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The precise formula for a +, Eq. (42), has a cut
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lAssuming 6I(s) x(s 4@2)/(s + 16@ ) (corresponding to
a broad resonance at s /2=5@), we found -4 (—c) =0.2.
In channels where there are no low-energy resonances,
it should be much smaller than this.
~After the completion of this work, we noticed a re-

port by D. H. Lyth on the process yy xx. His general
approach was very similar to ours. In particular, he
presented some numerical estimates which support the
approximations which led to the dispersion relation (46),
and also wrote down our Eq. (48). However, he approxi-
mated this equation by neglecting the dependence of
exp[& (g)] on s and obtained an expression which holds
for small values of s where 6 (s) remains very small.
This may render his subsequent inversion formulas un-
reliable because they involve integrating over the full
range of . This is true especially if a broad resonance
is present near the elastic unitarity region as is believed
to be the case. Our results relating )a {s)~

to 60(s),
Eqs. (52) and (53), do not suffer from this difficulty.

2~See the references quoted at the end of footnote 19.
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We discuss the contributions of the combined first-order-weak plus higher-order-electro-
magnetic effects to several K-meson decays. It is shown that if one uses a chiral SU(3)
xSU{3) pole model to explain both K&-27' and KI -2y one needs an effective nonleptonic
interaction Lagrangian which contains 8 and 27, AI =2 pieces. This gives results for K'
—~+Ll compatible with the experimental data. We also calculate within this model the real
part of the Kz -El amplitude, which results in a very small contribution to the decay rate.

I. INTRODUCTION

R(K~ —2y) =5.2x10

R(K' —~'p'p ) & 2.4x 10 ',
R(K'- w'e'e ) &0.4x10 ',

and for R(K~0 —l l) we quote the results:

R(K~ —p, 'p ) & 2.6 x 10 ',
obtained by Darriulat et al. ,

' and

R(K~o —g'p. ) &1.82x10 ',

(1.1a)

(1.1b)

(1.1c)

(1 2)

In the last few years the rare decays K~ - 2y,
Kl. - l l, and K' - m'l l have become more accessi-
ble to experiment. Calling R(K-A) the fraction
for the decay K-A, recent data give'

measured by Clark et al. ' The last authors also
obtained

R(K~ —e'e )&1.57x10 '. (1.4)

Theoretically the decays K~- El and K'- m'l l
could proceed through at least three mechanisms:

(a) second-order semileptonic weak interaction;
(b) possible weakly coupled neutral lepton cur-

rents;
(c) combined first-order-nonleptonic-weak and

higher-order-electromagnetic interactions (WE).
On the other hand, the decay K~-yy would pro-
ceed predominantly through (c). Since the data
are already in the neighborhood of the predictions
obtained considering only WE effects, it would be
useful to have at least that part of the amplitude
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for the processes mentioned above. This would

help to determine the possible interference of non-
electromagnetic contributions. In this paper we

will restrict our attention to an estimate of the
WE contribution. The basic Feynman diagrams
for the processes we consider are shown in Fig. 1.
It is clear that to compute diagram (b) we need a
model for the behavior of the K~- yy form factor
for off-shell y's. Therefore we shall first present
our approach to that decay. We shall use a pole
model which includes several ingredients:

First, to describe the strong-interaction effects
we shall use the effective-Lagrangian approach to
broken chiral SU(3)x SU(3). This we discuss in

Sec. II. Secondly, we a,ssume the electromagnetic
current is dominated by vector mesons and that
the decays of pseudoscalar mesons into two pho-
tons proceed through PVV couplings, as explained
in Sec. IG. Finally, as discussed in Sec. IV, we
need a model for the weak nonleptonic strangeness-
changing couplings. For this purpose we general-
ize a phenomenological octet Lagrangian used by
Sakurai' by adding a 27, AI = —,

' piece. We then

apply the weak interaction and the prescriptions
of Secs. II and III to the calculation of the rate
K~ - yy for the purpose of determining the possi-
ble admixture of the 27 representation in the weak
Lagrangian, and we make some remarks about the

Kz —yy calculations of other authors.
In Secs. V and VI we present our calculation of

K' —m' l l and K~ —t l, respectively, and finally in

Sec. VII we summarize our results.

