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The behavior of elastic scattering and of the electroproduction of nucleon resonances is
shown to be closely related to the behavior of deep-inelastic electron-nucleon scattering.
This relation is discussed in the context of duality ideas taken from strong-interaction
processes. These ideas suggest that a substantial part of the observed behavior of inelastic
electron-nucleon scattering is due to a nondiffractive component of virtual photon-nucleon
scattering. Through finite-energy sum rules, quantitative relations between the elastic and

resonance electroproduction form factors and the deep-inelastic scattering are derived and

the behavior of inelastic scattering near threshold is calculated.

I. INTRODUCTION

High-energy inelastic electron-nucleon scatter-
ing is a unique probe of the charge distribution in-
side the nucleon and provides a method for search-
ing for a possible substructure. Since experiments
have revealed a large cross section for inelastic
electron-proton scattering, there have been many
different attempts to understand the physical ori-
gin of the observed regularities of the scattering,
particularly the deep-inelastic scattering at high
energies and large momentum transfers. In this
paper we will show that the behavi. or of the deep-
inelastic scattering is related in a striking way to
the behavior of elastic scattering and of nucleon-
resonance electroproduction. The relation between
resonance electroproduction and deep-inelastic
scattering is tied up closely with theoretical ideas,
particularly about duality, which arise from the
behavior of purely hadronic scattering processes.
This leads us to a discussion of sum rules, and
finally to quantitative relations between the elastic
and resonance form factors and the inelastic struc-
ture functions. While we have dealt with these
questions in a previous short paper, ' we present
here an extended discussion of the theoretical
ideas as well as their consequences in quantita-
tive detail.

We focus our attention on the process of inelastic
electron-nucleon scattering where an electron of

The results of the scattering are thus summarized
in the structure functions 8', and 8', which depend
on the exchanged photon's laboratory energy, v

=E -E', minus the invariant mass squared, q'
=4EE'sin2(W). Knowing v and q' from measuring
the incident and scattered electron, the invariant
mass Wof the final hadrons is fixed by

s= W =2M„v+M„' —q'. (2)

We can also consider inelastic electron scatter-
ing as a collision between the exchanged virtual
photon and the target nucleon. One is then simply
studying the total cross section of the process
"y"+p- hadrons, where the hadrons have an in-
variant mass W, and we are able to vary the ener-
gy, mass, and polarization of the incident photon
beam. This leads one to define total virtual pho-
ton-nucleon cross sections for transversely and
longitudinally polarized photons, o~(v, q') and
a~(v, q'), which are related to 8', and 5', by'

known energy (E) is scattered by a nucleon through
a measured angle (8) to a smaller final energy (E')
due to the exchange of a single photon. ' In general,
the nucleon breaks up due to the scattering, and if
only the final electron is observed, then the double
differential cross section can be written as

d2 4 2Ef2
[2W, (v, q') sin'( —,'8) + W, (v, q') cos'(-,'8)].

tII

(l)
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where K = v —q'/2M„= (W' M„'-)/2M„. The longitu-
dinal total cross section o, is forced to vanish at
q' =0 by gauge invariance, while o~ at q'=0 is sim-
ply the total photoabsorption cross section (into
hadrons) for real photons. By the optical theorem,
the total cross section is proportional to the imag-
inary part of the forward virtual photon-nucleon
(or virtual Compton) amplitude. From this view
point one regards the tmo structure functions Wj
and W2 as two invariant amplitudes in a tensor de-
composition' of the imaginary part of the virtual
Compton amplitude, which are therefore linearly
related to the total cross sections [by Eq. (3)].

Having established the kinematic framework and

notation, we can turn to the physics. In Sec. II we
briefly review the experimental situation for in-
elastic electron-nucleon scattering and discuss
the experimental indications of scaling behavior
in deep-inelastic scattering. In Sec. IQ we turn to
the behavior of elastic scattering and of nucleon-
resonance eleetroproduction and show that their
behavior is closely related to that of the deep-in-
elastic scattering. We then discuss the relab. on
between resonance electroproduction and deep-
inelastic scattering in the context of duality ideas
taken from strong interactions, which suggest that
a substantial part of the observed behavior of in-
elastic electron-nucleon scattering is due to a non-
diffractive component of virtual photon-nucleon
scattering. This leads in Sec. IV to a discussion
of finite-energy sum rules and quantitative rela-
tions between the elastic and resonance electro-
production form factors and the inelastic structure
functions. In particular, me derive and discuss
the behavior of the inelastic scattering near thresh-
old. Finally, a summary and discussion is given
in Sec. V.

ll. DEEP —INELASTIC SCATTERING

EXPERIMENTS AND SCALING

The large cross sections observed for deep-in-
elastic electron-proton scattering' have led to de-
scriptions of the scattering in terms of pointlike
constituents (partons) of the nucleon. 4 In the part-
on descriptions, both the pointlike magnitude of
the deep-inelastic scattering data and the scaling
behavior proposed earlier by Bjorken' arise in a
natural manner. "Scaling" is the statement that as
v and q ~ vW2 and Wj become nontrivial func-
tions of the dimensionless ratio 7d =2M„v/q' only,
rather than functions of both v and q' separately,
as would be the case a Priori. Since from a theo-

1 4
77, ( 'I =0.557 [7 ——, ~ 2.1978 1 ——,

CO (d

—2.5954 1 ——, (5)

retical standpoint scaling is a statement of behav-
ior in the Bjorken limit as v and q —~, any other
dimensionless variable ~', such that &'- cu as v

and q - ~, is, in principle, just as suitable as v
for studying the scaling behavior of the experimen-
tal data, which exists only at finite values of v and
q'. Use of another variable, ~', could lead to scal-
ing sooner in the sense that vs and W, mould be-
come independent of q' (and, thus, equal to their
q'- ~ limiting values) if they are studied as func-
tions of q' for fixed u' rather than fixed m.

