(2o~z +&z2+ 2+i~ + ~s2 +s&~ &a~i + +sos)

+e (&i&fr+ jo-~il-2U-Cu'-2jj+il')=0.
(12)
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while the second class is given by

~fl2 Bl2f dr
B 2B'f'

wf3 B3fdt
B '"P 2B'f

(14)

In both cases B and f are arbitrary products of
functions of r and t, while u, v, and m are arbi-
trary constants.

If in Eq. (14) we take, for instance, B = t'~3r'
and f= t '(r' 2mr)'~', -we obtain a particular so-
lution the line element of which is

dy'ds'= -at4 +r'dg' + 1 —2pyg y dt'.
1 —2 m/r

The components of the energy-momentum tensor
are in this case

4 4 4 8m
3t'(1 —2m/r) 3t' 3t'(r —2m) '

-4m, 4m
4 2t7/3 & I 3(r 2m)2t

'

This is a nonlinear differential equation that
seems to be quite intractable; we have been able,
however, to obtain two large classes of solutions,
the derivation of which is given in Appendix B.
The first class of solutions is given by

B'3fdr

"P 2''
(13)

B'fdt

—exp . , dt

4 sm
877P, 3t3 md 8vp3 3t (r 2m)- (17)

The second contribution p, may be considered as
arising totally from the singularity; as the mass
of the singularity increases, a current of matter
must come from infinity towards the singularity,
adding its contribution to the background density.
p, gives essentially the uniform background den-
sity. The "perturbing" density p, tends to zero at
great distance from the origin.

The density of matter current as represented by
T4 is proportional to r ' so that at constant time
we have equal currents of matter through all
spheres centered at the origin. The solution rep-
resents the effeet of time -increasing inhomogene-
ity in an otherwise homogeneous universe of flat
three-geometry (in our particular coordinates).

The metric is valid for 2m&r and represents
possibly an exterior solution for an interior one
representing a variable mass.

III. A GENERALIZATION OF THE

OPPENHEIMER - SNYDER SOLUTION

and a function of r. The first term gives the time-
dependent mass singularity already computed,
while the second term gives the nonsingular mass
within the coordinate radius r; this nonsingular
mass being time-independent shows that any in-
crease in mass due to the matter flow within a
given coordinate radius is equal to the amount of
mass collected by the singularity.

The expression for T4 shows that the flux of mo-
mentum is zero for m= 0, though we then have
8vT~=4/3t'. In this case the quantity of matter
within a comoving sphere of constant coordinate
r is time-independent, since the volume element
is a t y singdgdrdy.

For mc0 there are two contributions to p; we
can write p = p, + p, with

If at a given constant time t, we make the transfor-
mation

r=va t'~'r)
0

we obtain for the 3-geometry at t= t,

The line element of the Oppenheimer-Snyder
(OS) solution is given by

ds = -Adr -BdQ +Cdt

A =B' /4B, B = (Ft+ G), C = I,
(18)

dF'
I-2mva t "'/r0

(16)

The mass function is a sum of a function of time

The results suggest that the singularity is that of
a variable mass given by morat' '. This is con-
firmed by computing the mass function; we thus
obtain

,/, 2a'&'
m(r, t) =morat'"+

I —2m r

J' and G being arbitrary functions of r.
The solution may be characterized as that repre-

senting spherically symmetric dust matter with a
flat 3-geometry in comoving coordinates [T3=0,
A =(dv B/dr/, P =0). The calculated density is

877P=+(t+G/F) '(t+G'/F') '.
We propose the following generalization of the OS
solution (the derivation of which is given in Appen-
dix C).
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A =B"/4B

B = f(t) '~'[F(r)7(t)+G(r)]'~', C = 1,
(2o)

a7. +b
ci+d (22)

For 7= t the solution (20} reduces to the OS solu-
tion; therefore, the OS solution can be obtained
for the more general choice of

in which I', G, and ~ are arbitrary functions of
their argument. We have in this case

T,'=0, 8w(T-', = T2= T~)= (V-/f) + 3 7 /'7 '~
(21)

The pressure is uniform through space, though
time-dependent. Expression (21) for the pressure
is invariant for any homographic transformation
of 7. with constant coefficients

B =r'f ' '[~(t)+P(r)]' ', A =B"/4B,

where

P is a constant P, for ry&r &r»

P is a function of r for r, &r &r„
P is a constant P, for r, & r & r4.