II. CHIRAL SU(3) X SU(3) EFFECTIVE
LAGRANGIAN

The charges of the hadronic currents that are

(a)

(c)

I ig. 1. Feynman diagrams for the weak electro-
magnetic contribution to KI yy, K~ ll, and
K+-~+ii.

usually assumed to enter in the weak and electro-
magnetic interactions are believed to obey Gell-
Mann's' chiral SU(3)x SU(3) commutation relations.
The matrix elements of these currents are as-
sumed to be dominated' by Jp =1', 1, and 0 me-
son poles, and a consistent way to treat these fea-
tures is provided by the field-algebra hypothesis. '
As is well known, when one uses the predictions
of a field-algebra Lagrangian computed in the
"tree approximation" one obtains results equiva-
lent to those of the hard-meson analysis' of ma-
trix elements of currents. The effective Lagrang-
ian we shall use is the following one":

2 =-—,
' Tr(KV„„V""+KA&„A"")+ —', m' Tr(V„V" +A„A") —(1/2@ 2)K' Tr(X, V"" V)„' ——,'K V„„V"'

+ —,'m'V„V"' + —', Tr(w„w" +o„cr")+ Tr(f&r) +(I/4m')g5 Tr[ iV»(o" v" +w" w") +A-»(o" w" + w"o")]. (2.1)

g2 +~2 Q2 (2.2a)

Except for the SU(3)-singlet vector-meson field
V„, all other fields in 2 are SU(3) matrices. V„
and A„are traceless matrices for the J =1 and
1' octet gauge fields, respectively, and they form
together a (1,8) +(8, 1) representation of chiral
SU(3)xSU(3). w and o denote the J~=0 and 0'
nonet fields that form the (3*,3) +(3, 3~) represen-
tation. We shall adopt a nonlinear model in which
the 0' nonet and the pseudoscalar singlet are func-
tions of the independent pseudoscalar octet fields. "
This functional dependence is realized through the
constraints

det(o+iw) =I'. (2.2b)

Moreover, in Eq. (2.1) the matrices V„„,A„„„w„,
and cr„are defined as

V„,=s „V,—s„V„-(ig/~2([V„, V ] +[A„,A„]),
(2.3a)

A
w
„=8

q A, —8 „Aq
—(ig/~2 ( [Vq, A,] —[ V„,A „]),

(2.3b)

w„= S„w —(ig/W2) [V„,w] —(g/~2{A„, o}, (2.3c)

op = Bqo —(ig/v 2 ) [Vq, o] +(g/~2{Aq, w}. (2.3d)

Finally, we define the symmetry-breaking ma-
trices
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and

K=1+v3e X (2.4a}

and

m, ' =m'/K, (i = p, K*, (o, (p)

(2.9b)

f= (1 /~2( fbi c+ fbX a) . (2.4b)

Z'„= -(m'/g} V„, (2.5a)

Z"„=-(m'/g)A„.

Only the nonstrange components of J„are con-
served. For the axial-vector current J"„we have
the PCAC (partial conservation of axial-vector
current} relation

(2.5b)

The matrix K produces the usual kinetic-energy
breaking for the masses of the vector and axial-
vector mesons, while the coefficients K" and K"
are related to the +-y mixing. ' " When rela-
tions (2.2) are used, the term containing the ma-
trix f gives rise to pseudoscalar masses obeying
the Gell-Mann-Okubo mass formula. As is well
known, the term with 5 in the Lagrangian is need-
ed to fit the p width.

From the Lagrangian (2.1) one obtains straight-
forwardly the field-current identities

m =847 MeV, e =27.5', co=0.18.

We have in this model K =K„and K~~ =K~ .
p A

III. PV V INTERACTION

An effective interaction vertex (PVV) involving
one pseudoscalar and two vector mesons plays an
important role in the vector-dominance picture
of production and decay processes of mesons. The
PVV interaction cannot be written as part of a
chiral-invariant Lagrangian but can be introduced
in a, (3",3)+(3,3*)-type breaking term. ' This
term leads to a consistent parametrization of the
known strong radiative meson decays as discussed
in Ref. 17. We shall adopt this form of the PVV
interaction which is given by

""(hD' 'V' V P'+XD' V V' P )pvv 4 a8 PV a8 pv

(3.1)

(0l e "~"(0) I
P') =m. 'ca/(2PQ}"' (2 6)

with

Dabc d abc + ~3~ d abdd dsc
1

with c„=c»=c„. From Eqs. (2.2a) and (2.3c) one
obtains the SU(3)-symmetric axial-vector-pseudo-
scalar mixing which is removed by the substitution and

+ ~3d (d acdd dab + d bcdddba) + (1/~3+ 5ab5cb

A'„= (1/vK„)a'„+(gc„/m')(a„P'+gf" V'„P'),
(2.7)

where P' = v'[1 —(c„'g'/m')]'I' and a'„are the re-
normalized interpolating fields for the 0 and 1'
meson octets.

