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The mechanism of radiation from a beam of modulated electrons {Schwarz-Hora effect) is
discussed. It is shown that the effect should be quadratic {at a given velocity of the electrons)
in the current arriving to the screen, being due to a coherent emission from the electrons in
the beam; no emission linear in the current, specific to the modulation, is expected. In the
conditions of the experiment, however, the calculated radiated power turns out to be at least
103 times smaller than the observed power.

I. INTRODUCTION

The purpose of this paper is to discuss the inter-
esting effect recently observed by Schwarz and
Hora' '. When a beam of electrons (Fig. I) passes
through a thin crystal with a superimposed laser
beam, it is observed (this is the Schwarz-Hora ef-
fect) that the electrons produce light of the same
color of the laser light when they impinge on a
nonlunzinescent screen.

This effect poses two problems: (a) to calculate
the modulation of the wave function of each electron
when it crosses the crystal in the presence of the
laser light, and (b) to try to clarify the mechanism
by which the modulated electrons produce light
when they impinge on the nonluminescent screen.

Problem (a) is a standard though complicated
problem in quantum mechanics'; although we have
solved it quite generally (in the eikonal approxima-
tion), in this note we shall only report some sche-
matic formulas —by now rather well known'4—
which are necessary for the discussion of problem
(b). It is indeed to this problem that we shall focus
our attention here. Ne can anticipate the results
of this note as follows:

(I) The rate of radiation at the laser frequency
co by an individual electron is substantially inde-
pendent of whether the wave function of such an

electron is or is not modulated at frequency (d; in
other words, if we call "incoherent" the radiation
emitted by the individual electrons impinging on
the screen, the modulation of the wave function of
the electrons does not produce an enhancement at
frequency co above the ordinary transition or
bremsstrahlung radiation in the incoherent radia-
tion rate.

(2) There is the possibility of a preferential
emission at frequency ~ only when the cooperative,
or more precisely, coherent effect of all the modu-
lated electrons is taken into account.

(3) If the radiation observed by Schwarz and Hora
is due to the above coherent emission, the power
emitted from the screen should be proportional
(for a given electron velocity) to the square of the
electron current; it becomes in our opinion very
important to establish this point experimentally.

(4) The power emitted at frequency &u from the
screen by the above coherent mechanism is, how-
ever, according to our estimates, at least 10'
times smaller than the power of 10 "W observed
by Schwarz and Hors. .

II. THE MODULATED WAVE FUNCTION

For simplicity we consider here a one-dimen-
sional schematization; the electron is assumed to
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The numerical values of a„a„a depend on the
characteristics of the crystal film and on the am-
plitude and polarization of the electric field of the
laser.

Note that the three wave packets in (2) move with

slightly different velocities, so that they should
fail to overlap at a distance from the crystal larger
than
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FIG. 1. A scheme of the experiment showing the
notation used in the discussion.

travel along the x axis both before and after tra-
versing the crystal. With reference to the real
situation this amounts, essentially, to considering
only the central Laue spot, neglecting the others.

As to the wave packet of each electron, this will
be assumed to have a Gaussian shape, both in the
direction of propagation (x axis) and in the trans-
verse plane. Indicating with G~ „ the wave packet
of an electron centered at time t around the point
x = X+v t, y = z = 0, and moving with velocity v, we
shall therefore write

(x —X —vt)' V'+c'

Ix, =(& a) exp 22 +
a

(I)ll= Gx. t G

where the last equality defines the longitudinal
(that is, along the x axis) and transverse packets

In this notation the wave function of an electron
which has traversed the crystal film with the su-
perimposed electric field of the laser can be writ-
ten

6I() = a,G» „,e'i~G" so" +a, G» „,expi (p, x —E, t)

+a G»„expi(P x-E i),

where a, is the amplitude of the unperturbed wave
and a+, a are the amplitudes of the two main sat-
ellites which correspond to an increase or de-
crease S~ of the electron energy by the laser elec-
tric field. It is, indeed, in (2),