(28)

(29)

The continuous function P in the interval r, &r &r,
is to be such that'

take for G/E a continuous function which is con-
stant over a number of nonoverlapping domains of

r, we will have joined several Friedmannian re-
gions in the most easy way. We may take for de-
finiteness E(r)=r' ' (which fixes the meaning of
the radial coordinate) and write P=G/E=Gr '~'

so that

at+b
cf+d ' (23) P(r, )=P„P(r,) =P„P'(r,) =P'(r, ) =0. (30)

A. The Solution as a Generalization

for the Case A, WO

If we take for v the expression

atan(ut)+b
c tan(ut)+d

(25)

(a, b, c, and d being constants), the calculated
pressure becomes

where a, b, c, and d are constants. The calculated
density for the solution (20) is

[27 —7/7 + G/F)][27' 7'(7+ —G'/E')]
372(7+G/F)(r+ G'/F')

The metric defined by (28}and (29) describes two
Friedmannian regions (the first and last regions)
joined smoothly by the non-Friedmannian region
of the second interval.

It should be remarked that all regions have a
flat 3-geometry so that the Friedmann regions
that can be joined are those of zero 3-curvature.

IV. TIME- DEPENDENT SOLUTIONS WITH AN

EQUATION OF STATE

We are proposing two such solutions. The first
one is given by the following line element:

ds' = -(b/r')dr'- r'(t- c)(h- t)d 0'+ r'dt (31)
8' = ~su'. (26)

(b, c, and h are constant}. Calculations give
Therefore, if we use the cosmological constant
and give to it the value A. = -+u', we obtain a solu-
tion with zero pressure which generalizes the OS
solution for the case X c0. Replacing tan(ut) by
tanh(ut) in (25), the pressure becomes 8wP = -~u',
and X must then have the value A. '= +u' so that the
generalization can be made for positive and nega-
tive values of the cosmological constant.

8w(T,' = T', = T-', ) = 8wP

3 1 (c-h)2

b 4r' (t- c)'(h- t)'

8mT,'= 0,

3 1 (c-h)'
b 4r' (t- c)'(h- t)'

(32)

B =F 'r' ' '(r+G/F}' ', (27)

we see that wherever in space G/F = constant, the
metric will be Friedmannian. Therefore, if we

B. The Solution as a Collection of Different

Friedmann Regions

It is proved in Appendix D that a perfect fluid,
in comoving coordinates with cosmological time
(BC/sr =0) and for which B [as defined by Eq. (11)]
is a product of a function of time by a function of
r, represents necessarily a Friedmannian metric.
Therefore, writing

so that we have for the equation of state

p =P —21—6/b . (33)

For X = -3/b the solution is cosmological with

p =P &0 at all points in space. The element is val-
id for c& t &h (if we suppose h& c). It corresponds
to a universe starting at time t= c and ending at
time t=h. For X& -3/b we have p&p. p is then
positive, but P may assume negative values. The
solution, however, cannot be joined with Schwarz-
schild's exterior solution because the equation P =0
has no solution for r independent of time (which is
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a prerequisite in comoving coordinates; see Appendix A). The second solution corresponds to the follow-

ing line element:

ds'= dr'-r'(a+C sinh[(2c/a)' 't]+C, cosh[(2c/a)'~'t]}d0'+crdt',
1—r Q

(34)

from which we calculate

T4, =0,
1 a2+C 2 C 2 3Q

r' 2afa+C, sinh[(2c/a)'~'t]+C, cosh[(2c/a)'~'tfj' 2 '

1 a'+ C,'- C, 3Q

2a (a+ C, sinh[(2c/a)' 't] + C, cosh[(2c/a)'~'tP 2

(35)

so that

p = p+3u/srr. (36)