The masses of the axial-vector mesons are giv-
en by

m. ' =m„'/K. ,

m'
mA 21 —(c,'g'/m')

(2.8a)

(2.8b)

where the K, are the elements of the diagonal ma-
trix K of Eq. (2.4a). Relation (2.8b) is the Lagrang-
ian analog of the one obtained by Weinberg. " We
identify the axial-vector mesons with the A, (1070),
D(1285), and K„(1240).

Taking into account the ~-y mixing, we get for
the interpolating 1 meson fields

V 1, 2, 3 1, 2, 3 V4, 5, 6, 7 Kb)d4, 5, B, 71 1
4K ~ ~ UK&+

(2.9a)

sine cose, cose sine
v'K +~' ~ v'K ~ v'K

td td

with

Dab ~ab+~3& dabs
4

In Ref. 17 it was found that

g'/4» = 3.35, (ib'm, '/4»)(1+ e,) = 0.10,

~ = -(2a/W3) cote
1 +E4

(3.2)

and that there are two sets of values for the e's:

(a) b, =0.77, d' —= d, +dc =2.1, -0.3& ed&6,

(3.3a)

(b) E~ = 1.3, d. = da + db = -2.7,
f4 & 0.2 or e4& -3 ~ 3 ~

(3.3b)

It is interesting that with m and g given by
Eqs. (2.9b) and (3.2), respectively, and c„=94
MeV, we obtain c,'g'/m'=0. 51, which is anal-
ogous to the Kawarabayashi-Suzuki-Riazuddin-
Fayyazuddin (KSRF} relation. " From Eq. (2.8b)
it follows that m„'= 2m'.

We shall use for our calculations the formalism
of vector-meson dominance of the hadronic elec-
tromagnetic current developed by Kroll, Lee, and
Zumino. ""This leads, in the absence of weak
interactions, to the effective coupling
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g(S) e [gv(3& + (1 /~3gV(88] y))

=-e(m'/g} [(1/~K)p8 —(3K(()) ' ' sin8 (d„

+(3K )
' 'cos8y ]4", (3.4)

K~
X

(a)

K',

(b)

where 4" is the electromagnetic field.

IV. NONLEPTONIC WEAK INTERACTION

As a model for the strangeness-changing non-
leptonic (NL) interaction we shall adopt a modified
version of an octet Lagrangian used by Sakurai'
in a pole approximation and by Hara and Nambu"
in the current-algebra approach. Their interac-
tion Lagrangian has the form

g —2 NLd ~bJ(1 J P(b)
Na ~2

(4.1)

where

Ja Jv(a) +JA((z)
P )I

By using vector-meson dominance and PCAC,
Sakurai was able to reproduce Hara and Nambu's
relations among the different K-meson decay am-
plitudes and to fit the K,- 2m and the S-wave non-
leptonic baryon decays, obtaining for GN] the
values

(4.2}

and

GN& ——1.1x 10 /mb

G~=1.4x10 '/mb',

(4.3a)

(4.3b)

respectively.
The Lagrangian (4.1) ha, s been used in several

calculations of the rate for K~ - 2y. In the works
of Greenberg" and of Savoy and Zimerman" there
are contributions from axial-vector meson poles
obtained from A-yy amplitudes which, in fact,
violate gauge invariance. In Rockmore's" calcu-
lation the axial-vector contributions are absent.
He finds that GN~, given by Eq. (4.3), is about
five times too large to fit K~-yy. It is important
to point out that in all of the mentioned calcula-
tions there are large contributions from a K* pole
diagram which contains a direct K*-y transition.
%e found, instead, as shown below, that such a
transition vanishes for a real photon due to gauge
invariance and that the only contributions come
from m' and q poles. Even with only these two con-
tributions the rate turns out to be too large when
the weak interaction defined by Eqs. (4.1) and (4.3)
is used. However, it should be noted that the re-
sults obtained in the pole approximation with La-