At a distance larger than this no effect due to the
superposition of the three terms in (2) should per-
sist'; at smaller distances, to be accurate, the
effects of the different velocities of the three pack-
ets should be taken into account, but we shall, for
simplicity, put the following in (2): G» „=G» „
= G»„. Thus the wave function (2) can be approx-
imately rewritten

y»(x, i) = G»„[a,expi (pGx E,i) +a,-expi(p, x —E, i}

+a expi(P»-E i)]

(5)=@o+&++&-~

where the last step is a definition of yo, y„and
y; note also that in what follows the suffix in vo

will be omitted.
Using the wave function (5}, it is straightforward

to construct the probability density

p (* t)=V' OA+Bcos cos —(x —vt)) (6)
27TX (d

and the density of current of probability

J~(»y», i) =- vp(, (xy», t)

2 7TX (d=6G „' A+Bess cos —(x —vt)),

(7)

The existence (noted by Schwarz') of maxima and
zeros in the modulating term in the expressions
(6) and (7) is particularly interesting; it is (Iuite
remarkable that, corresponding to those-maxima
and zeros, maxima and minima are experimentally
observed id the radiated power at frequency ~ from
the screen when the position of the screen is con-

where A =a'+a, '+a ' and B=4a,a, =4aoa and

where the suffix P recalls the fact that the above
expressions are probability densities. In deriving
(6) and (7) from (5), we have assumed a, =a real
and put'

A = —16m =1.64 cm.&o



290 C. BECCHI AND G. MOR PURGO

tinuously changed 2

III. INCOHERENT RADIATION

that3'(x) is additive. It is

g(x) = Qj-„,(x), (9)

We prove now that an individual electron with a
modulated wave function (5) when impinging on the
screen cannot emit radiation at frequency (d in an
amount substantially different than it would do if
its wave function were not modulated. The proof
is extremely simple and quite general. The wave
function (5) is the sum of three terms Ca.ll T the
evolution operator of this wave function under the
action of the screen; T is a linear operator. The
amplitude for emission of a photon at any frequency
is therefore the sum of,the amplitudes from each
of the three addends in the wave function; no one
of these amplitudes is enhanced at frequency co.

This proves our assertion.
Note that on the basis of the expressions (6) and

(7), one might have been tempted to argue as fol-
lows: Each electron has a charge density ep, (xyz, t)
and a current density eJo(xyz, f); therefore it pro-
duces an electric field at the screen at frequency

The screen is polarized by this field and there-
fore each electron arriving at the screen contrib-
utes additively to the radiation emitted at frequency

This argument is wrong as is shown by the pre-
vious argument; indeed, p~ and J~ are probability
densities and not charge current densities. In con-
clusion, aside from the ordinary bremsstrahlung
or transition radiation, the rate of radiation from
the screen at frequency co cannot be linear in the
number of electrons arriving per second on the
screen. We shall now show, instead, that a rate
of emission at frequency ~ proportional to the
square of the above number is expected.

IV. COHERENT RADIATION

where

(10)3„-(x}=(p/m)5(x, -x).
The matrix element for radiation of a photon of
momentum k, energy ~ is given by

T
d e '"'

— dxd (x} ' "'* "e "l)dl.
0 2(d

Here H, is the free-electron Hamiltonian

[H, = -(h'/2m)g, h, ], 3,(x) is the projection
of the current operator [given by (9) and (10)] along
the polarization of the photon, and II ) and (F I are
the initial and final states of the electron beam at
t = 0. Ip terms of the wave function of an individual
electron, given by (5), the wave function corre-
sponding to the state I can be written as

(12)

where the product is extended over all the elec-
trons of the beam. In writing this wave function
we have neglected the antisymmetrization because,
in the actual situation, the wave packets of the in-
dividual electrons are sufficiently far apart with
respect to their longitudinal size a.'

