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Radiative corrections to the muon polarization vector in K~&3 decays have been calculated.
The model, previously used, is based on a phenomenological weak K-7t vertex and perturba-
tion theory. The answer depends logarithmically on a cutoff, although the corrections are
not nearly as sensitive to variations in the cutoff as those for unpolarized decays. All terms
which contribute to order n have been retained, with no approximations concerning the small-
ness of the muon mass or the "real" inner bremsstrahlung. The corrections to the three com-
ponents of the polarization vector longitudinal, transverse, and perpendicular) have been
evaluated numerically at points in the Dalitz plot, for various complex values of (. In addition,
the integrated correction to the degree of polarization as a function of muon energy has also
been computed. It is found that these corrections are small, generally less than or equal to 1%,
except in kinematically queer regions, where their relative size can be appreciable.

I. INTRODUCTON

It is generally recognized that a measurement
of the polarization of the muons from K„,decays
provides a sensitive and independent means of de-
termining the parameter $(q'). ' In fact, at each
point in the Dalitz plot, the muon is 100% polarized
along a direction which depends on the value of
$(q') at that point. This method has been empha-
sized by Cabibbo and Maksymowicz. ' The presence
of electromagnetic interactions, however, alters
this conclusion in that the muon polarization is no
longer 100% in any direction, but is somewhat
le ss. Ther efore, an e stimate of the r adiative cor-
rections to the polarization of muons from K» de-
cays is necessary in order to apply this method
for studying ((q ').

In this paper, we extend our previous calcula-
tions of radiative corrections to K» decays' ' to
cover the case of polarized muons from K„', de-
cays. Two other attempts at estimating these cor-
rections have been published. ' ' In the first, Ben-
fatto, Nicolo, and Rossi employ a shortcut based
on estimating the change in a coefficient
h = —,m„($- I) due to the contribution of the vertex
diagrams in the radiative correction. This proce-
dure is faulty in that the inner-bremsstrahlung
contribution is neglected. However, it does give
a rough impression of the size of the corrections.
The status of the second calculation is less certain.
Becherrawy's' results for the radiative corrections
to unpolarized K,', decays do not agree with ours,
and there are some obvious errors in his calcula-
tion of the inner-bremsstrahlung contribution to
the muon polarization. ' It appears that a closer
look at these radiative corrections is justified.

The model which we have used assumes the usu-

al phenomenological Lagrangian, in which the weak
K-m vertex is described by two form factors,
f, (q') and f (q'), where q'=(pr-p, )'. Electro-
magnetic interactions are added via the minimal
gauge-invariant coupling which is implied by the
substitution P - p -eA for the charged particles
present. The radiative corrections are computed
using the standard perturbation theory to first
order in z, with the assumption that the form fac-
tors are constant.

This model, which has been described else-
where, ' ' suffers from a number of limitations,
principally the logarithmic dependence of the cor-
rections on an ultraviolet cutoff A. Several authors
have suggested the possibility of eliminating the
ultraviolet divergence by including the contribu-
tion of the axial-vector part of the weak hadronic
current and/or by introducing vector mesons
which mediate the weak interaction. ' ' "" The
net effect of these types of models is to replace
the conventional cutoff parameter A with a pa-
rameter characteristic of the particular model,
typically on the order of a few BeV. Therefore,
the numerical results for the radiative corrections
will not be very different from the simple cutoff-
dependent model, which we elect to use below. Of
course, if the numerical estimates are sensitive
to the value of the cutoff, they are useful only as
an indication of the general order of magnitude of
the corrections. Our model also neglects the mo-
mentum dependence of the form factors in calcu-
lating the radiative corrections. Experimentally,
the momentum dependence of the form factors is
weak, i.e. , the parameters A. , in the expansion
f, ( (01}+X, /qm, '}are small. If the form factors
are assumed to be smoothly varying functions of
q', it is reasonable to hope that their momentum
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dependence also produces an effect of order A. , on

the radiative corrections.