This is in fact the case for inelastic electron-
proton scattering. ' If we take the data with q' ~ 1
GeV' and for the moment we stay away from the
low-W region with prominent nucleon resonances,
then there is a more rapid approach to scaling be-
havior if one uses the variable'

cu' = 1 + W /q = 7d +M» /q (4)

Clearly ~' is dimensionless and is the same as ro

in the Bjorken limit of v, q —~. There is some
indication' from inelastic neutrino-nucleon scat-
tering data that scaling also occurs there sooner
using &u' rather than &u. Since a best fit'' (in the
sense of best scaling behavior) for m' in an ex-
pression of the form &u' = &u+m'/q' gives a value of
m' consistent with M„', a.nd since ~'= 1+W /q' is
a simple form, we will use ~' as the scaling vari-
able' "in the remainder of this paper.

In order to test for scaling behavior one must
separate the contributions of Wj and W, to the dou-
ble differential cross section in Eq. (1), and then
consider vW, and Wj at fixed ~' and see if they ap-
proach limits as q' (and v)- ~. The separation of
Wj and W, is accomplished by measuring the scat-
tering at the same value of v and q', but at differ-
ent angles, and is equivalent to a knowledge of
R =oz/or. The value of R obtained' by averaging
over the present data between (d' of 1 and 10 is
0.18~0.10. The values of R do not show any strong
dependence on v, q', or w'. Using a fixed value"
of R=0.18, Fig. 1 shows vW, and 2M~Wj as func-
tions of cu' for various q' intervals and W~ 2.0 GeV
(beyond the prominent resonances). Both vWa and

W, scale (i.e. , are finite and independent of q' at
fixed cu') to within the accuracy of the data for co'

in the range 1 & m'& 10, as long as q' ~ 1 GeV' and
W o 2.0 GeV. '

It will be useful later to have a smooth curve
which passes through the data for vW, (a7'). For
this purpose we have taken a fit" in the form of a
polynomial in (1 —1/a7'). An excellent fit is ob-
tained with three terms, as
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R = 0.18
W-2 GeV

2Mp'At)

FIG. 1. The functions
2M~W& and ~W2 plotted ver-
sus co' =1+W&/q for W~2
GeV and various q2 ranges
assuming R = 0 z/o. z ——0.18.
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and is valid in the range 0.8 &1/v' &0.1. Figure 2

shows this function and the data for vS', assuming
8 =0, 0.18, and 0.30 plotted versus x' = 1/&u'

= q'/(q'+ W'). We emphasize that we are using this
fit as a convenient parametrization of the data on-
ly, and it is not to be given any theoretical signifi-

cance nor to be used outside the range quoted
above where it was fitted to the data.

From the relation of 8', and W,
' to the total cross

sections 0~ and 0~ in Eq. (3), one expects that as
vW, and W,/+' go as (&u') ', where a is

the Regge intercept (at t=0) of the leading 8-plane
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FIG. 2. The fit (solid line) of Miller (Ref. 12) to
~W2 compared to the large-angle data assuming R =0,
0.18, and 0.3.

singularity in forward virtual photon-nucleon scat-
tering. If the leading singularity is that of the
Pomeranchukon, corresponding to diffractive vir-
tual photon-nucleon scattering, then vW, and W, /&u'

tend to constants as ~'-~. On the other hand, if
a nondiffractive component of forward virtual pho-
ton-nucleon scattering is present, then W, and

W, /&u' should decrease as &u'- ~. Unfortunately,
for values of ~' & 10 there are presently no data
over a large range of q', nor is there a separa-
tion of W, and W, . If we use the same (small) val-
ue of R =a~/err found for ~' & 10, then the data that
are available'6 are consistent with scaling behav-
ior and vW,

' decreasing for large values of ~'. In

fact, either or both vW, and W, /&o' must decrease
by -20/p between their maxima at ~'= 5 and v'= 25
if we assume" that scaling holds for all co' as long
as q' ~ 1 GeV'. This is because for R =0 both vW2

and W/~' decrease by this amount for large &u'

(with the restrictions above), and as we increase
the assumed value of R for ~'&10, the values of
vW, obtained from the differential cross-section
measurements go up compared to those obtained
assuming R =0, but those of W, /~' go down. Since
W, and vW, are now known rather well for ~'&10,
one cannot tamper with W, or vW, in this region,
and, therefore, one or both must decrease at large
~' as noted above. One may alternatively directly
consider the values of a~ at points where a separa-
tion has been made. One then finds that at q'= 1.5
GeV', a~ is a maximum near ~' = 4 and falls with
increasing energy at least as much as the total
photoabsorption cross section does over the same
v or W' range at q' =0.' Thus, there is experimen-
tal evidence'~ from the energy dependence of the
measured cross sections for a nondiffractive com-
ponent to virtual photon-nucleon scattering at val-
ues of q' for which there is scaling for w'&10.

More direct evidence for the presence of an iso-
spin-dependent and, therefore, nondiffractive com-
ponent of the amplitude is to be found in the differ-
ence between inelastic scattering from protons
and neutrons. ' Neglecting corrections for internal
motion, final-state interactions, and Glauber cor-
rections, the neutron cross sections are given by
the difference of the deuterium and hydrogen cross
sections. " The data indicate that the neutron
cross sections are smaller than the proton cross
sections over a large kinematic range. In particu-
lar, assuming the same value of R =oz/or for the
neutron and proton, vW»/vW» is smaller than uni-
ty, at least for cu'~ 6, and vW, „scales within the
accuracy of the data. If one plots vW» —vW, „, then
there appears~ to be a maximum near ~'=4, at
which point vW» —vW,„=0.1 and the ratio vW»/vW»

3 %hi le the neutrino data may al so sugge st that
the scattering of neutrinos on neutrons and protons
is different, ' the electroproduction data are the
most direct and conclusive experimental evidence
for an isospin-dependent, nondiffractive compo-
nent of the amplitude for forward virtual photon-
nucleon scattering.