The matrix element (11)depends on the values of
the X, of each electron, a dependence which is
noted in (11)by the superscript (X); to be more
precise, X =(X„X„.. . , X„)characterizes the con-
figuration of the centers of all the wave packets of
the electrons in the beam at t=0.

Inserting now (9) in (11), we get

The main result that we shall prove in this sec-
tion will be the following: The rate of radiation at
frequency + is the same rate that would be pro-
duced by a classical current density, i,e.,

J(xyz, t) =e—vG '(yz)

2v(x+ 1.}A+B cos cos —(x —v t),
A V

(8)

impinging on the screen. [I. is the distance between
the crystal and the screen and n is the number of
electrons contained in this space at any given in-
stant. ] In (8) and from now on, the origin of the x
axis is chosen at the screen, while in the formulas
given so far it was at the crystal.

Let us consider the current-density operator
3(x); for what follows, the only important point is

where we have put

A, =—A„
T

dt dxe '"o'7 3 (x)e'&"'" "e'"".
~2(o Jo x&

(14)

Let us first consider the matrix element M,x) (13}
to a state F I. Due to the additive structure of
(13) and to the product structure (12}of wave func-.
tion 4, only final states F where just one electron
has changed its state have a nonvanishing matrix
element. Therefore the power emitted in transi-
tions to states F tI is additive in the contributions
from the individual electrons; but, as we have
shown in Sec. III, there is no enhancement at the
modulation frequency e in the power emitted in-
dividually by the electrons.
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We can therefore confine ourselves to considering
the matrix element (13}to the state F =I and cal-
culate the rate of radiation as

We finally obtain from (19) the power emitted in
the element of solid angle along k (g = 1),

dP
dip = co

I 8] I IB) Ip, (15)

Av» = —„)dX,dX, ~ dX„.1
(16)

The rate of radiation is therefore
dZ e~ &

dt ~ dt

g dx g (z IR, l»(z I
g' l»p

0

dX,dX,(tlR, l»(f lRP»p

where we have omitted in the sum (15) terms with
i =j because again they constitute a contribution to
the power emitted by the individual electrons. ' In
(15), p is the density of the photon final states

We have still to perform on Eq. (15) the average
over all the possible X configurations in the beam.
In order to do this, we assume that at a given time
the center of the wave packet of each electron has
the same probability of being anywhere between
-L and 0, where -L is the abscissa of the crystal
and 0 that of the screen; by this assumption we ne-
glect again any correlation due to the Pauli princi-
ple. The operation of averaging is. thus represented
by

f~ f 2

dt~~ dx» J(x, t)expi(k. x-&ut) p,

(20)

which is precisely the power at frequency co which
would be produced by the classical current Z(x, t);
note that Z(x, t) has a harmonic time dependence at
frequency &u which leads to a 5(&u —(v) from the time
integral in (20); this proves the result stated at the
beginning.

We end this section with two remarks.
(1) In the above calculation we have treated the

screen simply as a boundary condition on the cur-
rent (8}; it is indeed this boundary condition that
allows the radiation to be emitted. We have, how-
ever, neglected so far the fact that the incident
electrons do produce an induced current in the
screen which also radiates. In the case of a metal-
lic screen this induced current is simply the mir-
ror image of the incident current with respect to
the surface of the screen. In Eq. (20) we shall
therefore from now on interpret S(x, t}as being
given by Eq. (8)plus its mirror image. Formally,
this can be obtained replacing (10) by

—' 5( x —x, ) — '"- 6( x —x,„),

jf &JlR,l»dx, p

1 n 2

&IIR,I»dX, pT L gJ. (17)

In (17) we have used the fact that (I lR, l» depends
only on X, and that the functional dependence on
X, is the same for all the values of i. Let us now
define

e(xe)= "f exfu—(y ((, e6e(x)„y ((, ), e

(18)where

»(,xt) = e'"o'9 «(X ),
and observe that J(x, t) so defined is precisely the
classical current (8); the quantity

I R~ I dX~,

0 1 T
I 8 I dX, = dt dxe J xt

x expi(k x —u&t). (18)

w'hich appears in (17), can therefore be written, re-
calling the expression (14}of R, as

where x,„, P,„are the images of x, , P, with re-
spect to the screen. For a dielectric screen the
situation is somewhat more complicated although
we cannot foresee at the moment a difference in
the order of magnitude between the rates of radia-
tion against a metal or a dielectric screen.