FIG. 2. Pole diagrams contributing to KL 2y.

grangian (4.1) for K, —2&), K- 3», and S-wave
baryonic decays, "6 except for electromagnetic
corrections, are not affected if we employ instead
a Lagrangian which includes a term belonging to
the 2'I representation of SU(3) with the restriction
bI =-,'. This Lagrangian has the form

—2(G /~2[ (3 ~ P)d bab ~ (1 P)d bald 8lb ]gag 8(b&

(4.4a)

or equivalently

Z„„=(G„,/~2(Z" ("J""""+H.c.

2j8
[g 8(3) ~ (p/~3 g 8(8)]]

(4.4b)

m'Ja
P g

ya ~ +g 8 (8 pa+gfabaybpa)8)f C

m2

(4.4c)

From Eq. (4.4b) it is clear that the 2'I, nI = 3)

piece (i.e. , P w 1) only affects the coupling Ja„J8(8),

which does not enter in the above-mentioned de-
cays unless one considers corrections due to elec-
tromagnetic effects, e.g. , an q-7t transition.

The coupling J'„J"'"plays, instead, an impor-
tant role in the K, -yy decay. ' Figure 2 shows
the diagrams that contribute to this decay in the
tree approximation. %e do not have any contribu-
tion from a pole diagram with the sequence K,'
-yK* and K*-y. This is a, consequence of the
extension of the gauge-invariant formalism of
Refs. 14 and 15 to the total Lagrangian that now
includes the weak interaction (4.4). In this case
the effective electromagnetic interaction (3.4) is
modified to the form

2«s) 1 «8) 2G Nz m p &8)

)t3 " &2 ' 3

(4 3)

The additional last term produces a K*-y transi-
tion, shown in Fig. 3, of the form

where the hadronic currents are given in this rnod-
el by

G~ em' (,) „( ) 1 p m8' p m 'sin'8 m, 'cos'8
'Y

~2 3 eP e 'Y +3 +g2 2+3 )P 2+)P 2
P (d

(4 6)
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K* K*

FIG. 3. Off-shell K*-y transition.

which clearly vanishes for a real photon.
Expressing the invariant amplitude for the decay

of a J = 0 ' meson P into two photons as

K+ ~' g+
1

(a)

t

~K, K„'

(b) ~w

F(P)e„z„,e (y, )k, e" (y, )k,",
with the decay rate given by

3

1(P-yy) = «' IF(P) I',

(4.7a)

(4.7b)

K' K'

we get for K, —yy

I'(K
L, ) = 4 2 G Ng c~ ~ +

~3
F(w') P

From the experimental rates' we
the F(P)'s:

(4.8)

can obtain for

K'

~
F(w')

~

= (2.6 s 0.4) x 10 ' (Me V) ',
~ F(q) ~

= (3.5 s 0.5) x 10 ' (MeV) ',
~
F(K~ ) ~

= (3.1 + 0.2) x 10 " (Me V) ' .

(4.9a)

(4.9b)

(4.9c)

Using GN„=1.15x 10 '/m~', obtained from fitting
K, —2w, and c, =94 MeV, we get from Eq. (4.8) the
following values of P:

0.1 + 0.06
p=+

0.49+ 0.12,
(4.10)

(0.32 + 0.1)x 10 /m&

Gz
(0.18 + 0.04) x 10 '/m~',

(4.11)

where the upper and lower values correspond, re-
spectively, to equal or opposite signs for F(w )
and F(q) In this case .the pole model could not ac-
count for the Ky ' 2p rate. It is amusing that the
values of GN„, Eq. (4.11), are roughly equal to
GF sin8cos6), where GF is the Fermi coupling con-
stant and 0 is the Cabibbo angle.

V. It. ~m'll DECAYS

The decays K'- m'l l receive contributions from
weak electromagnetic processes" in which both
the parameter P and the off-shell K -y transition,

where the positive and negative values correspond,
respectively, to assuming the same or the opposite
sign for F(wo) and F(q). It can be seen from (4.10)
that the case P =1, which would correspond to a
pure octet ZN~, is clearly excluded by the experi-
mental data. On the other hand, one could assume
P = 1 and fix GN~ from KJ - yy alone, obtaining

FIG. 4. Pole diagrams for K+ —7(. ll.