II. CALCULATION

The starting point for the calculation of the radi-
ative corrections to the polarization of muons from
K,'„decays" is the matrix elements given pre-
viously, "and we will adhere to the notation of
those papers with some minor exceptions. The
only difference is, since we are interested in po-
larized muons, we must insert a spin proj ection
operator" H, = —,'(1+i@,S) in front of the muon
Dirac spinor, where p„~ n=0 and n'= -1. In the
muon rest system, where n„= (0, iiR), the operator
H, projects onto a spin direction parallel to the
unit vector AR. After the insertion of H, v„ in
place of v„ in the matrix elements, the transition
rate for the decay into polarized muons can be cal-
culated using the standard covariant trace tech-
niques.

The terms in the decay rate which depend on the
four-vector, n, can be expressed in terms of the
unit vector in the muon rest frame, AR, by means
of a Lorentz transformation. If a is an arbitrary
four -vector, then

p aop 1
a n=A. .~ a — -a,R 0

m~ Eq+ m~

where (ao, a) are the components of a in the sys-
tem where the muon has energy-momentum
(E&, p„). The decay rate for muons polarized along
the direction AR in their rest frame can then be
written in the form

r{E„,E,;ft,) = [r(E,, E,)+it,4(E„,E„)], (2)

where I'(E„,E,) is the decay rate for unpolarized
muons. ' The "polarization vector" of the muons
is conventionally defined by

6'(Eq, E,)=A(Eq, E )/I'(E„, E ),

so that the decay rate for polarized muons can
also be written

I'(E„,E,;it„) = I"(E„,E,)[1+ fi d'(E„,E„)] (4).
The component of the polarization vector in the
direction of 8R is called the "degree of polariza-
tion along AR,

"which is simply the ratio of the
difference and sum of the transition rates for
muons polarized parallel to, or antiparallel to,
AR, that is,

r(up) —I'(down)
I'(up) + I'(down)

I'(E„,E„;hn)- I'(E„,E;—A~) (5)r(E„,E.)
For each of the quantities I'(E„,E,}, r(E„,E, ; fin),

X(E„,E,), and 6'(E„,E,) we shall designate
the contribution of zero order in n, and the radia-
tive corrections to first order in o. , by the sub-
scripts 0 and RC, respectively. For example

(P(Eq, E,) =(Po(Eq, E )+(P „c(Eq,E,), (6)

where

~p.c(E„E.)
= [X„(E„,E.)- r,„(E„,E,)d,(E„,E.)]/r(E„,E.).

Equation (7) shows that one should expect a radia. —

tive correction to the muon polarization vector of
the same order of magnitude as the correction to
the Dalitz-plot transition rate, even if X~c(E„,E,)
should accidentally vanish.

The radiative corrections to the above quantities
originate from two sources: the virtual correc-
tions (designated by the subscript V) and the inner
bremsstrahlung. The latter can be conveniently
split into two parts; the first is infrared divergent
(designated by the subscript IR} and the second is
the so-called real inner bremsstrahlung (desig-
nated by the subscript RIB}. For example, we may
write

A ~c(E„,E,) = J»»v(E „,E ) + L) R (Eq, E ) + A„, (Eq,E,).

In the expressions below, however, we shall omit
wr iting the inf rar ed divergent term s, which cancel
out exactly when the various contributions to the
radiative corrections are combined. The distinc-
tion between the infrared and real inner brems-
strahlung is somewhat arbitrary, and no physical
or kinematic constraint (such as a minimum pho-
ton energy or an energy resolution) is implied.
The experimental conditions for which the present
radiative corrections are calculated are that all
photons, which are emitted in events for which
the observed momenta of the muon and pion fit
the three-body kinematics for K» decay, remain
undetected.