(2) Equation (20) can be simplified by decom-
posing the current into positive- and negative-
frequency parts:

J(x, t)=J '(x)e' +J~(x)e '~'

We get
2

d)e =ex(e -e)p f exe 2'*'(x)e'» '
=«(~-~)pl» &"(&)l'

(21)

(22)

V. RATE OF RADIATION

We shall consider a conducting screen normal to
the xy plane and at an angle 0 with the incident beam
of electrons (compare Fig. 1; »cos8 + ysin8= 0 de-

where J(')(k) is the k component of the Fourier
transform of J(')(x). This expression will be used
in Sec. V for the calculation of the rate of radiation.
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fines the plane of the screen) and calculate using Eq. (22) the power emitted into photons of momentum k.
performing a rotation to new coordinates R—=X, Y, Z such that the plane of the screen becomes the new

plane X=0, we can rewrite such current as

', evB—cos(2v/A)(L+n R)exp[-i(e/v) n R] G ([R-n(n R)]')e(-&)

——,'ev„Bcos(2v/A)(L-n' R)exp[i(v/v)n' R] G,([R-n'(n'. R)1')8(X), (23)

where n =(cos8, sin8, 0) and n =(cos8, -sin8, 0). The second term in (23) is the mirror current mentioned
in Sec. IV. Inserting this expression, Eq. (23), of the current in (22) and performing the integrations, we
obtain for the power radiated into photons of momentum between k and k+ dk the expression

d = S J(+) k ~ dk„dk, dk

J d(u d(u (2v)'

B e n v2 2' [k, —(&/~)sin8] D sin 8 dk, dk,
2w 4m L' 9' A ' ' 4cos'8 cos'8 (1 —sin'8/v')' ' (24)

a formula which holds for

C v A.
X—= =«D and sin86 ———

CO c D

owing to the approximations performed in the
course of the calculation.

From this equation the total power can be cal-
culated by integrating over the directions of %.

Owing to the high directionality of the emitted ra-
diation this integration is easy, and we finally get
for the total power (in Heaviside units and having

put c=1)

8' =B2 8 n 1
F 4 L2 D2~2

in (24) or (25) is not exact, but is practically so;
it only implies A» A. .

Before ending this section two points deserve
some attention.

(1) If the mechanism of emission of light is not
reflection as considered so far, but diffuse reflec-
tion (the surface of the screen has many facets ori-
ented at random), the light will not be emitted in a
definite direction, but will be diffused more or less
isotropically. Still it can be understood easily that
also in this case the order of magnitude of the total
diffused power is given by (25), where of course
the dependence on the angle of incidence 0 is omit-
ted; i.e.,

2nL sin'0 ' 'sin'8
(25) W =B'——v' cos' (D»X). (27), e' n', 1 22mL

47tL Du A

Let us first discuss Eq. (24). The high direction-
ality shown by (24) is expected Indeed. , the elec-
tric field accompanying the beam of electrons is
directed predominantly along the direction of the
beam9; the Fourier components of this field are re-
flected by the screen.

By the same argument it is easy to understand
that the maximum angle for which we can have re-
flection is determined by

8' n' 2mLW''= B'——v'cos'
tf 4 L2 (D«x) (28)

(2) So far we have assumed in the calculations
that D» c/u& = X. This assumption seems well
satisfied, as we shall see in Sec. VI. It is, how-

ever, convenient to write the formula similar to
(27) in the opposite extreme where D«X. In this
case we obtain (in the limit D-O), for the order of
magnitude of the diffused power,

sin8,„™u/c, (25)

a relation which can be read from (24). Putting
there k, =0 and k, =(~/v)sin8 [remember that the
Gaussians in (24) are very narrow: D~ 10%= 10c/&u;
see below], the equation k,'+k„'+k,'=~'/c' can
be solved for real k„only if sin8& v/c.