Eq. (4.6), play an important role. The correspond-
ing pole-model diagrams are displayed in Fig. 4.
Diagrams (a) and (b) contain the pseudoscalar and
axial-vector pole terms arising from the bilinear
weak-interaction Lagrangian (4.4), while the con-
tact term in diagram (c) is required by gauge in-
variance and in our model appears directly be-
cause of the substitution of Eq. (4.4c) in (4.4a).
Diagrams (d) and (e) represent the K* contribu-
tion. In Appendix A we give the strong and weak
couplings necessary for the calculation of the de-
cay matrix element corresponding to the diagrams
of Fig. 4. We found that the contribution from the
axial-vector poles is small compared with that of
the pseudoscalar poles throughout the final-state
phase space, while the K* contribution, which is
the only one that depends on P, is of the same or-
der. Table I shows the calculated branching ra-
tios R(K' - w'l l) as functions of the parameter p.
We can see from the table that for P =1, i.e. , no
27, and with GN„ fixed by K', -2p, we obtain for
the m'e'e decay mode a value much larger than
the experimental upper bound. Instead, any one
of the negative p values of Eq. (4.10) yields, for
both the m'e'e and p'p, '}U, modes, branching ra-
tios below the experimental upper bounds. On the
other hand, by using the G„„of Eq. (4.11), fixed
by K~ —2y only, we also obtain values compatible
with experiment.

VI. THE DECAY E~~ll

The decay K~ —p, 'p. has recently attracted con-
siderable attention because the latest reported
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TABLE I. K ~- 7t.~l l branching ratios and parameters
t"

NL and P of the weak, nonleptonic Lagrangian.

2

(5.2}

10 GNLmp
5 2

P 10Rg n' P+P ) 10RQ 7( e+e )

1.15

0.32
0.18

1
0.49
0.1

—0.1
—0.49

1
1

2.01
1.24
0.75
0.58
0.25
0.56
0.31

1.41
0.80
0.44
0.30
0.10
0.39
0.22

(5.1)

where 2 =(1 —4m„ /mr')'~, and the rate is given
by

experimental upper bound' is significantly small-
er than the lower bound obtained from unitarity. "
The estimates of the imaginary part of the ampli-
tude (neglecting CP nonconservation") indicate
that at least 80%%uq of the unitarity bound is contrib-
uted by the two-photon intermediate state. "There-
fore if we retain only this contribution both the
real and imaginary parts of K2- l l will be given
by the Feynman diagram of Fig. 1(b). Assuming
that the K, -yy amplitude is purely real, "one can
relate the imaginary part of the diagram 1(b} to
the physical K,- yy amplitude as

Using only the imaginary part of T given by (5.1)
and F(K,) from Eq. (4.9), one obtains from (5.2)
a lower bound for the branching ratio

R (K2O- p'p, ) & 6.21 x 10 9 . (5.3)

To date there has been no definite explanation of
the discrepancy between the result (5.3) and ex-
periment. In any case it is important to know the
additional contribution from the real part of the
amplitude. This contribution comes from the Feyn-
man integral over the virtual-photon states in Fig.
1(b) which gives a logarithmic divergence when
the K,'yy vertex-momentum dependence is given
by (4.7a} with F(K,) constant. The integral has
been estimated by Sehgal" and by Quigg and Jack-
son, "the former using a cutoff and the latter in-
corporating vector-meson dominance but without
detailed reference to the phenomenological fea-
tures of the PVV vertex or the weak interaction.
Both of these calculations found that the contribu-
tion from the real part is an increasing function
of the cutoff mass and that when this is of the or-
der of the vector-meson masses, the branching
ratio is about 20%,"or more, "larger than the
unitarity lower bound.