III. BEHAVIOR OF NUCLEON —RESONANCE

ELECTROPRODUCTION AND DUALITY

A nondiffractive component of a forward ampli-
tude and the corresponding decreasing total cross
section at high energy are correlated with the
presence and behavior of resonances at low ener-
gy, at least for purely hadronic processes. ' In
particular, total cross sections for processes
like K'p and pp scattering, which have no obvious
s-channel resonances at low energy, have essen-
tially constant total cross sections above labora-
tory energies of a few GeV, while processes like
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E p and pp scattering, which have many strong
s-channel resonances at low energy, have total
cross sections which decrease substantially as
the energy is increased above a few QeV. This
correlation of the behavior of total cross sections
and the presence of resonances is part of the "two-
component" picture" of duality for two-body am-
plitudes. In this picture, "Pomeranchukon ex-
change" or diffraction at high energies is connect-
ed to the low-energy nonresonant "background, "
while "ordinary" exchanges (non-Pomeranchukon
Regge trajectories or cuts) are connected to the
low-energy s-channel resonances. The connec-

04—

tion of resonances at low energies to "ordinary"
exchanges at high energies takes quantitative form
in terms of finite-energy sum rules. " These sum
rules relate integrals over the imaginary part of
the amplitude at low energies to the properties
(residue functions, Regge trajectories) of the f

channel exchanges at high energies. "
Qiven the presence of a nondiffractive component

of the forward virtual photon-nucleon amplitude in
the scaling region (from the experimental observa-
tions of energy dependence and neutron-proton dif-
ferences in inelastic electron-nucleon scattering
at values of q' where scaling is observed), we ex-
pect that for q'~ 1 QeV' nucleon-resonance elec-
troproduction will have a behavior which is corre-
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FIG. 3. The function vW2{v, q ) plotted versus co' =1
+S /q~ from an interpolation of data to fixed q2 values
of 0.75, 1.QQ, 1.25, 1.50, and 1.75 GeV2. The solid
line is the scaling-limit curve, j W2{co'), a smooth fit
(Ref. 12) to the data in the scaling region. The arrow
indicates the position of the elastic peak.
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FIG. 4. Same as Fig. 3, but for q2=2. 0, 2.25, 2.50,
2.75, and 3.0 GeV .
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lated with other features of deep-inelastic scatter-
ing. In particular, we would like to compare the
behavior of the resonances with the behavior of
vW2 and W, in the region where scaling behavior
is observed.

The behavior of the resonances in comparison
to vW, in the scaling limit can be seen from Figs.
3 and 4, where we have plotted the function vW,
versus cu' at various values of q' (assuming A

=ve/or =0.18). The solid line, which is the same
in all cases, is the fit" described in Sec. II to the
data for W ~ 1.8 GeV and q' ~ 1 GeV' where scaling
in cu' is observed. We shall call this curve, there-
fore, the "scaling limit curve. " The values of vW,

at fixed q' are obtained by interpolating the 6' and
10'data' up to a hadron mass, W, of 3 GeV. Above
W= 1.8 GeV, where there are no prominent reso-
nances visible, the interpolated values of vW, at
fixed q' agree with the scaling limit curve, vS', (co'),
as they should. "

We first of all note that we can easily see th
prominent ¹ resonances at values of q' where
vW, scales for WZ 2 GeV. A given resonance (in-
cluding the elastic peak) occurs at cvs = I +M~'/q'
and moves toward ~'=1 as q' increases. We also
note that the prominent resonances do not disap-
pear with increasing q' relative to a "background"
under them which has the scaling behavior. (Note

that for values of q' beyond about 3 GeV' the pres-
ent data are not of sufficiently high statistical
quality in the low-W region to reveal whether the
prominent resonances are still present. ) In-
stead, the prominent resonances (and the back-
ground) seem to roughly follow in magnitude the
scaling-limit curve at the corresponding value of
cv'. This can be seen even more clearly in Figs.
5-7, where the heights of the N*(1238), N*(1520),
and N*(1888) nucleon-resonance bumps in vW, di-
vided by vW, (&u' = I +M+'/q') are plotted versus q'
at points taken from 6' and 10' spectra. The height
of the resonance bumps in vW, is taken from fits
by Breidenbach" in terms of Breit-Wigner reso-
nance forms and a polynomial background made
directly to the measure double differential cross
sections. The quantity vW, (cv') is again the value
of the scaling limit curve evaluated at a value of
~' which corresponds to the given resonance at the
particular value of q' measured in the 6 and 10 ex-
periments. Clearly, the ratio of the height of the
resonance bump to the magnitude of the scaling
limit curve remains roughly constant for the prom-
inent N* resonances as q' changes from 1 to 3
GeV'.

Thus, at least the prominent nucleon resonances
have a behavior which is strongly correlated with
the scaling behavior of vW, . Furthermore, a re-
cent analysis" of R=a~/or for W&2 GeV shows
the same small value (consistent with zero) that
is found in the scaling region. In addition, we
know that elastic scattering is less from neutrons
than from protons, just as is the deep-inelastic
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FIG. 5. The ratio of the height of the N*(1238) bump

in ~~2 to the value of the scaling-limit curve, ~%2((d'),
at the corresponding value of u' =1+MNg /q for values
of q between 1.0 and 3.0 GeV . Values for the height of
the resonance bump are taken from fits to the 6 and 10
inelastic spectra by Breidenbach (Ref. 19). The values
of vs(~') are from Miller (Ref. 12).
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FIG. 6. Same as Fig. 5, but for the N*(1520).
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FIG. 7. Same as Fig. 5, but for the N*(1688).

scattering. One, of course, cannot determine
without a detailed partial-wave analysis what the
q' dependence is of the many broad, low-spin ¹

resonances that we know exist from pion-nucleon
phase shfits. But the behavior of the prominent N*
resonances that we can see gives us the clue as to
what is happening. We thus propose'" that a sub-
stantial part of the scaling behavior of the virtual
photon-nucleon amplitude is due to a nondiffractive
component of the amplitude. In a duality frame-
work we say that the nucleon and N* resonances
at low energy are an intrinsic part of the scaling
behavior and correspond to the presence of non-
Pomeranchukon exchanges at high energy. The
resonances build up, in the sense of finite-energy
sum rules, the nondiffraetive part of the ampli-
tude on the average and yield the non-Pomeranchu-
kon exchanges at high energy, resulting in a falling
cr or vW, (ur') curve at high energies and a differ-
ence between neutron and proton inelastic scatter-
ing.

