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Assuming that leptons heavier than muons exist in nature, we consider their decay modes
and the correlations between the decay products of l and l in the colliding-beam experi-
ment; e+ +e -l++l . Far above the threshold, the helicities of l+ and l tend to be oppo-
site to each other. Near the threshold the directions of spins of l+ and l prefer to be
parallel to each other, and the sum of the two spins prefers to be either parallel or anti-
parallel to the direction of the incident electron. Because the parity conservation is violated
maximally in the decays of l+ and l, the angular distributions of decay products depend
strongly on the spin orientation of the heavy leptons. Since the spins of l+ and l are strong-
ly correlated in the production, we found a strong correlation between the energy-angle dis-
tributions of the decay products of l+ and l . The decay widths of l into channels v, v, e
v

7
v

p p vg + v7Ã, v, p -, v,K *, v,A &, v, Q, and v, + hadron continuum as functions of the
mass of l are estimated.

I. INTRODUCTION

Since muons exist in nature for no apparent rea-
son, it is possible that other heavy leptons may
also exist in nature. If one discovers heavy lep-
tons, one may be able to understand why muons
exist and obtain some clue as to why the ratio of
the muon mass to the electron mass is roughly
m„/m, =210. Searches for these leptons have been
attempted in the past, "and no doubt people will
be looking for these particles in the e'+e collid-
ing-beam experiments' (e'+ e —l'+ l ), pair
photoproduction experiments' (y+z-l'+l +z*),
and neutrino experiments from the electron
machine' (v, +z- l +z*). We have made extensive
calculations for these cross sections. This paper
deals mainly with the decay correlations in the
reaction, e'+e -l++l .

%e assume that if heavy leptons exist the lep-
tonic current in the usual current-current effec-

tive Lagrangian' of the weak interaction is given
by

J& &,
——v&y (1-y5)p+v, y (1-y )e5+ yv(1 —y, )l,

and the electromagnetic interaction of the heavy
lepton is exactly like that of an electron or a muon.
The major difference between the heavy lepton and
the muon is that, whereas the muon is lighter than
any strongly interacting particle, the heavy lepton,
if it exists, is expected to be heavier than the K
meson; and hence the heavy lepton decays' into
hadrons in addition to electron and muon.

In the electromagnetic scattering of an electron,
it is well known that at high energies [(m/E)-Oj
the helicity of the electron remains the same dur-
ing the scattering, whereas at low energies
[(m/E) -1] the direction of the spin with respect
to a fixed coordinate system in space is pre-
served during the scattering. ' In Sec. IV we show
that analogous things happen in the reaction e'+ e
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—l'+ l . Far above the threshold [(M,/E) -0], the
helicities of l' and l prefer to be opposite to
each other, whereas near the threshold [(M,/E}
-1] the directions of spine of f' and f prefer to
be parallel to each other, and their total spin pre-
fers to be either parallel or antiparallel to the
direction of the incident electron. To the lowest
order in a, l' and 1 are not polarized if only one

of them is analyzed and if neither the incident
electron nor positron is polarized. This is due to
the fact that, in general, this polarization is
proportional to ImF, E» where F, and F, are
Dirac and Pauli form factors, respectively, and
in our case F, = 1 and F, =0. Since l' and l de-
cay via weak interactions where parity conserva-
tion is violated maximally, the angular distribution
of decay products depends strongly on the spin
orientation of the heavy lepton. Since the spins of
l' and l are strongly correlated in the production,
we expect the angular distributions of decay pro-
ducts of l' to be strongly correlated to those of l .
In Sec. II, we discuss the decay widths and energy-
angle distribution of the charged decay products
from an arbitrarily polarized l into v, + v, + e-,
v, +v„+ p. , v, +n-, v, +K, and v, +p . The in-
variance under CP is then used to relate the
energy-angle distribution of the decay products of
l' to that of l . In Sec. III, the hadronic decay
width of l' is written in terms of an integration

over the spectral functions of weak hadronic cur-
rents. Weinberg's sum rule is used to evaluate
the decay width of l- v, + A, (1070). Das, Mathur,
and Okubo sum rules are used to evaluate the de-
cay widths of f - v, +K *(892) and l - v, + Q(-1300).
Conserved vector current (CVC) and the result of
the e'+ e- colliding-beam experiment from
Frascati are used to evaluate the width of l when

its mass is large. If weak vector bosons exist
and their mass is less than M» l will first decay
into 8'+ v, semiweakly rather than decay directly
into hadrons and leptons. Subsequently, W decays
into ev, p. v, and hadrons semiweakly. The total
hadronic decay width of W is expected' to be about
the same as its leptonic decay width. In Sec. IV we
first obtain the spin correlation function for the
reaction e'+ e —l'+ l, then we fold the results of
Sec. II to obtain the correlation of the decay pro-
ducts of l' and l . In Sec. V we summarize the
general aspects of searching for the existence of