In general, the Feynman integral for diagram
(b} of Fig. 1 can be written as

2 4

T =
2 4 F(p, k)e""" p~ks[u(p )y&(k —p —m&) 'y„v(p )]

( 2 (5 4)

where F(p, k} =F(K,) for k'=(p —k)'=0. Our mod-
el provides a functional form for F(p, k) off the
mass shell which is described graphically in Fig.
5. The dominance of the form factor by the vector
mesons makes the integral convergent, as found
by Quigg and Jackson. " The numerical contribu-
tions of the different diagrams are taken in our
calculation from the PVV effective interaction,
Eq. (3.1), and from the weak-interaction model
of Eq. (4.4), which provide the additional K* con-
tribution shown in diagrams (b) and (c) of Fig. 5.
In Appendix B we give details of the calculation.
The various couplings that appear in the K, form
factor F(p, k) depend on p and on the PVV break-
ing parameters e„' e, and e' are given in Eqs. (3.3),
while values e, =12.4 and e, =16.4 corresponding,
respectively, to solutions (a) and (b) for e, have
been obtained from the K'-K mass difference"
and the K*-K7)m decay. " Recently, the value
&4 =2.8+ 0.6, which falls in the middle of the al-
lowed range, has been found by Brown, Costanzi,

K', &, q

(a)

2

(b)

VVv,
l

K'
2

(c)

FIG. 5. Pole-model Feynman diagrams for X&—ll.

and Deshpande" to fit the q-3z decay.
In Tables II and III are shown the results of our

calculations of the real part of the amplitude K,
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TABLE II. K2 l L amplitudes and branching ratios with the corresponding weak-coupling and PVV interaction
parameters for e& =0.77 [sgn I*' (~') = sgn +(g)].

10 GNL~p
5 2

K2&-P+P- K,—e'e
p 10 ImT 10~ ReT 10 R(K20 p+p ) 10 ImT 10 ReT 10 R+2 e+e )

12.4
12.4

0
0

12.4
0

1.15
1.15
1.15
1.15
0.32
0.32

0.5 -4.85
0.1 4.85
0.5 —4.85
0.1 4.85
1 -4.85
1 —4.85

-0.58
1.11

—0.17
1.50

—0.77
—0.65

6.30
6.53
6.22
6.81
6.37
6.32

-2.01
2.01

—2.01
2.01

—2.01
—2,01

1.42
—1.19
1.47

—1.14
1.34
1.35

4.13
3.73
4.24
3.66
3.98
4.01

TABLE III. K2 —l l amplitudes and branching ratios with the corresponding weak-coupling and PVV interaction
parameters for e& =1.3[sgnE(x') = —sgnE'(g)].

E'2 10 GNLmp
5 2

K2 P+P, Z,'- e+e
10 ImT 10 ReT 10 RQC2 p+p ) 10 ~ ImT 10 ReT 10 R+2 e+e )

16.4
16.4
0
0

16.4
0

1.15
1.15
1.15
1,15
0.18
0.18

—0.5
—0.1
—0.5
—0.1

1

—4.85
4.85

—4.85
4.85
4.85
4.85

—0.95
0.68

-0.58
1.08
0.80
0.87

6.45
6.33
6.30
6.52
6.38
6.41

—2.01
2.01

—2.01
2.01
2.01
2.01

1.33
—1.29
1.37

—1.25
1+31

—1.30

3.98
3.90
4.05
3.82
3.93
3.91

—l l and the corresponding branching ratios. Ta-
ble II corresponds to solution (a) of Eq. (3.3a),
for which F(v ) and F(q) have the same sign, while
Table III shows the results for solution (b) of
Eq. (3.3b), for which the signs of F(v ) and F(q)
are unequal. We have chosen &4=2.8, but differ-
ent values within the range 0.2& e4& 6 do not change
the rate by more than 2%. For e„besides the val-
ues mentioned above, we show for comparison the
results corresponding to e, =0. The results for
P =1 were obtained by using GN„, Eq. (4.11), for
which K,- 2m is not fitted by the octet weak La-
grangian. It can be seen from the tables that the
maximum contribution to the rate from the real
part of the amplitude is only of about 101 for K~
—p, 'p. , while for K~- e'e we have much larger
contributions.

VII. CONCLUSIONS

Our work indicates that one can successfully
relate the experimental K,'- 2m, K,'- yy, and K'- n'l l decay rates in the tree approximation by
using a phenomenological weak nonleptonic La-
grangian with a 27, bI = —,

' piece. On the other
hand, an octet weak Lagrangian cannot simulta-
neously fit the 2z mode and the 2y and ml l modes.