Equivalent expressions for the zero-order muon
polarization vector have been obtained by several
authors. ' In the center-of-mass system of
the decaying particles, i.e. , the kaon rest frame
(to which all noncovariant expressions in this
paper refer), we can express the muon polariza. —

tion vector in terms of its components along the
three mutually perpendicular unit vectors defined
by

&z= pp/Pp»

e, =p, xp„/I p,xp~

6g =E'L X6~.
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The longitudinal unit vector ~~ is parallel to the
muon momentum, i~ is transverse to e~ in the
plane of the decay, while i, is perpendicular to
the decay plane. The zero-order muon polariza-

tion vector is

(P (E„,E ) =A (E„,E,)/I' (E„,E,),
where

(10)

(2»} ~f+~ X~(E„,E,) = [2E, —(W„E,)-Re(1 —$)]m»p„e~

—[m„E„-Re(l—$) +,'-m „'~1—]~'/m»] ([p„(m» E,)+-P,E„c o@s,]@~+m „p, sin@,e r}

+ Im($)m„p„p, sin%', i~,

and I',(E„,E,) is given by Eq. (1) of Ref. 6. The angle between the directions of the muon and the pion,
when no inner bremsstrahlung is present, is 4'„and

(12)

(13)

(14)

where

(2»}'~f, ~
'(v/a}A v ~(E„,E,) = m»P„J2(W„E„)ReA+—2(W, E, ) Re[(-1+ $)(A +B)]}

cosa, = (x „2P„P.)-(2P„P.)-',

sine, = [x „(4p„p.-x „)]'~'(2p„p.) '.

The result emphasized by Cabibbo and Maksymowicz' is that ~A,(E„,E,) ~

= I', (E„,E,) or ~5',(E„,E,) ~
=1, as

can be verified explicitly from Eq. (11).
The virtual corrections to the vector X(E„,E,) are given by

Av(E„, E,) =Av ~(E„,E,)e~+Av r(Eq, E,)er+Av ~(Eq, E,)R~,

—[H„' ReA+ (m~E„m„')Re-[(1+ $)( A* +B)] +'m„'~1+ g~'ReB}

xm» '[p„(m» E,)+p+„-cost,], (15)

(2»}'~f, ~
'Av r(E,E,) -= (a/ )-m»»m„p, sin%o

&& IH„' ReA+,'-(m»E„-m„') Re[(l + ()(A* + B)]+ m„' ~1+ g ~' ReB}, (16)

(2 )'v~ f, ~ Av j (E„,E,) = -,'(a/v)mqPqP, si +nlmO[(1 (+)(A* +)B]

In the above expressions for the components of Xv(E„,E,}, A and B are given by Eqs. (4) and (5) of Ref. 6.
The infrared contribution to the radiative correction to the vector Ji(E„,E,) may be written as

X~(Eq, E ) = (a/v)IO(E„, E,)X~(E„,E„)+X'( R(Eq, E,), (18)

where fo(E„,E,) is given by Eq. (9}of Ref. 6, and Xf„( „E, E) is evaluated below. In order to extract the
infrared divergent terms as defined in Eq. (18), it is necessary to take explicit account of the fact that the
angle 4 between the muon and pion directions [and hence the direction of the unit vectors defined in Eq. (9)]
depends on the invariant mass x of the undetected particles (the neutrino-photon combination). When
inner bremsstrahlung is present, in place of Eqs. (12) and (13), one must use the relations

and

cos4'=(2P&p, ) (x -x-2P&p, ) (19)

sin% =(2p„p, ) '[(x „-x)(4p„p„-x „+x)]'~'.
The evaluation of the infrared contribution involves limits of integrals of the general form

& mgx
lim dx f(x, X}sine,
X.~0

(20)

(21)

in addition to the more usual terms which contribute to I,(E„,E,). In Eq. {21), X is the "fictitious" photon
mass, and f(x, X) is a function which, for X =0, diverges like x as x approaches zero. The correct eval-
uation of expressions such as Eq. (21), including terms of order zero in X as well as the dominant Ink
terms, is facilitated by means of a standard Euler substitution. " The limit of the expression in Eq. (21)
can be transformed into
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x max & maxlim sin@o dxf(x, X)+O(X)+ "dt 2t(1+ t ) [(t —1) sin@0-2tcosq 0]xf(x, 0),
p k2 ~ITSn

where

x =4p„p,(cos+, t —sing, )(1+ t') '

alld

(22)

(23)

t~„= -tan+4 p t 'g coN p. (24)