The second noteworthy feature of Eqs. (24) and
(25) is the presence of the factor cos'(2wL/A); this
factor gives the periodic variation of the power
emitted with the distance L of the screen to the
crystal, as already mentioned iri See. H. Note that
the simple factorization of the factor cos'(2vL/A)

a formula which can be understood by simple di-
mensional arguments.

VI. NUMERICAL EVALUATION OF THE
EMITTED POPE ER

We now evaluate the order of magnitude of the
power radiated at the screen given by Eq. (27). In
this equation the quantity (n/L)v = dn/dt can be de-
duced immediately from the known current density
of 0.5 p.A as given by Schwarz and Hora:
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—v= —=0.5 —= 3x 10 sec, (29)
n dn 10

1.6x 10 "
where we have assumed that all the current goes
into one spot, an assumption which, of course,
goes in the direction of increasing the calculated
power .

Let us now discuss the parameter D which inter-
venes in (27). Here a reliable estimate is quite
difficult; indeed, D depends on several quantities
in a complicated way: (1) the transverse size of a
wave packet when emitted by the electron gun; (2)
the focalization system of the electron beam before
the electrons impinge on the crystal; (3) the details
of the diffraction by the crystal and, in particular,
the size of the microcrystals in the crystal giving
rise to the diffraction; and (4) the distance of the
screen from the crystal.

A schematic way to estimate D in (27) can be the
following: If d is the transverse radius of the part
of the wave function of an electron moving towards
a given spot immediately after the crystal, the
wave packet will then expand with an angle of di-
vergence = h/2Pd. If the screen is at a distance L
from the crystal, the radius at the screen is
D=d+(hL/2pd), or, preferably,

(30)

It appears from (30) that D has a minimum value
given by D;„=(hL/P)'t2; taking as a typical value
L = 20cm and recalling that it is p = 10 "(c.g.s.
units), it turns out that D;, = 10 ~ cm. In the
actual experimental conditions, d in (30) should be
the smaller of the following two radii: that of a
microcrystal in the diffracting film and that of the
wave function of an electron incident on the crystal.
The electron beam has, according to Ref. 2, a di-
ameter of a few microns; probably we are not far
from the value D;„given above. In any case, in
the following estimates we shall insert in (27) a
value of 10 4 cm for D, again in the direction of
increasing most probably the calculated power. "

Finally, we leave B in (27) as a free parameter
for the moment, but we recall that B' must be less
than 2, by definition"; choosing a distance L such
that cos' (2sL/A) = 1, we get

W~= 0.5 x 10 'B' erg/sec= 0.5x 10-"B2W .

(31)

It is seen that even for B'= 2 we obtain a power
which is three orders of magnitude smaller than
the power of = 10 "W observed by Schwarz. If we
take into account that the numbers inserted in (27)
have been chosen in the direction of increasing the
calculated power, the discrepancy may well in-

crease further; an increase in the discrepancy by
two other orders of magnitude should not be con-
sidered improbable.

We do not see at the moment how to avoid this
discrepancy. Note that, as (28) shows, in the limit
D- 0 we might gain two orders of magnitude, but,
as appears from the previous discussion, we do
not see at the moment any way to justify such limit.

VII. FINAL REMARKS

The list of results emerging from the above anal-
ysis has already been presented in See. I. While
we have nothing to add to that list, to which we
refer for the main conclusions, it is appropriate
to mention briefly three further points.

1.Dependence of the popover W of the Schsuarz-
Hora radiation at several values of L on the polar
ization o. = Z„/Z of the laser electric field. We are
not able to explain why the intensity of the radiation
changes with the polarization of the laser in a dif-
ferent way at different distances (Fig. 5 of Ref. 2).
Indeed, we would expect that the polarization of
the laser affects only the coefficients a„a„and
a in (5).and therefore the quantity B in (8). This
would imply that dW/do. should be independent of
L, contrary to observation.