We have also shown that a modification of the field
dependence of the electromagnetic current is nec-
essary to preserve gauge invariance when one
adds to the strong gauge-field Lagrangian a weak
coupling term involving the nonstrange vector
gauge fields. This result is a feature of gauge-
field Lagrangian models in which the minimal
electromagnetic coupling is achieved through a
mixing of the nonstrange gauge fields with the pho-
ton. In particular, we obtain a vanishing K*-pole
contribution to K,-yy.

We also estimate the weak-electromagnetic con-
tribution to the real part of the K,- l l amplitude.
A definite prediction cannot be made because the
coupling constants of the octet-broken PVV inter-
action are not yet fully determined. Nevertheless,
the values of the real (K,'- p, 'p ) amplitude calcu-
lated for several choices of the PVV parameters
are always small, ranging from about 10 to 25%
of the imaginary amplitude. The same calculation
for the K,- e'e decay gives a much larger con-
tribution of the real part of the amplitude.
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APPENDIX A

The strong three-particle effective interactions needed for the calculation of the decays K'- g'l l are
obtained from the Lagrangian (2.1) through the substitution (2.7) for the axial-vector gauge field. Only
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PPV and AVP couplings contribute, namely,

2 2 2 3
vabcVaPb8VPc g dave a g Kad+ (65ad Vd 8VP 3bPvc c Z KsoVo fsbc8PPb()vPc

PPV f P 2 PV 2m' pv (A1)

and

~p(b} ~p (b) ad„
g c g dabc(Kad + 65ad) Vd 3vpc +KsoVO dobe 3vpc + ( dabcKad v v V)) v(b)pc

b b d

(A2)

(A3)

where (p„,=-(t„(p„—8„(t)„. Equation (Al) leads to a pv)( coupling

fpcv v)K 4 s
p - p P

where p2 is the four-momentum squares of the p. Using the p width of 125 MeV, we get from the formula
I'-=52fp„s/4((MeV that 6=-0.92 or 6=8.3. The last value gives a too-large dt, pt( coupling and therefore
we adopt the first one. Notice that relation (A3) is the same as the one obtained in SU(2) x SU(2) when Kp
=1." From the weak Lagrangian (4.4) the relevant couplings can be written as

=c 'D 'f3 P'0"P'
NL P

2 a
@PE 2 Deab ~ pP p b

NL

(A4a}

(A4b)

m'
gVv DBab Va V P(b)

NL p 7 (A4c)

with

v = 2c gDs' fa~ v V ~ pv3vp b
7 (A4(i)

C = d + (d d d d ))
2G 3+P 1 P

=~2 4" ' 2" (A5)

APPENDIX B

The K, —l'l amplitude of Eq. (5.4) can be expressed as

T = t
p I(p, (d)+ t„ppI(p, p) + to l((d), (d) +to&&I((t), ((p) +to zl((d, (t)) + Q r(I(i, K*) + Q 7'(&I(i, j,K*),

f = p, (d ~ ((t) j, g= p, td, tttt

(Bl)
where

2

)(d, d)=- 4(— m, JI st, ))d'd,

2

I(i j K )= i4 m» s sd k
v r k'-mr*'

with

g(i, j) =(k) (k'(P- k)'[(k —P, ) —mp'][(P —k)' —m&'][k -m, ]] '.
The numerator of Eq. (5.4) has been simplified by taking the K meson at rest:.

The coefficients of the integrals are

tr(& = W((pGd, (&E(E&-[1—(mp /mr )]

~~ = -Gsc~r*~g*yE(

T]~ = G~)~gW~g~ E]E) .

(B4)

(B5)

(B6)

(B7}

(B8)

The Gr(f coupling constants come from the pVV interaction in Eq. (3.1); e.g. ,

,G~=p(-2 skin8DM'+XcosODss)(K K ) '",
with D '=(1/~3(1+s(} and D" =1+a,. We note that the choice of A, Eq. (3.2), leads to G, =0. The W's
are weak-coupling parameters which can be obtained from Eq. (A5), for example, W =~G
Wz*), =~2GN(m (1+sp)/g from Eq. (4.6}. Finally, the E, are the vector-meson-photon couplings from
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(3.4) (without the factor e).
As shown in Ref. 35, the integrands in (B2) and (B3) can be expanded in partial fractions resulting in

integrals over the product of three poles only. Using the standard Feynman techniques these can be re-
duced to one-variable integrals which can be solt ed numerically. Our results are discussed in Sec. VI.
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