It turns out that for the integrals involved in the radiative corrections to the muon polarization in K» de-
cays, the product xf(x, 0) in Eq. (22) is independent of x(and, therefore, of t also). In this case, the second
integral in Eq. (22} is easily found to be

& max

(2$&P~) 'I, (E&,E,)—= dt2t(1+ t') '[(t' —1) sin%' o-2t cos+ o]

&min

= ([-I + 2 ln(2 sin~%, )] sin4, + (v —4,) cosq,}.
We can now give the expression for the term A,'R(E, E,) defined in Eq. (18):

Afp(E&, E„)=(a/v)(2w) ~f+~ f-I +(E&/p&)1n[(E& +P&/m&]j

x(-x „p„Re(1+$)C~+ [mx-E„Re(1—$}+—,'m„' [I —$ p/mr) p„'[E„x „e~ m„I (E„,-E,)er]

+ mqIm)I, (Eq, E,)et. (26)

It can be seen from the logarithm in the first pair
of brackets in Eq. (26) that the X[R(E„,E ) term
is comparable in magnitude to similar parts of
the Io(E„,E,) terms in Eq. (18)."

The real inner bremsstrahlung part of the radi-
ative corrections to the muon polarization in Kp3
decays can be expressed as a sum of integrals
over x. Because the integrands involve products
of rational functions of x, square roots, loga-
rithms, and sin%', it was decided to do the integra-
tions numerically on a computer. The integration
subroutine, based on a Gaussian quadrature for-
mula, was tested on some sample terms which can
be evaluated analytically and was found to be as
accurate as the computer library functions. Nev-
ertheless, in a few relatively infrequent integrals,
the convergence was so poor that the accuracy
dropped to a few percent. However, these rare
integrals were typically one to two orders of mag-
nitude smaller than the other integrals which con-
tributed. In view of the inherent uncertainty in the

+A R~B j (E& E &)e&, (27)

The expressions for the components in Eq. (27) are
admittedly more cumbersome than the covariant
expression for the corresponding parts of I'(E„,
E„tt ), bnut Eq. (27) is more directly related to
experimental measurements. If we let the sub-
script i denote a longitudinal or transverse com-
ponent (i.e. , i =L or T) then

present model due to the cutoff, an accuracy of
a few percent (better than 2Q in the vast majority
of terms) in some parts of the real inner brems-
strahlung contribution was considered tolerable.

In order to write down the real inner brems-
strahlung contribution to the vector X„c(E„,E,) in
a manner consistent with the coordinate system
implied by the unit vectors in Eq. (9), we define
the components of XR,~(E„,E,}by

A~)q(Eq, E,) =AR, ~ 1(E„,E,)el +AR, B r(Eq, E~)C r

A~, 8,.(E„,E,}=— ', " dx]Tx(p» n);+T, (p, .n), + g T(m, n;a, b)[n I" „(p, p, )],.j,v v mr m, n, a, b
(28)

and

AR~q, (E„,E,)= —2', "Im($) dxT, ,
a /fJ'm„ "max

m m mE p

(29)
where the summation indices m, n serve to iden-

tify the invariant integrals and a, b refer to the
particles p, , n, or K.

The notation (n a ), , where a is an arbitrary
four-vector, means the ith component of the vec-
tor a„ in the rest system of the muon, expressed
in terms of the components (a„a) in the center-of-
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FIG. 1. Percent radiative corrections to the longitudinal
component of the muon polarization at various points in
the K& &

Dalitz plot (indicated by the decimal points).

FIG. 3. Percent radiative corrections to the perpendicu-
lar component of the muon polarization at various points
in the K&3 Dalitz plot (indicated by the decimal points).

mass system. From Eq. (1)

a
, m„E„+m„

(30)

given in Appendix B.

III. RESULTS

For the two vectors which appear explicitly in

Eq. (28)

(p» n)z= m»p„/m„,

(p» n)r = (p» n), = o,

(p, n)1. = (p„E, p, Ec so+)/-m„,

(p, n)r= -p, sin@, (p, n), =0.