For C, =C, =O the solution is static and can be
smoothly joined to Schwarzschild's exterior solu-
tion with a coordinate radius

R =(3u)-'"

and a total mass

m=r'(3u) 't'. (37)

c,)icJ. (38)

The time-dependent solutions do not oscillate about
the equilibrium position. However, it cannot be
deduced from this that the static solution is un-
stable; in fact, none of the time-dependent solu-
tions can be imbedded in a vacuum (p = 0 has no
time-dependent solution for r; see Appendix A).
The stability of the static solution must be judged
from the behavior of perturbations compatible with
the embedding in vacuum.

For a +C2 Cy = 0 we have a solution charac-
terized by homogeneous pressure and density and
by the relation p+p =0. The solution, however, is
different from De Sitter's solution, which has one
more characteristic, namely, that of being isotro-
pic at every point in comoving coordinates.

The solution (34) becomes oscillatory if we re-
place a by -a. However, in this case we must
also have r'Q) 1. If we consider the shell of mat-
ter within the coordinate radii r, and rl such that

For C, = -C, the solution is time-dependent and
tends asymptotically to the static solution as t
tends to infinity. For C, =C, the solution is time-
dependent and starts asymptotically from the static
solution.

In order to avoid a singularity in the metric, as
well as in the density and in the pressure at a fi-
nite time, we must have

APPENDIX A: THE JUNCTION OF A COMOVING

SOLUTION WITH A SCHWARZSCHILD
EXTERIOR SOLUTION

The junction conditions are'

dR

AT4-
d ET4=0,dR 4

(Al)

A2)

where r =R(t) is the equation of motion of the iuuc-
tion surface. For a vacuum T"=0, while for a co-
moving perfect fluid T', = -p and T', = p so that (Al)
and (A2) may be written in our ease

-p =0,

dR

(A3)

(A4)

Equatiorrs (A3) and (A4) can be satisfied in two
ways:

(1) P[R(t), t]=0, p[R(t), t]—= 0, i.e. , by finding a
function r=R(t) for which p and p become zero

(2) By finding a constant ro such that for R =ra
we have p(R, t)= 0. -

The first way is impossible for most equations
of state.

r2&ry) Q ', we then have a shell of matter oscil-
lating under the action of forces applied at the
boundary surfaces r =r, and r =r, . The value of
the forces may be deduced from the expression of
p for the corresponding values of r.

The two solutions of this paragraph have with
Friedmann's solution the following characteristic:
They are the only solutions representing a perfect
fluid which, in comoving coordinates, correspond
to expressions for A, 8, and C which are products
of a function of r by a function of t. Friedmann's
solution has one more characteristic, namely, dC/
dr =0.
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APPENDIX B: DERIVATION OF SOLUTIONS

OF THE EQUATION 72=0

The relevant equation is'

e (2o" +o' +2p" +g' —p, '&u' —o'&u'+ p'o')

+e '(&i&o+tlo —&u j,—2(i) —&ir —2ji+ js )=0.
(Bl)

As a first step we look for the class of solutions
in which each of A =e, B =e", and C =e is a pro-
duct of a function of time by a function of r. In
this case p. ', u', 0' are functions of r only while
j., c'u, i are functions of t only.

Writing with the evident notation A =R„T„,
B =Re Ts, and C=RoTo, Eq. (Bl) becomes equiva-
lent to two ordinary differential equations:

B =RT,
vf' B'fdt

C= exp

(B8)

In (B8)B and f are restricted to be each one a
product of a function of r by a function of t.

APPENDIX C: DERIVATION OF THE GENERALIZATION

OF THE OS SOLUTION

in which h and R~ are arbitrary functions of r while

g and Ts are arbitrary functions of t (u and v being
arbitrary constants).