Note that neither the decrease of vW, or a~ at
high energies, nor the difference between neutron
and proton elastic scattering and the similar dif-
ference between neutron and proton inelastic scat-
tering, nor the small value of R measured in both
the resonance region and deep-inelastic scattering,
nor the presence of prominent resonance bumps in
vW2 for values of q' where scaling holds above W
= 2.0 GeV, nor even the survival of the prominent
resonances relative to "background" depends on
using the variable co'. All of these important as-
pects of the physics which are basic to our argu-

ments can be seen when we look at the data plotted
with respect to other variables like ~. In some
ways the particular choice of variable is similar
to the choice of v„b or s in extrapolating high-en-
ergy fits or models of pion-nucleon charge ex-
change into the low-energy region. While extrapo-
lation with some variables results in better aver-
aging of the resonance region, the essential phys-
ics, which was the impetus for much of the origi-
nal thinking about duality, does not change, e.g.,
the correlation between zeros in the angular dis-
tributions of the prominent resonances and the
zeros at fixed t in the high-energy spin-flip and
spin-nonflip amplitudes. " Similarly in electro-
production, much of the physics does not depend
on e'.

That is not to say that ~' does not have advan-
tages. First, as we saw in Sec. II, scaling occurs
earlier in cu'. Second, if vW, is considered as a
function of co, the nucleon pole term in vW„cor-
responding to elastic scattering, always occurs
at co= l. All the other resonances are at values
of cu &1 and move toward ~= 1 as q' increases.
Using &o' = l+ W'/q', however, the nucleon and all
other resonances occur at values of ~' & 1. The
nucleon is then not treated in a special way com-
pared to the other resonances. As we will see in
See. IV, this allows one to understand in an alter-
nate way the connection found previously between
the behavior of the elastic form factors and of
vW, as co'-1. Third, the use of co' allows a much
more local averaging of the region below W = 2
GeV where there are prominent resonances.

What is unique to studying duality in electropro-
duction is, of course, the experimentally observed
scaling behavior. This allows one to consider data
at fixed values of (d', but different values of q' and
W, both within and outside the region of promi-
nent resonances. Thus, we can compare the data
where there are prominent narrow resonances di-
rectly with data for vW2(&u') for large q2 and W'
where nature has accomplished the appropriate av-
eraging of the many broad resonances and back-
ground or t-channel exchanges present there.
Hence, without any extrapolation to low energies
using a model or theory valid in the high-energy
region, one can directly see the beautiful oscilla-
tions of vW, in the low-Wregion about the scaling
limit curve, which represents the average of many
resonances and background at large W. We will
give this comparison quantitative form in terms
of finite-energy sum rules in Sec. IV.

IV. FINITE-ENERGY SUM RULES FOR
ELECTROPRODUCTION STRUCTURE

FUNCTIONS

The possibility of making a quantitative connec-
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tion using finite-energy sum rules between the
low-W region, where there is N*-resonance exci-
tation, and the deep-inelastic region, where scal-
ing takes place, is already suggested by Figs. 3
and 4 where the sealing limit curve appears to
roughly average the resonances in vW, . To derive
the relevant sum rule let us consider a fixed value
of q' ~ 1 GeV', where vW2 and Sy exhibit scaling in
ru' to within the accuracy of the data if the hadron
mass W is outside the region of the prominent
resonances, i.e., W& 2 GeV. The usual derivation
of a finite-energy sum rule" proceeds by forming
the difference of vW, (v, q') and the leading terms
in its high-energy behavior, which we choose to
parametrize in the Regge form, g;c;(q')(&u') + " '.
We need only consider here the terms with Regge
intercepts o,. (0) &0, which conventionally are taken
to be those due to the Pomeranchukon with a(0) = 1

and to the P' and A, with a(0}= —,'. If we then con-

sider the amplitude whose imaginary part is

vW, (v, q') -Q c, (q')((u')""" ',

it vanishes faster than 1/v as v- ~ and, neglecting
a. possible real term with a(0) =0, we have a super-
convergence relation, "

r dv vW(v, q') -Qc, (q'}((u') "~'" ' =0.
0 i

In the limit where q'- ~, this superconvergenee
relation multiplied by 2M„/q' becomes

J
d(u' vW, ((u') -gc, (~)(u'"~'" ' =0,

0 I i

since vW, (v, q')- vW, (~') as q'- ~. If, for some
fixed value of q', we multiply the first relation by
2M„/q' and subtract the second with &u' = (2M„v
+M„')/q' = 1+W'/q', we obtain

2M~
dv vW, (v, q') —vW2((u') -Q [c,(q') —c, (~}]cg' "I~"

P

= J[ d~' vW, (v, q') —vW(u&') -Q[c;(q') —c,(~)]~' ~'" ' =0.
l

To obtain Eq. (6) we must assume that a possible
extra real term [a term with a(0) =0] in the high-
energy forward virtual photon-nucleon amplitude
for fixed q ~ j..0 GeV' either is absent or is the
same" in the amplitudes corresponding to
vW, (v, q') and vW, (&u'). Introduction of extra real
terms which are not the same in both amplitudes
results in the replacement of the zero on the right-
hand side of Eq. (6) with an arbitrary function of
q'. The success of the sum rule in Eg. (7) below
can then be taken as a posteriori evidence against
the presence of different extra real terms in the
high-energy behavior of the amplitudes correspond-
ing to vW, (v, q') for q' z 1 GeV', and to vW, (~').

Above some sufficiently large value of v= vR

(and corresponding value of &u' = &o„') the functions
vW, (v, q'} and vW, (&u') must agree with the leading
terms in their asymptotic behavior to any desired
accuracy. The upper limit in the integral in Eq.
(6}may then be changed to vs (or &u„'). Further-
more, we recall that to within the accuracy of the
data we have sealing in co' for q' ~ 1 GeV' and val-
ues of v greater than v = (W' -M„'+q')/(2M„),
where W is a hadron mass =2 QeV. Thus, em-
pirically, the quantities

~
vW, (v, q') —vW, (&u') ~/

vW, (cv') and ~c;(q') —c, (~}~/c,(~) are consistent
with being «I for v & v . We assume that this is
in fact the case. Then the upper limit on the in-

tegral in Eq. (6) can be lowered still further to
v (or ~'=1+W '/q'), and we can rewrite Eq. (6)
as the following sum rule2~:

2M„ &+Wm /q2
dv vW, (v, q') = dc@'vW, (co') .