(31)

Finally, the invariant integrals I"„(P„P~)are de-
fined in Appendix A, and the expressions for the
coefficients T», T„T,, and T(m, n;a, b) are

The sum of the contributions indicated in
Eqs. (14), (18), and (27) constitute the radiative
corrections to the vector X(E~,E,) as indicated in.
Eq. (8). From this value of A (ERc, E,), together
with the results of Sec. II in Ref. 6, the radiative
corrections to the muon polarization vector 6'»c(E„,
E,) as a function of position in the Daiitz plot can
be found by the use of Eq. (7). We have evaluated
O'

R(cEE,) on a computer, in 10-MeV bins through-
out the Dalitz plot, for several complex values of
(, and for cutoffs of one- and two-proton masses.
A sampling of these results is shown in Figs. 1-6.
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Figs. 1-3 indicate the percent correction to each
of the three components of the muon polarization
vector, namely, 100x6'Rc;(E„,E,), where i stands
for a longitudinal, transverse, or perpendicular
component, respectively. In Fig. 4, we plot the
percent correction to the magnitude of the polari-
zation vector, namely, 100x[~t(E„,E,)~-lj. We
have chosen a complex value of $, equal to one
imaginary unit, so that all three components of the
muon polarization would be present. Of course,
the radiative correction to the magnitude of the
polarization vector must be negative, as required
by unitarity. This restriction was satisfied for all
values of $ and A, and at all points in the Dalitz
plot, for which we calculated radiative corrections,
which gives us additional confidence in the accu-
racy of our analysis. In Figs. 5 and 6 we show the
actual values of the longitudinal and transverse
polarizations and their radiative corrections, for
two real values of (, namely +1, as a function of
pion energy and for a fixed muon energy of 190
MeV. The marked dependence on $, of the zero-
order polarization, was noted in Ref. 2 and is also
illustrated, at points throughout the Dalitz plot,
in the literature. "

The size of the radiative corrections to the com-
ponents of the muon polarization vector is small,
generally less than or equal to 1% of the uncorrect-
ed values. An exception to this occurs in the lower
portion of the Dalitz plot, for the percent radiative
correction to the longitudinal component of the po-
larization vector, which is quite large (-254% at
one point in Fig. 1). The reason for this is that
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FIG. 6. Transverse component of the muon polarization
in K+&& to zero order, and the first-order radiative cor-
rections, for E& =190 MeV, ( =+1, and A=m&.

the zero-order expression for the longitudinal po-
larization may vanish at certain points in the
Dalitz plot, while the radiative corrections do not
have any such behavior. It follows immediately
from Eq. (11) that A, ~(E„,E,) is a linear function
of E„however, we refrain from giving the easily
obtainable expression because the positions of the
zeros in the Dalitz plot depend on ( and do not
appear to correspond to any particular kinematic
configuration for the decay products. It may be
that future measurements of the longitudinal polar-
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muon energy spectrum in K+&3 decay. The solid lines are
the zero-order contribution; the dashed-dot lines are the
percent radiative corrections for ( = i and A =m& .
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ization, in Dalitz plot bins a few MeV wide, will
be sensitive to this effect. It can readily be seen
from Fig. 4 that the radiative corrections to the
magnitude of the polarization vector are an order
of magnitude smaller than the corrections to the
components of the polarization vector. In other
words, the radiative corrections change the direc-
tion of the polarization vector much more than its
length.

In spite of their small size, the radiative cor-
rections to the muon polarization are not especial-
ly sensitive to variations in the cutoff parameter,
A. When A is doubled, from m~ to 2m~, the cor-
rections are increased in size by between 0 and
25% depending on position in the Dalitz plot. This
may be contrasted with the cutoff dependence of
the unpolarized radiative corrections, ' which were
much more sensitive to a similar variation in A.
For this reason, the numerical results of the pres-
ent calculation probably give a more reliable in-
dication of the radiative corrections than is the
case with unpolarized K„', events.