II. DECAY OF POLARIZED I

In this section we give the energy and angular
distribution of the decay products of heavy leptons.
%e assume the heavy leptons to have an arbitrary
polarization denoted by w in the rest frame of the
heavy lepton. The three components of w =

(w„w„w, ) have the usual meaning, for example,

No. of l with spin along+ x direction —No. of l with spin along -x direction
No. of l with spin along+ x direction +No. of l with spin along -x direction

'

l p, +v)+v„ and l -e +v +v

For antileptons we have

l'- v, + v„+ p,
' and l'- v, + v, +e'.

As is well known from the muon decay, the
energy and angular distribution of the electron
from an arbitrarily polarized heavy lepton can be
written in the rest frame of l as"

l -v, +v, +e
l'-™v, + v, +e'

G2M 5 1

dQ, dxx'[3 —2x v (w p, )(2x —1)],
0

(2.1)

We assume the existence of a neutrino v, (and v, }
which has a helicity -(+ for v, ) and the same lep-
tonic quantum number as i (f' for v, ) in exact
analogy with the properties of p', v„, and v„.

A. Leptonic Decay Modes

Similarly to the decay p, - e + v, + v„, heavy
leptons decay leptonically via

where G=1.02x10 '/M~', x is E/E, „of the elec-
tron with E,„=-,'I» w is the polarization vector
of the heavy lepton, and p, is the unit vector along
the direction of the electron. W'e have ignored the
mass of the electron in Eq. (2.1). The polarization-
dependent term w. P, is due to the parity noncon-
servation. The relative magnitude of the parity-
violating term is maximum when the electron is at
the maximum possible energy (x= 1). Near x=1,
an electron prefers to be emitted opposite to the
direction of the spin of l, whereas the positron
prefers to be emitted parallel to the direction of
the spin of l'. Near the lower end of the energy
spectrum (x-0) exactly the opposite holds. The
easiest way to understand these qualitative features
is to draw some diagrams. Figure 1 shows why
the decay of l' can be obtained from that of l" by
changing the sign of the polarization vector in Eq.
(2.1). Since we have ignored the mass of the elec-
tron, e, v„and v, have negative helicities, and
e', v„and v, have positive helicities. Let us
first consider a charge-conjugate state, shown in
Fig. 1(b}, of an arbitrary angular distribution of
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FIG. 1. (a) An arbitrary energy-angle distribution of
decay products of a polarized E . (b) A charge conjugate
of (a} that is physically unrealizable because e', v, , and
v& have wrong helicities. (e) A mirror image of (b) that
is physically realizable. Since the decay is invariant
under Cp, the probability of (c) is equal to the prob-
ability of (a}. These figures show that the decay energy-
angle distribution of a polarized l can be obtained from
that of a polarized E by changing the sign of the polar-
ization vector.

FIG. 2. Both neutrinos must come out in the opposite
direction to the direction of the electron when the electron
has the maximum allowed energy. Neutrino and anti-
neutrino have opposite helicities, therefore, the z com-
ponent of their total angular momentum must be zero.
e+ has a positive helicity and e has a negative helicity
when their mass can be ignored. Thus, e+ prefers to be
emitted in the direction of the spin of /+, whereas e
prefer to be emitted opposite to the direction of the spin of
of l when x is near 1.

the I decay shown in Fig. 1(a). Figure 1(b) is
unrealizable physically because e', v, , and v,
have wrong helicities. The mirror image of Fig.
1(b) shown in Fig. 1(c), is physically realizabLe
because the spine of all particles in Fig. 1(b) are
flipped by taking the mirror image.