0 1

In comparison to the usual finite-energy sum
rules, "Eq. (7) appears very similar except that
the usual sum over Regge terms on the right-hand
side has effectively been replaced by vW, (u '),
which contains the relevant information on high-
energy behavior. In the present case we do not
need to extrapolate a high-energy Regge expansion
to threshold. We will, in fact, use Eq. (7) in re-
gions where an expansion in terms of a few powers
of v or ~' is out of the question. Because we can
vary the external photon mass in electroproduction
and have scaling, we can directly measure a
smooth curve which averages the resonances in
the sense of finite-energy sum rules.

We have tested the validity of the sum rule in
Eq. (7) by using the interpolations of vW, (v, q') to
fixed q' (shown in Figs. 3 and 4) for the integrand
on the left-hand side, and the scaling limit curve"
of Eq. (5) for vW, (&o') on the right-hand side. The
results for the value of W = 2.0 GeV is shown in
Table I for values of q' from 1.0 GeV' up to 3.0
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(a) (c) {d)

TABLE I. Values of the left- and right-hand sides of
the sum rule, Eq. (7), for values of q between 1.0 and

3.0 GeV~, R =0.18, and for upper limits of the integrands
corresponding to 5 =2.0 GeV. (a) q (GeV ); (b) I~

(2=Myq&) f" dv vWq(v, q ); (c) Is f=des'vg'&(cu'),
0 1

(d) (I„—II.)/I~ (%

0.6

I
—

I 0
~ -02 I-

—0.4
—0.6

q =I 0

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

0.773
0.551
0.407
0.309
0.239
0.189
0.150
0.122
0.0995

0.863
0.599
0.433
0.322
0.24 5

0.191
0.150
0.120
0.0973

+10,4
+8.0
+6.0
+4.0
+2.4
+1.0
0.0
1,7
2 y3

— I.o
0,6

02 I-
H 0 i

~ -02
H

I —0.4 ~

q~ =2.0

GeV'. The agreement of the two sides of Eq. {7)
is on the order of 10/0 or better over the whole
range of values of q' while each side is changing
by about an order of magnitude. Changing R from
0.18 to zero leads to slightly better agreement. "
Considering the statistical as well as systematic
errors present in both the data and the interpola-
tion to fixed q', the agreement is extremely good.
Furthermore, the removal of the prominent reso-
nance contributions to vW, (v, q') would destroy this
agreement, the elastic contribution alone being
roughly 10% of the integral on the left-hand side.
Thus, at least in the region of q' where there are
still prominent resonance peaks visible, the two
sides of Eq. (7) agree and the resonance contribu-
tions are a significant part of that agreement. In
Fig. 8 the difference of the two sides of Eq. (7),
I~ -I~, divided by I~ is shown for q~=1.0, 2.0, and
3.0 GeV' as functions of the cutoff, W . The fig-
ure indicates that the sum rule is, in fact, well
satisfied for values of W considerably below 2
GeV.¹teadded in proof. One should note that for
values of q much less than 1.0 GeV', scaling in
u' no longer holds and the derivation of Eq. (7) is
invalid. Hence, the sum rule must of necessity
fail as q'-0.

The success of the sum rule in Eq. (7) leads
one to investigate whether a more local version
of the sum rule could also be true. Specifically,
if we form the difference between two versions of
Eq. (7) with different upper limits of integration,
we obtain

2M„ $ + Qf ~2/q2

dv vW(v, q') = d&u' vW~(&u'), (8)
v, 1+Wg~/q~

where v, = (W,
' -M„'+q')/(2M~) and v, = (W,

' -&if„'

-08
— I.O

0.6
0.4 q

= 50

~ -02—
H

—0.4
H

—0.6
—0.8
— I.O

I.O l.2 l4 l.6
w ((-ev)

I

1.8 2.0 2.2

FIG. 8. The difference of the right- and left-hand
sides of Eq. (7), Iz-II, divided by Iz as a function
of the cutoff, 8', for values of q~ of 1.0, 2.0, and 3.0
GeV .

+q') f(2M„) correspond to W, and W~, respectively.
If both W, and W, are greater than about 2 GeV
then Eq. (8) will be satisfied because of the scal-
ing of vW, . Equation (8) then becomes interesting
only if the masses W, and W, are in the low-energy
region of prominent resonances. To test Eq. (8),
we have again used the interpolations to fixed q'
for vW, (shown in Figs. 2 and 4) and the scaling
limit curve of Eq. (5) for vW, (~'), and have some-
what arbitrarily chosen the limits on the integrals
to correspond to the region of the nucleon and
first resonance (W, =O, W, =1.4 GeV); the second
resonance (W, = 1.4 GeV, W, = 1.6 GeV); the third
resonance (W, =1.6 GeV, W, =1.8 GeV); and the
fourth resonance (W, =1.8 GeV, W, =2.0 GeV). The
results are presented in Tables II-V, and show
agreement between the two sides of Eq. (8) to 20%
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TABLE II. Values of the left- and right-hand sides of
the sum rule, Eq. (8), for values of q2 between 1.0 and

3.0 GeV2, for R =0.18, and limits of integration corre-
sponding to the region of the nucleon and first resonance

(W~ =1.4 GeV). (a) q2 (GeV2); (b) Iq = (2M„/q2)f & d v v
0

v, W, (v, q'); (c) I„=f" ' d4'v W2(~'); (d) (I„-Ir)/1„(%)i

TABLE IV. Values of the left- and right-hand sides of
the sum rule, Eq. {8), for values of q2 between 1.0 and