Finally, we have obtained the radiative correc-
tions to the energy spectrum of polarized muons
by numerical integration of the above corrections
over pion energies. A sample of these results is
given in Fig. 7, which shows the three components
of the polarization vector and the percent radiative
corrections as a function of muon energy, for $ = i
and A = m~. The size of the corrections in Fig. 7
is commensurate with the radiative corrections to
the muon polarization throughout the Dalitz plot,
indicating no strong cancellations. It should be
noted that the magnitude of the muon polarization
vector averaged over pion energies is no longer
100%, and, therefore, the radiative corrections
to the magnitude can be positive and still be con-
sistent with unitarity.
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APPENDIX A

The scalar invariant integrals are defined by

1 d'k d k' 5 (P —k- k'}
2w ko k,' (P; k) (P„k)" (Al)

for k'=k" =0. Those which contribute to the radiative corrections in this paper have been evaluated pre-
viously (in the Appendix to Ref. 4) with the exception of

4p, '1, ,(p„p,) =x(3(pp, :P)(PP:p, )' —',A„[2n,(p~:p, )- m, (p, p, :P)][1, (p„p, )

+2m, 'x'(PQ:P, )'+ n, (P,P, :P)(2P,'P, '+xA„)+6x(P+:P,)(P,'P, '-2xA„),
P =x,

n-=p .P
p = (n '- m 2z)'~2

y =[(p p )'-m 'm']' '

a;, = n(pl"P, )+ n, (Pg:P;) xy; '=z '[{i 'p,-' (P;P:f')'-],
(ab: c) =(a c)(b c) c'(a b)-.

(A2)

(A3}

The vector invariant integrals are defined by

1 dkdk'kb (P k-k')-
»&, »(Pl &P2) 2 k k ( p .k)»&(p .k)» (A4)

also for k =k"=0. On invariance grounds 1 „(p„p,) must be a linear combination of p, , p, , and P", and
since the invariant product of I „{p„P,) with each of these three vectors is proportional to a scalar invar-
iant integral, the coefficients of the linear combination can easily be determined. One finds that":

(P1 P2) 2z[ p", (p,&:p, ) +p.(p~:p, } &y„']f.„(p„p,)+-[ p",p, ' +p (p, p, :&)+-& (p&:p,)]f. ,„(p„p,)
+ [P (P P1P1) 2PP1 +1P (P2P:-P1)]I „1(P1,P2). (A5)

APPENDIX B

The coefficients appearing in Eqs. (28) and (29) are
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T»—= (Hq m—,'+ x)II, 0(pq, p»)-IO, (pq, p„)]+2[2- Ii ~(pq~p») -I i, ~(pqtp»)]

+Re(l+ t'}[m„'I, ,(p„,p, )+I, ,(p„,p»)-1+ ,'xm—„'l, ,(p„,p»)-(m»'+ m„' H„-' H,-'+x)I, ,(p„,p»)

+ (m„'- m»E„— H„'+ m, '+x)I, ,(p„,p»)] — x[H„'+ ~m„'ll+ pl ]Ii,i(pq ~ p»), (Bl)

T, —= Re(1 —$}[2mE ~ [I, ,(P„,P»)- I, ,(P„,P»)]

+ m„'[I, ,(P„,P») r, ,(-P„,P, ))+ m, '[I, ,(P„,P») 1, -,(P„,P»)]I,

T(1,0; g, K) = —T(0, 1; p, K)

=—m„[2E, +Eq Re(1+ t)],
T(1, 1; p, , K) —=m»(2E„+E,)(m, '+ m„'ll+ t'I')- m»E „(H,' m„')-

+ —,'m» Re(1+ ()[m»x+ (2E„+E„)(m»2-H,' H&'} -E,(H„-' m&')-],

T(2, 0; p, K)—= -»(H '+ m„')(m, '+ ~m„'ll+ )l')+ ~(m» —H, ' H„'+x—)[H„' m, ' -x m-„'-Re(1+ g)],

T(0, 2; p, , K) =-- m»'[m, '+ m„'ll + ]I'+,' (m„' H-, ' H-„'+x-) Re(1+ $)],

T(2, -1;p, ») = 2m»(E„E„) 2x-+ m„-' Re(1 —$),

T(2, -2; p, ») —= -2,

TJ. = m»ppp /[11, 0(P/9 P») Io, 1(ppt P»)1-sin+

+((P„P:P )[I . (P,P )-31-(P P:P,)[I, (P„,P )-3]
+ m„'[(p»P: p„}-( p„p„:P)]I, ,( p„,p„)-4m»'p~'+ m»'[( p„P:p»)- (p„p»:P)]I, ,(p„,p»)