Since Fig. 1(c) is obtainable from 1(a) by the
combined operation of CP, the probability of 1(a)
must be equal to the probability of 1(c) if the de-
cay is invariant under CP. This explains why the
decay of l' can be obtained from that of l by
changing the sign of the polarization vector in Eq.
(2.1). In order to understand which sign belongs
to which decay, we consider the case x= 1 as
shown in Fig. 2. At x= 1 kinematics require that
v and v are both emitted in the opposite direction
to the direction of the electron. Since the com-
ponent of the orbital angular momentum is zero
along the direction the electron (z axis) and the e
components of two neutrino spins add up to zero,
the z component of the spin of the electron must
be parallel to the spin of the heavy lepton. Since
the electron has a negative helicity and the positron
has a positive helicity, the positron prefers to be
emitted along the spin of l', whereas the electron

G M)
3x2 77

(2.2)

It is convenient to write

I (I —v, +v, +e )/5=2. 66x10" sec 'M, '/M',

(2.2)

where M, and M~ are in units of GeV.
When the mass of the muon is not ignored, the

energy-angle distribution of the muon can be writ-
ten as

prefers to be emitted opposite to the spin of l
when x-1. When x-0, the kinematics require
that v and v come out in the opposite direction to
each other; hence their net spin is equal to unity
and is pointing toward the direction of v. In order
to conserve angular momentum, e has to move in
the direction of v and the spin of l has to point in
the direction of v. Hence, near x=0, e prefers to
come out along the direction of the spin of l which
is exactly the opposite to the case for x= 1.

Integrating Eq. (2.1) with respect to the solid
angle and x, we obtain

I'(I —v, + v, + e ) = I'(I' - v, + v, + e')

l vf + v}I+P,
- G'M&' 8 ™~,f v2 3M' p 3I', ",= » «p'dp J~ dQ SM, —4E — " + v v(w. p) —4E-M, —l -vl+v~+p' 3x27P4Ml' 0 - l E M, E '

M,

(2.1')
where P is the momentum of the muon, E =
(p'+ M„')' ~', and p „=(Mp —M„')/(2M, ). After
carrying out the integration with respect to P and
0, we obtain

l ~v)+v~+p. G MiI', ",= 6, [1—8y+8y'-y4-12y2lny]
~v~+v~+P, 3x2 8'

(2 2')

where y = M„'/M, '. As pointed out by Thacker and
Sakurai, ' the correction due to the finite muon
mass can amount to 25% if M, =0.6 GeV.

B. l ~v&+m andi'~v, +7r'

This decay mode can be calculated from the
knowledge of n - v„+p. and n' - v„+p, '. The
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W

gf~ cos 8(
fore, ~ prefers to be emitted in the direction of
the spin of l .

Integrating Eq. (2.5) with respect to the solid
angle, the spin-dependent part vanishes. From
Eqs. (2.2) and (2.5), we obtain the ratio

gf~ cos jgc

W g

FIG. 3. These two diagrams show why the decay l
x +f can be calculated from the knowledge of the decay

7l' ~P Pp.

Hence from the experimental lifetime of 7. =

n/r=2. 6X10 'sec, we obtain

f, = 0.137M'. (2.4)

The angular distribution of n' from the decay of a
polarized l' can be computed from the Feynman
diagram. We have

easiest way to see the connection between the two
reactions is to assume the existence of weak vec-
tor bosons and write two Feynman diagrams, as
shown in Fig. 3. ep, l universality implies that 8'
couplings to pu„, ev„and lv, have the same
strength g given by g'/M~' = G/~2 . The coupling
constant between W and v is given by gf, cos8e,
where 0~-1.5 is the Cabibbo angle. From the
Feynman diagram, the decay width for ~- p. +v is
given by

M
8n

2I'(l - v&+v, +e ) M('
I'(1 —»- + v) 6»'f, ' cos'8e

M' 1
M 1.04

(2.6)

This equation shows that when the lepton mass is
equal to the proton mass, the width for the pionic
decay mode is roughly equal to the sum of the
widths of the electronic and muonic decay modes
of l. If M, & M~, then the pionic decay mode is
more important than the total leptonic decay mode
(e plus p. ).

t-~I(, +p,

We can calculate this decay rate from the known
rate of K - p, + v„, or equivalently we may obtain
this by simply replacing cos'8e and M„ in Eq. (2.6)
by sin'8e and M», respectively. f, is equal to f»
because this is how Cabibbo" obtained 0~ from
comparison of the decay rates of n - p, + v and
K —p. + v. Hence we obtain

I'(1- K+ v) = F(l-»+ v) tan'8e (1 —M»'/M(')'

(

(2. 'I)

where tan'8e = I/13. 7.