3.0 GeV, forR =0.18, and limits of integration corre-
sponding to the third-resonance region (W, =1.6 GeV,

vb

W~ =1.8 GeV). (a) q {GeV); (b) II —- (2MN/q ) d»
vo

I' f+gr~ 2/
W2( & q ); (c) I& =

g du' v W2 (a'); (d) (I& -II ) /I& pp) .
f+I / 2

(a) (c) (d) (a) (c) (d)

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

0.186
0.122
0.0827
0.0583
0.0423
0.0314
0.0238
0.0187
0.0147

0.235
0.143
0.0925
0.0623
0.0435
0.0312
0.0230
0.0173
0.0132

+20.8
+14.7
+10.6

+6,4
+2.8
—0.6
-3.5
-8.1

—11.4

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

0.207
0.151
0.113
0.0871
0.0678
0.0537
0.0431
0.0353
0.0292

0.211
0.153
0.114
0.0863
0.0667
0.0523
0.0416
0.0334
0.0272

+1.9
+1.3
+1.0
-0.9
—1.6
-2.9
-3.6
-5.7
—7.4

or better over the range 1 GeV' ~q' &3 GeV with
the limits of integration given above.

The success of the sum rules in Eqs. (7) and (8)
and the behavior of the prominent resonances in

Figs. 5-7 in "following" vW2(ru') is at first sur-
prising if one thinks of the deep-inelastic scatter-
ing as being characterized by a cross section with

a slow falloff in q', while elastic scattering and
N* electroproduction fall rapidly with increasing
q'. That there is no contradiction here is shown

in Fig. 9 where the experimentally measured com-
bination of total cross sections, 0~+ co~, is plot-
ted against q2/W' for various hadron masses W.
Also shown is Ga~(q')+ (q2/4M„2)G„2(q'), the ana-
log of 0 ~+0~ for 8'=0.94 GeV, i.e. , elastic scat-
tering. Notice, in particular, the slow (like 1/q )
falloff of o r + acr ~ when + & q2/W2 & ~ correspond-

ing to the relatively flat part of vW, between ~' of
4 and 10 in Fig. 1. But when q'/W' becomes large
we come below the knee in vR'„and 0~+ eg~ falls
rapidly, roughly like 1/q' for fixed W. From Eq.
(3), a. 1/qe behavior for or+ o a as q2 —~ implies
that'

vW, ~ (W'/q')' = (&u' —1)'

as q'/W - ~ or tu'-1. The behavior or+a ac-1/qe
as q'- ~ at fixed W is, of course, just the be-
havior of the elastic analog of or+os, Ga'(q')
+ (q'/4M„') G„'(q'), at la.rge q' if we take dipole
forms for Ga (q') and Gs (q'). As noted many
times previously, the deep-inelastic (W &2 GeV)
cross section does fall with increasing q' more
slowly than elastic scattering at the same value of
q', particularly for values of q' of a few GeV for

TABLE III. Values of the left- and right-hand sides of
the sum rule, Eq. (8), for values of q2 between 1.0 and
3.0 GeV2, for R =0.18, and limits of integration corre-
sponding to the second-resonance region (W, =1.4 GeV,

~ VQ

W& ——1.6 GeV). (a) q2 (GeV2); (b) Iz—- (2MN/q~) J„dv v

x W2 (v, q ); (c) I~ = dv' v W2(a'); (d) {I~-I ) /I~ Pp).

TABLE V. Values of the left- and right-hand sides of
the sum rule, Eq. (8), for values of q~ between 1.0 and
3.0 GeV2, for R =0.18, and limits of integration corre-
sponding to the fourth-resonance region (W =1.8 GeV,

Wb=2.0 GeV). (a) q' (GeV'); (b) Iz =(2M„/q )f dv v
a

xW2(v, q2);(c) I&=f + & du&'vW&(co');(d) (I& I&)/I& (%). -
1+W 2/4f2

(a) (c) {d) (a) (c) (d)

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

0.144
0.100
0.0722
0.0537
0.0410
0.0320
0.0264
0.0207
0.0167

0.166
0.115
0.0815
0.0595
0.0444
0.0337
0.0261
0.0204
0.0162

+13.2
+13.0
+11.4
+9.7
+5.4
+5.0

1 Q 1
-1.5
—3.1

1.00
1.25
1.50
1.75
2.00
2.25
2.50
2.75
3.00

0.246
0.179
0.139
0.110
0.0883
0.0718
0.0581
0.0472
0.0390

0.250
0.189
0.145
0.114
0.0908
0.0732
0.0596
0.0491
0.0407

+1.6
+5.3
-l4.1
+3.5
+2.7
+1.9
+2.5
+3.9
+4.7
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FIG. 9. Measured values (Refs. 3 and 8) of oz+eoz
for various hadron masses, W, plotted versus q iW .
The solid line js t"g& (q }+(q /4M~ }|"~&(q ), the elastic
analog of oz+oz, under the assumption of dipole form
factors. Values for the N'k(1520) cross section are from
Breidenbach (Ref. 19).

which ~' is in the range where vW, is approxi-
mately constant. But for sufficiently large values
of q' the cross section for any fixed W falls rapid-
ly, very much as elastic scattering does already
at much lower values of q'.