If we write f=g(t)h(r), we may write the solution
as follows:

uf" Bi2fdr
P 2E2fl

R~ (2o" +o"+2g" + p."-p. '(u' —o'(g'+ p. 'o') =a
R

(B2)
The OS line element is given by

ds'= Adr' B(-de +s-in &dg}+dt (C1)

(twixt + tl o —&i)jl —2 td lo —2 Il-—il )—
Tc

(B3) B" (ddB )' (C2)

where a is an arbitrary constant.
Two classes of solutions are to be considered ac-

cording to a being equal to zero or not. The two
equations (B2) and (B3) are still very complicated.
However, the liberty of choosing the system of co-
ordinates allows us to impose a condition on cr, &,
2nd p, . In order that the condition be a restriction
on the choice of the coordinates only without re-
stricting the generality of the solution, we must
be sure that the condition is not covariant.

A very convenient coordinate condition for equa-
tion (B2) is

2(oil d till)+ (ol + p )2 —l0 (B4)

the solution of which is

B= [F(r)t+ G(r)]'t'. (c3)

BT B'2+ —(Ti T ) —()
gy

(c4)

Therefore, in order to have T', = T'„ it is enough
to have

Equation (C2) is characteristic of a flat 3-geometry
and is a particular solution of the equation T4=0
for the metric (Cl). By adhering to Eq. (C2), we
are restricting ourselves to solutions having a
flat 3-geometry in comoving coordinates.

Taking into account that T~ =0, the equation
T",.„=0 takes the form

(r+b)'
e =Tc

R
(B5)

gT1' =0 or T', =f(t). (C5)

Equation (B2) becomes Calculating T,'for the line element (Cl), and tak-
ing (C2) into consideration, Eq. (C5) leads to

~(-g' &u' -o' ~' —p, 'o') = a,R„ (B8) -B+B/4B =Bf( t) . (C8)

from which m may be calculated in terms of p, [o
being given by (B5}]. The solution once obtained
may be generalized, and we get rid of condition
(B4) by performing coordinate transformations.

The solution obtained for the case a =0 looks
as follows:

Writing B=uB, we have

-u- —', u' =f(t), (c7)
which is a Riccati equation that can be solved only
if we know a particular solution. Taking advantage
of the fact that f(t) is arbitrary, we write

hI2g2 Rr
R~T~ 2R h' -u —2u =-g(t)--,'g'(t), (c8)

B =R~T8,

vg'h' T 'gdt

(B'I) with g(t) an arbitrary function of time. We now
have a particular solution u = g(t). Performing the
integration and changing the expression of the ar-
bitrary function we obtain
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(C9) R
g=, (a = constant}.

4R+aR (D5}

APPENDIX D: CHARACTERIZING FRIEDMANN'S

SOLUTION

We intend to show that the following statement
is true: A spherically symmetric metric with cos-
mological time representing a comoving perfect
fluid is a Friedmannian metric if B=R(r}T(t); R
and T being functions of their arguments and B
being the metric coefficient occurring in

1
1+—'are (De)

Now, R(r) may be chosen arbitrarily, if neces-
sary, by a transformation r =r(r}, t = t which does
not alter the comoving character of the line ele-
ment; moreover, Eq. (D5} is covariant relative
to such a transformation. Let us therefore take
R=x'; we obtain

ds'= Adr' B-(d8'+ s-in'8dg')+dt'. (Dl) so that we can write

The comoving condition as given by Tolman" is

A = (B"/4BQ(r)

and may be written with B =R(r)T(t ),

A= Tg(r).

(D2)

(D3)

The equation T,'= T,' gives, in terms of T, R, and
their derivatives,

1 1 R' 2 1 R" 1 g'R'
+ + (D4RT 2Tg R 2Tg R 4Tg gR

the solution of which is

2

ds'= -T» r+'(d8' s+i n8dg' +dt', (D7)1+ —,
' at'

which is one of the forms of Friedmann's solution.
We may also state: A spherically symmetric

element with cosmological time representing a
perfect fluid is a Friedmannian metric if &=RyT
and A =R,T in an obvious notation.

It is easy to check that in this case T~= T, =O,
and therefore, this second statement reduces to
the preceding one.
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