D. I ~P +~r

(2.5)
where P„ is the unit vector in the direction of mo-
tion of the pion. Again the invariance under CP
says that the angular distribution of l'- v, +~' can
be obtained from that of l —v, + m by changing the
sign of w. (Proof similar to Fig. 1.) Comparing
Eq. (2.5) with Eq. (2.1), we notice that the x inte-
gration is missing from the latter because in the
two-body decay the energy of each particle is
fixed in the rest frame of l: E, = (M '+ M ')/2M
and E„=(M, ' —M, ')/2M, . We also notice that the
sign in front of w. p„ is opposite to that of w P,
when x-1. The ~ sign in Eq. (2.5) can be under-
stood easily if we draw pictures similar to Fig. 2.
Consider l -v, +n . Since v, and v come out
back to back, the component of the orbital angular
momentum along the direction of v, is zero. Now
v, has helicity —;hence, it prefers to be emitted
opposite to the direction of the spin of l . There-

This decay mode can be calculated from the
cross section" of e'+e -p using CVC. CVC is
equivalent to the statement that the coupling of W

to p is obtainable from the yp coupling by re-
placing e in the latter by v2 gcos8e, where

g'/M '=G/W2.

where

~2 g cos 0~
gplv =

~ gpss Mp
W

G
cosOC fP (2.9)

The width for this decay can be calculated easily,
and we obtain (neglecting the p width)
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= 1/gp
' = 1/8m. (2.10) F(l -p +v,)=, 2 cos'8cM~ 1-, 1+2'n2

Substituting Eqs. (2.9) and (2.10) into Eq. (2.8), we
obtain In terms of the leptonic decay width we have

(2.11)

1'(l-p+ v) = cos'8C 1'(l- e+ v+ v)3w, 1
~ 1+ (2.12)

We next consider the energy-angle distributions of m' from the decays of polarized l' via

l -v, +p and l' - v, +p'

lr'+ r W +7

The two decays are related to each other by CP invariance, hence we give the derivation for the l decay.
The width can be calculated from

(1 v(+p 1 1 d'p, d'q, d'q,
=2M, (2,) 2E 2„2 &'(p, -p, -q, -q.)IMI

n +n' 2 j. 2
(2.13}

where p„p„q„and q, are the four-momenta of l, v„m, and n', respectively; E„(d„and ~2 are the
energies of v„w, and v', respectively; and lM l' is the matrix element squared.

2
lM l' =g,~„'g~ 'tr[-,'(1+y,g )Q, + M, )(1+y,)QP', g(1 -y,}J,

(q, + q2) —Mp + sl pMp
(2.14}

where g~,„ is given by Eq. (2.9), g~„ is given by Eq. (2.10), Q= q, —q„w is the four-vector which reduces
to the three-dimensional polarization vector w in the rest frame of l, and

2 2 3/2r =~P"' M ~-4M.
48m

P
(2.16}

For simplicity, let us make a narrow-width approximation, i.e., we replace the Breit-Wigner factor by
a 6 function:

w 2 2

q + q }2 M, + ~T, M
—

& M 6((q, + q, ) ™P). (2.16)

After taking the trace we have

"" "{2(p, Q)(p. Q)-(p, p, )Q'-a[2(w Q)(p, Q)-(w p.)Q'Jj6((q, +q, }'-M,').
P

In the rest frame of l, we have

p, Q= p, ' Q= &(~, —~.),
Q'=4M, '- M '

p, .p, =M (M, —~, -~,),

p =w 'q~+w q»

(2.17)

w .Q=-(w q, -w q, ).
Since we are interested in the energy and angle distribution of q„we have to integrate Eq. (2.13) with re-

spect to p, and q, . We first integrate with respect to d'p, with the help of the 64(p, -p, —q, —q, ) and obtain
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] dp2 4' 5'(P, —P, —q, —q, ) = 5((P, —q, —q, )') = 5(M, '+ M, ' —2M, (,+,)).
2

(2.18)