What, then, must be the large q' behavior of
the form factor of a given hadronic final state of
mass W if it is to participate in the scaling behav-
ior of vW, ? It is rather simple to show' that if
G(q') is the excitation form factor" of the hadronic
final state of mass W and

G(q') —c(1/q')""

as q'- ~, and if vW, can be parametrized as

vW, —c'(&u' —1)~

(10)

as co'-1, then these two behaviors can coexist
only if

n = p+1. (12}
Thus, each hadronic final state of mass W, if it
is to participate in the scaling behavior, must
have an excitation form factor with a specific pow-
er of falloff in q' as q'- ~, and this power is the
same for all W and is related to the power with
which vW, rises at threshold. If we apply this in

the low-energy region to a given resonance of
mass W„, then all resonances which follow vW, (&u')

in magnitude (as we have seen the prominent N*
resonances do) must have the same power of fall-
off in q' as q'- ~ (including presumably the zeroth
resonance or elastic contribution to vW, which has
n =4), and again this is related to the behavior of
vW, at threshold. That the resonance-excitation
form factors all have a behavior at large q', which
is similar to the behavior of the elastic form fac-
tor (with n =4), has been previously indicated. '"
As we have p =3 from Eq. (9), it also follows that
Eq. (12) is at least approximately satisfied. For
the case of the elastic peak in vW„Eq. (12) is just
the relation of Drell and Yan, 28 first found in the
parton model. Clearly, in deriving Eq. (12) we
did not need or predict the magnitude of the co-
efficients in Eqs. (10) and (11}. One should note,
however, that the larger the mass of the reso-
nance or hadronic state, the larger must be the
value of q2 to be in the region of &u' = 1+ W2/q2

near 1, where the behavior expressed in Eq. (12)
holds. Said in another way, if we now parame-
trize all resonance form factors at large q' as
dipoles, the mass appearing in the dipole expres-
sion will increase as the mass of the resonance
increases. '

The possibility, suggested by Figs. 5-7, that
the scaling behavior is reflected in the resonances
on an almost resonance-by-resonance basis leads
us to try taking the finite-energy sum rule aver-
age over very local regions of W. Consider, for
example, the region of ~' from co' = 1 to an cu'

corresponding approximately to the threshold for
single-pion electroproduction. This is the one
region of co' where we know exactly what reso-
nances are present and their quantitative contri-
bution to the sum rules —only the elastic 6 function
in vW2(v, q') makes a contribution to the left-hand
side of Eqs. (7) or (8). It is very instructive to
carry the assumption of local duality to an ex-
treme and assume that the area [in the sense of
the left-hand side of Eq. (7)] under the elastic
peak in vW, for large q' is also the same as the
area [in the sense of the right-hand side of Eq. (7)]
under the scaling limit curve between ~' = 1 and a
value of ~' corresponding to a hadron mass W,
around physical pion threshold, i.e. ,

r
I+ Wg2/q2 2~

d(u'vW2((u') =
2 dv vW'~'"'(v q )

1 V

2 2
= I:G(q')]'= E&,(q')1'+ "",E&,(q')]'

I. G~(q')]'+ (q'/4M, ')I.Gv(q')]'
1+q'/4M„'

(13)
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Taking the derivative of this equation with respect
to q, we obtain

0.10

vW~ ~'=1+
~ =, —q ~ Gq)

(14)

which allows us to calculate vW, (&u') near threshold
in terms of the elastic form factors once we have
chosen W, .

However, note that no matter what value we
choose for W„we again obtain the relation of Eq.
(12) between the behavior of the elastic form fac-
tor at large q' and the threshold behavior of
vW, (~'}. For if G(q'}-(1/q')"~' as q'-~, and if
vW, (&u')-(&u' —1)~ as &u'-1, then Eq. (14) demands
that n = p+ 1, as before. Furthermore, by com-
paring Eq. (14) for neutrons and protons, using
the same value of W„one obtains

vWp

O, OIO

and assuming the "scaling" of the elastic form fac-
tors' as q -~ then yields

vW~„/vs~, , ~
— (p.„/p&)'=0. 47. (15)

0.001
O, I 0.2 0.4 0.6 0.8 I.O

Ignoring deuterium corrections, " this is in agree-
ment with at least the trend of the present data'
(which only extend down to &u' = l.7). Finally, if
we apply the same assumptions of elastic domi-
nance in a finite-energy sum rule for W„we ob-
tain3'

which is again quite consistent with experiment. '
While these semiquantitative results are all in

rough agreement with present experimental re-
sults, a more quantitative investigation of Eq. (14)
reveals some difficulties. In particular, using
parametrizations of the measured proton form
factors, "we have used Eq. (14) to calculate
vW, (~') for various choices of W, . We should only
expect the very strong assumptions made in de-
riving Eq. (14) to work when scaling in &u' holds
and when the elastic peak is pushed into the thresh-
old region of vW, (cu'), i.e. , when q'»1 GeV and
e' —1=(W,'/q') «1. The results of the calcula-
tion" are shown in Fig. 10 for two values of W,

together with the available large-angle data points'
near u'=1. Although the correct shape of vW, (&u')

for ' —1 & 0.5 is obtained when W, = 1.08 GeV,
corresponding to physical pion threshold, the re-
sulting curve is too high by a factor of 2 to 3. To
obtain a calculated curve which passes through
the data below ~'=1.5, one must use a value of
W, =1.23 GeV, corresponding to an energy just

FIG. 10. Computed values of vW&&(~') for W, =1.08
and 1.23 GeV using Eq. (14) and the measured proton
elastic form factors. The data points are from Ref. 8,
assuming R =0.18.

below the peak of the first resonance. Stated
another way, the elastic contribution to the left-
hand side of Eq. (7) equals the area under vW, (ur')

from ~'= 2 all the way up to an co' which corre-
sponds to a hadron mass just below the peak of
the first resonance. The proton pole is doing
more than its share in satisfying the sum rule in
Eq. (7) at high q'.

In the calculation of vW,'~ from the elastic form
factors using Eq. (14), one is actually hampered

by the lack of knowledge" of GE(q') at large q'.
The lack of knowledge of the elastic form factors
hampers even more the calculation of vW, „(~'),
which may be obtained from the analog of Eq. (14)
for the neutron but turns out to depend rather
strongly on exactly what we choose for the neutron
electric form factor. In Fig. 11 we have plotted
the ratio of vW, for the neutron to that of the pro-
ton obtained from Eq. (14) for W, =1.22 GeV and
two possible neutron electric form factors. "
While both results agree with Eq. (15) in the limit
where ~'- 1, there are strong differences for
~' &1, representative of effects depending on what
the neutron electric form factor does at large q'
in comparison to the proton form factors and to
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functions of inelastic neutrino scattering is lack-
ing at present. It is interesting to note, though,
that if we expect the deep-inelastic contributions
of the vector and axial-vector currents to vW, for
inelastic neutrino-nucleon scattering to be equal, '4

and if we apply the observations and arguments of
this paper to the vector and axial-vector currents
separately, then the axial-vector form factor,
g„(q'), of the nucleon and those of the nucleon
resonances should all falloff at large-q' approxi-
mately as 1/q', and the axial-vector contribution
to vW, should behave as (&u' —1)s near u'= 1. In-
deed, if we were to apply extreme local duality
to the region around the nucleon pole as in Sec.
IV, equal vector and axial-vector contributions
to vW, would imply that at large q'

( Gs(q') 1'+ (q'/4«'4 Gv(q') l'

where Gz(q') and G„(q') are the form factors of
the isovector component of the vector current
[G~(0) = 1, G„(0)= 4.7].