+ [m„'(P„P:P» }+ m»E „(P„P„:P )- (2 m „E„-,'x) ( P»P: P „)—

+ m»E„ ti„'+ m» m„'(E, '-x) + —,
' m»'p„'x]I, ,( p„,p»)

+[m»'(p»P:p„)- m»E„(p„p»:P) (2m»E„—-x)(p„P:p„)
—m„'m„E„(E,'-x)- ',x(m 'P„'+P-„')]I, ,(P„,P )

+ 2x(m»E„[(P„P:P»)- (P»P:P„)+2m»'p '] --,'xm»'P„')I, ,(P„,P»)) (m»P„P, sin%) ',
where the notation used is the same as in Appendix A, and P„:(P»-P„—P, )—

(B2)

(B3)

(B4)

(B5)

(B6)
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Scaling and the Behavior of Nucleon Resonances in Inelastic Electron-Nucleon Scattering*
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The behavior of elastic scattering and of the electroproduction of nucleon resonances is
shown to be closely related to the behavior of deep-inelastic electron-nucleon scattering.
This relation is discussed in the context of duality ideas taken from strong-interaction
processes. These ideas suggest that a substantial part of the observed behavior of inelastic
electron-nucleon scattering is due to a nondiffractive component of virtual photon-nucleon
scattering. Through finite-energy sum rules, quantitative relations between the elastic and

resonance electroproduction form factors and the deep-inelastic scattering are derived and

the behavior of inelastic scattering near threshold is calculated.

I. INTRODUCTION

High-energy inelastic electron-nucleon scatter-
ing is a unique probe of the charge distribution in-
side the nucleon and provides a method for search-
ing for a possible substructure. Since experiments
have revealed a large cross section for inelastic
electron-proton scattering, there have been many
different attempts to understand the physical ori-
gin of the observed regularities of the scattering,
particularly the deep-inelastic scattering at high
energies and large momentum transfers. In this
paper we will show that the behavi. or of the deep-
inelastic scattering is related in a striking way to
the behavior of elastic scattering and of nucleon-
resonance electroproduction. The relation between
resonance electroproduction and deep-inelastic
scattering is tied up closely with theoretical ideas,
particularly about duality, which arise from the
behavior of purely hadronic scattering processes.
This leads us to a discussion of sum rules, and
finally to quantitative relations between the elastic
and resonance form factors and the inelastic struc-
ture functions. While we have dealt with these
questions in a previous short paper, ' we present
here an extended discussion of the theoretical
ideas as well as their consequences in quantita-
tive detail.

We focus our attention on the process of inelastic
electron-nucleon scattering where an electron of

The results of the scattering are thus summarized
in the structure functions 8', and 8', which depend
on the exchanged photon's laboratory energy, v

=E -E', minus the invariant mass squared, q'
=4EE'sin2(W). Knowing v and q' from measuring
the incident and scattered electron, the invariant
mass Wof the final hadrons is fixed by

s= W =2M„v+M„' —q'. (2)

We can also consider inelastic electron scatter-
ing as a collision between the exchanged virtual
photon and the target nucleon. One is then simply
studying the total cross section of the process
"y"+p- hadrons, where the hadrons have an in-
variant mass W, and we are able to vary the ener-
gy, mass, and polarization of the incident photon
beam. This leads one to define total virtual pho-
ton-nucleon cross sections for transversely and
longitudinally polarized photons, o~(v, q') and
a~(v, q'), which are related to 8', and 5', by'

known energy (E) is scattered by a nucleon through
a measured angle (8) to a smaller final energy (E')
due to the exchange of a single photon. ' In general,
the nucleon breaks up due to the scattering, and if
only the final electron is observed, then the double
differential cross section can be written as

d2 4 2Ef2
[2W, (v, q') sin'( —,'8) + W, (v, q') cos'(-,'8)].

tII

(l)