This 5 function says that ~, is fixed if ~, is fixed, and the 5 function in Eg. (2.16) says that the angle be-
tween q, and q, is fixed. Therefore, choosing the direction of q, as the z axis and letting w lie on the zx
plane, the three-dimensional integration d q, reduces to the integration with respect to the azimuthal
angle p. The only term in the integrand which depends upon Q is w ~ q, and

(2.19)f ~ q 6((q q )2 —M )6(M, +M —2M, (u +u ))=
4 3(w I,)(I. I2).
4M)q~

2

After some manipulation, we obtain the energy-angle distribution of n' from a po larized l' vs l —~i+P:

~ v)+P ~ v) + 11' +'1T 3gp)pI'- v, +p'-P, +s'+r 16v2M 2(1-4M, '/M ')3i2

du, dQ~ 16M, (d~ — '
+ Mp 1 —

2 M) —Mp

where

r M +M 4M'+'"' 16.V' ~ ' ' ' +M' 1- ' (3M'-M')2 ."fl Nl-
4M

'
P -M2 l P

l P

(2.20)

,„=[M,'+ M, '+ (M, ' M, ')(1 ——4M„'/M, ')' "]/(4M, ),

u), ~;„=[M,'+Mq' —(M, '- Mp')(I —4M„'/Mp')' ']/(4M, ) .

Comparing Eq. (2.20) with Eq. (2.5), we see that the spin-dependent term in two cases have the same
sign, namely, m prefers to be emitted along the direction of polarization of l, whereas m' prefers to be
emitted opposite to the direction of polarization of / . Since the terms inside the square bracket are
positive definite, this is true independent of the energy ~,. Equation (2.20) reduces to Eq. (2.8) after inte-
grations with respect to energy and angle as it should.

III. WIDTH OF 1 AND SPECTRAL FUNCTIONS OF CURRENTS

In Sec. II we considered in detail the energy-angle distributions of simple decay products from a pola-
rized I'. If the mass of I' is less than 1 GeV, the consideration given so far is sufficient [except I- v

+K*(890) to be considered in this section]. When the mass of l" is greater than 1 GeV, l' decays into
v+A, (1070), v+ Q(1300), and v+hadron continuum in addition to simple discrete states considered in Sec.
II. If weak vector bosons (W') exist and if M, & M~, then I' will first decay into v+ W' semiweakly rather
than decay directly (weakly) into leptons and hadrons. In this section we consider the width of l' from a
more systematic point of view which enables us to deal with these new problems and put the special cases
discussed in Sec. III in better perspective.

The width of /-hadrons+ v, can be written as

I'(I —hadrons+ v, ) = —
~

—tr(p, + M~)(I +y, )y„Pr.(I —r, )

x +&0~ &",(0)~f&&f l~l'(0)10&(»)'6'(Pi —&2-6»
f

where 0 „"is the Cabibbo current"':

(3.1)

j„"=[(F," +iF,")—(F,'"+ iF,'")]cos 6~ + [(F~ +iF,")—(F,'"+ iF',")]sin9~ . (3 2)

The four types of currents, F",+iF"„F,'" +iF',", F", + iF~» and F,'"+iF,'", do not interfere with each other
because the final states associated with each current have different quantum numbers, as shown in Table I.

Since F," +iF", is conserved (CVC), the final state (f) cannot be a 8 =0 state with nonzero mass for this
current.

I et us define the spectral functions:
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TABLE I. Quantum numbers of final states.

F'~)+it(

FSI'+F't'

Fu~+iFf,

F4'~+iF 55~

0, 1+

0+, 1

0, 1+

1
2

1
2

Examples

p, 2n, 4x,K +K o

, 37t', A(

K*(892)

K,Q (1300)

F,"(0)+ iF "(0) F;(o) —iF;(0) v, (q')

E,'"(0)+ iE,'"(0) F ,'"(0)—iE,"(0) a, (q') a(&(q')

/&0 „( )
. „( )

f f,(0), ,( )
o 3 )'5'q- )= q"q"-q'g""),(.) + "",(,)

~

F~"(0) + iF',"(0) F~"(0) —iF,"(0) o~(q2) o~(q2) (3 3)