More generally, given information on the axial-
vector transitions in the resonance region (up to
W= 2 GeV), it should be possible tp calculate the
structure functions in the deep-inelastic region
using the analogs of Eq. (7). Also, given that a
substantial nondiffractive component is present
in the scattering, one expects that at least below
~ = 5, neutrino and antineutrino inelastic scatter-
ing will be quite different, and pS', for inelastic
neutrino and antineutrino scattering will be ap-
preciable compared to W, .

In summary, we have concentrated in this paper
on the relation of N*-resonance electroproduction
to that of deep-inelastic electron-nucleon scatter-
ing, and discussed this relation in the context of
duality. We have found that both qualitatively and
quantitatively the behavior of the resonances is
remarkably correlated with the scaling behavior
of deep-inelastic scattering. In particular, as q'
changes, the prominent N*-resonance bumps in
v8', closely follow the magnitude of the scaling
limit curve at the corresponding value of the scal-
ing variable (O'. This leads to relations between
the behavior of the resonance-excitation or elastic
form factors at large q' and the behavior of vW2(co')
as 4p «1.

A quantitative connection between resonance
electroproduction and scaling behavior has been
made in terms of finite-energy sum rules. When
integrated over the region of the prominent N*
resonances (up to W = 2 GeV), the sum rule in
Eq. (7) is satisfied to within 10% or better, which
is within the statistical and systematic errors in-
herent in the data and its interpolation to fixed q'.
This led us to consider asking the sum rule aver-

age over regions of W of the order of a few hun-
dred MeV. As an illustration, we applied the idea
of extreme local averaging to the region around
the elastic peak, and obtained a equation directly
relating the values of vW~(&u') near &u' = 1 to the nu-
cleon's elastic form factors and the upper limit of
final hadron mass, W„ to which the integral in
the sum rule is carried. While a number of semi-
quantitative results which roughly agree with ex-
periment near ~'= 1 follow from this, a large
value of W, must be used to obtain good agreement
with the deep-inelastic electron-proton data near
co'= 1. Also, there are difficulties in principle
with the approximation of keeping only one s-chan-
nel resonance in the sum rule. Still, given the
extreme assumptions necessary to obtain this re-
sult, even qualitative agreement with experiment
is surprising.

The connection to ideas of duality taken from
purely strong-interaction processes is very close
and interesting. Qualitatively, the correlation
between the height of the prominent resonance
bumps and the magnitude of the scaling limit
curve, the fact that R =a z/o r is small both in
the deep-inelastic region and in the low-energy
resonance region, the prediction of neutron-proton
differences, etc. , provide examples of the correla-
tion between low- and high-energy phenomena
which is at the heart of duality ideas. Quantitative-
ly, the agreement of the finite-energy sum rule,
Eg. (7), over a large range of q' (where one can
still see that there are resonance bumps present
in vW, ) and the averaging of the resonance bumps
by the scaling limit curve, vW, (&u'), provide a
spectacular example of the averaging of reso-
nances to a smooth curve, even outside the Regge
regime.

The averaging of the resonances by the scaling
limit curve is exactly the behavior one expects
in dual-resonance models of electroproduction
where the hadronic final state is completely ex-
pressible as a sum of resonances. There have
been many models of this kind proposed, "mostly
within the framework of the Veneziano model. "
Up to now, all such models have been affected
with at least one of two diseases": either they
have had bad asymptotic behavior in v or q', or
they lack factorization, which must be a basic
property of any model based on resonances. In
addition, many of the models which agree with
experiment quantitatively have additional ad hoc
assumptions or parameters. Nevertheless, such
models are important at least as theoretical lab-
oratories, and show the consistency of scaling
with a world made purely out of resonances.

The success of duality ideas in relating the deep-
inelastic scattering to the resonances in electro-
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production opens some interesting questions. In

our discussion we have related various properties,
particularly those of resonance electroproduction,
to the scaling behavior observed to hold for deep-
inelastic scattering, but we have not predicted
scaling. It is tempting to assume a common ori-
gin for both properties of electroproduction in
terms of pointlike substructure within the nucleon,
e.g. , quark partons which are responsible both
for the deep-inelastic scattering and for forming
N* resonances when they are excited to specific
levels. It is difficult to make this into more than
a suggestive picture, particularly since one deals
with incoherent scattering (the impulse approxi-
mation) in the parton model, while resonance phe-
nomena are certainly coherent properties of the
whole nucleon. Establishing a connection between
the duality approach we have discussed and the
pointlike constituent approach of the parton model
remains an unsolved problem.

What has been shown by the arguments in this
paper, by models, and by the experimentally ob-
served difference between deep-inelastic electron-
proton and electron-neutron scattering, is that
there is a substantial nondiffractive component
present in virtual photon-nucleon scattering at

large q'. Our arguments, though, do not rule out
the presence of some diffractive component, "
especially at large co'. However, the substantial
nondiffractive component that we know exists"
already leads us to expect, as noted before, that,
at least for cu' ~ 5, neutrino and antineutrino scat-
tering will be quite different, that vW, will be ap-
preciable compared to Wj and also that there will
be a sizable spin dependence exhibited if polarized
electrons or muons are scattered on a polarized
nucleon target. Hopefully, information on these
processes as well as further experiments on in-
elastic electron-nucleon scattering, particularly
with observation of some or all the final hadrons,
will permit us to extend the nature of the inter-
connections we have considered in this paper.
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