2. Bxemsstmhlung. The following question
arises, of course: %hat is the expected power ra-
diated by normal bremsstrahlung in the visible
region from the electrons impinging on the screen?
This power is linear in the number of electrons
hitting the screen per unit time and we have shown
that it is essentially independent of the modulation
of the electron's wave function. In the notation of
Sec. IV, this power is proportional to

gZ I&i l«IF& I'

summed over all the final states I including the
state I =I.

Experimentally, this power looks negligible;
indeed, it is only when the laser is in operation
that radiation from the nonfluorescent screen is
observed. If the laser is off, that is, if the elec-
trons are not modulated, only a weak purple phos-
phorescence is observed on the nonfluorescent
screen, with a luminosity becoming weaker and
weaker as the vacuum in the system is improved. '

The question is now the following: If we try to
calculate the power emitted incoherently in brems-
strahlung, do we get more or less than the coher-
ent power Calculated previously? We shall not
answer this question here, but only confine our-
selves to a few comments in order to indicate some
problems which arise.

If we take, a model in which the electrons stop
instantaneously at the surface of the metal, the
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order of magnitude of the energy emitted in brems-
strahlung between (d and co+ dco by one electron is
given, very roughly, by

1 2 2x —,P h dc@.

Therefore the power emitted by all the electrons
integrated over all the frequencies in the visible
turns out to be, in the experimental conditions,
= 10 ' erg/sec, one thousand times larger than
the power emitted coherently at the frequency e
according to the previous calculation. But of
course a model in which the velocity of an electron
vanishes instantaneously is unrealistic; the formu-
la given above constitutes an upper limit, and both
the spectrum of the radiation and the total energy
emitted depend critically on the damping time of
the current associated to the electron when the
electron enters the surface. It seems preferable
to wait for. more experimental data [particularly
on point (3) listed in the Introduction] before dis-
cussing further this matter and the related question

of how our previous calculation of the coherent
emission might be affected also by the detailed be-
havior of the electrons near to or inside the sur-
face.

3. FurtIier investigations. Finally we mention
here that it would be of interest to determine the
maximum distance L for which the Schwarz-Hora
effect is observed. As shown in Eq. (4) this de-
pends on the longitudinal size of the wave packet
of an electron. However, Coulomb effects, which
we have neglected, should be taken into account in
an accurate evaluation of this point.
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real situation the transverse structure of the current is
more complicated; indeed, an analysis of the diffraction
and modulation process at the crystal shows that the pre-
cise structure of the transverse part of the current is
rather complicated. To simulat'e such complications, we
have repeated the calculation described above introducing
in the current an oscillatory behavior in the y direction,
represented by a multiplicative factor of the form sinqy.
The angular distribution is changed (corresponding to the
presence in the incident beam of the transverse Fourier
component q) but, with reasonable values of q, the order
of magnitude of the reflected intensity is not changed.

~ Note, incidentally, that with such a small value of D
as given above, the fact that the spots appear so large in
the photographic plate with respect to their mutual dis-
tance should perhaps be attributed to a multiple reflec-
tion of the originally emitted photon by many microcrys-
tals in the screen at distances from the original point of
emission up to =10 3 cm. Note also that an accurate an-
alysis of the apparent size of the spots in the photograph-
ic plate might perhaps give an experimental answer to
the question of the linear versus quadratic dependence of
the effect from the current. In fact the numbers of elec-
trons arriving to the various spots are quite different and
the ratios between the apparent magnitudes of the spots
on the nonfluorescent screen should be different, if a
quadratic dependence holds, from the corresponding
ratios on the fluorescent screen where the dependence
is linear.

~~This follows immediately from the definition [after
Eq. (7)] of A and B and from the normalization of the
wave function (2).