The spectral functions v» a„v„and a, come from the final states with J =1, whereas a„v„and a,
come from the final states with J=0. v, =0 is due to CVC. All these spectral functions are positive semi-
definite (~ 0) as can be verified by going to the rest frame of the final state, q" = (q', 0, 0, 0), and by letting
p, = v =0 and p. = v = i. This form of decomposition shows explicitly that the final states with J= 1 are always
conserved, and if the current is not conserved it must decay into J=0 states at some q' in addition to J=1
states. Let us show that J = 1 final states contribute only to v» a» v„and a, and J= 0 final states contri-
bute only to a„vop and a, . Since we sum over everything in if), we may simulate if) by a particle
specified by its momentum and spin. Let us consider a matrix element of a current J„, which may or may
not be conserved, between a vacuum and a spin-1 particle with a polarization vector e and a momentum q.

This matrix element must transform like a vector and must be linear in ~. The only vectors in the prob-
lem are ~„and q„; hence,

&Oi J„(0)i
J = 1, q) =f,e„+Bq„.

Now B must be a Lorentz scalar and linear in c. The only Lorentz scalar linear in e is ~ q=0; hence,
B=0. Thus,

&Oi J„(0)i J=1, q) =f,e„.
After summing over the polarization, we obtain

g&01 J„(o)I
J= 1, q&«= 1, ql J'.(»I0& = (f'lq')(qpq. —q'g „).

SPl fl

(3 4)

(3.5)

This shows that the spectral function associated with J= 1 final states must have tensor coefficients (q"q'
—q'g"')

Similarly let us consider a matrix element of J„(0)between a vacuum state and a particle with spin 0.
Now the only vector available in the problem is q; hence,

&oi J„(o)iq& =f.q„ (3.6)

and the spectral function associated with J =0 states must have a coefficient q"q' as shown in E(l. (3.3).
From E(l. (3.6), if the current is conserved, the J=O states can exist only if its mass is equal to zero. We
also note that if the S' boson exists, its hadronic decay width can be written as

1'(W —hadrons) = I'(W —(S =0, P = -))+1{W—(S = 0, P =+))+I'(W —(S = -1,P =-))+1 (W —(S = -1,P =+))

([vy(Mgr ) + +(M((, )]cos ec+ [v~(M((( ) + agM~ )]sin Hc). (3.7)

This decay is semiweak, because it is proportional to G instead of G . Only the spectral functions associ-
ated with the J= 1 states contribute to this width. From E(ls. (3.1), (3.2), and (3.3) we obtain

G2 &s
r(( -pap o s+ )= (, , (pr, ' —p')pp'f pp, (p,p.„+p,„p.„-p„.(p, p.(J

( 0

x 2,&0iJ,"(o)if)(f i J.""(o)io&(3v)'5'(q —Py),f (3 6)
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G2 N 2

I (I -hadrons+ v) =, , (M,' —q')'dq'({(M, '+2q')[v, (q')+ a, (q')]+ M, 'a, (q')) cos'8c

+ {(MP+2q')[v~(q2) + a~(q2}] + M/[ vo(q~) + ao(q2)] )sin~8c).

(3 9)

Let us first obtain various partial decay widths considered in Sec. III. For l - v, + m-, we let f, in Eq.
(3.6) equal to f„, then from Eg. (3.3) we obtain

a (q') =2', '6(q' —M, ').
Substituting Eq. (3.10) into Eq. (3.9), we obtain immediately Eq. (2.5).

For I —v, +K, we let f, in Eq. (3.6}equal to fr, then from Eq. (3.3}we obtain

a,'(q') = 2vf, '6(q' —M,').

(3.10)

(3.11)

Substituting Eq. (3.11) into Eg. (3.9}and remembering f, = fr by definition of the Cabibbo angle, we obtain
Eq. (2.7).

For l - v, +p-, we let f, in Eq. (3.5) be equal to &2 g M '; then from Eq. (3.3) we obtain

v, (q') =4'�„'M,'6(q' —M, '). (3.12)

Substituting Eq. (3.12) into E|I. (3.9), we obtain immediately Eq. (2.11). The fact that the constant f, in
Eq. (3.5) is equal to v 2 g, M,

' comes from CVC. In general, CVC relates v, (q') to the isovector part of
the total cross section for e'+ e —hadrons. From

2 Q(0)F,"(0))f ')(f'(F;(0)(0)(2v)'6'(q —pz, ) = Q(0(F "(0)+iF,'(0)(f)(f [F",(0) —iF,"(0)~0)(2w)'6'(q —pf),
(3.13)

we obtain

q or=i' (q )
1 4+2 2 (3.14)

to do better we have to know how the symmetry is
broken. Weinberg's sum rules" can be used to
relate these two widths. Weinberg s p„, pA, and
F, are related to our v„a„and f, by

The total cross section for e'+e»p'-n'+m is
given by

(, )
a r 4M, ' '~'

Mp gp~'g~p2
3q' q' (M ' —q')'+I' 'M ' '

(3.15)

2W. (q')/q' = v, (q'),

2~p„(q')/q' = a,(q'),

jV -f
where

gp
* q'

(~
4m. *}*'*

(3.16)

l [v, (q') —a,(q')]dq' = 2', 2

0
(3.19)

In our notation Weinberg's two sum rules can be
written as

gp '=1/g p'= Bv. (3.17)

Replacing the Breit-Wigner factor by a 5 function
[see Eq. (2.16)], we obtain

q' [v, (q') —s,(q'}]dq' = o
0

(3.20)

o(e'+ e —po}= 16aav'g ~26(q' —M~'}. (3.18)

Substituting Eq. (3.18) into Eq. (3.14), we obtain
Eq. (3.12).

A. Weinberg Sum Rules and I~A 1+v f

If SU(3) xSU(3) were an exact symmetry, then
v, (q') = a,(q') = v~~(q') = a[(q') and v, (q') = a, (q ')
= vgq2) = ao~(q') =0. In this case p snd A, would
have the same mass and the width of I,- v, +p
would be identical to that of E - v&+ A, . In order

If v, and a, are dominated by p and A„respec-
tively, we have

v, (q') = 2~(f,'/M; )6(q' —M, ') (3.21)

a,(q') =2v(f „'/M„')5(q' —M„'), (3.22)

where f~ and f„,are the coupling constants which
appear in Eq. (3.4) for respective cases. Substitu-
ting Eqs. (3.21) and (3.22) into Eq. (3.20), we obtain
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f '=f '=2g 'M4=M4/4~
A& p py p p (3.23) GM '

2L9

2'n'

The width of l -A, + v, can be written like Eq.
(2.8) with g~,„and M~ replaced by g»„and M„,
respectively. Equations (3.23) and (2.9}say that

g», =g„,„.Using the fact that Mp' = —,'M„,', we
obtain

I'(l -A +v, )= 8 2 cos 8c
O'M)'
28+2

G'Mi' sin'Ov Mp'M&*'r l-vi+9 =
26 2 2

Q

(3.32)

xM '(1—,) 1 M, )
(3.24)

B. Das-Mathur-Okubo (DMO) Sum Rules
and 1~K*+vf, Q+ v

In our notations, the DMO sum rules" can be
written as

[v', (q') —a;(q')jdq' =f ',
0

(3.25)

The result of the colliding-beam experiment
indicates that v, (q'} should behave like a constant
instead of behaving like a tail of the Breit-Wigner
factor of p. Hence the p- and A, -dominance as-
sumptions are very unlikely to be justifiable.
Weinberg obtained the relation M„,' =2Mp' from
Eqs. (3.19) to (3.22). This can be either accidental
or due to the fact that neither a, nor v, is dominated
by p and A„but v, -a, is. If the latter is true, v,
Inust be equal to a, above the mass of A, .

X 1- o 1+ (3.33)

C. l~ W+v,

If weak vector bosons exist and if M~(M„ then
l will first decay into W + v, rather than decay
directly into hadrons and leptons. The width of
l W + v 7 can be obtained from the width of
l -p + v, given in Eq. (2.8) by making the sub-
stitutions Mp Mz and gpss„

(3.34)

This decay is proportional to G instead of G';
hence numerically it is much larger than the de-
cay mechanisms we have considered so far, un-
less M~ and M, are almost degenerated to each
other. W decays also semiweakly into leptons and
hadrons. The hadronic decay modes of 8' can be
written as Eq. (3.7) and the leptonic decay mades
(W -v il+, W - v~+p, or W - v +l if
M, ( M„) can be written as

l [v, (q'}—v', (q')Jdq' =0,
0

(3.26)
D. I v&+ Hadron Continuum

(3.36)

and

q' [v~~(q') —a~i(q')]dq' = 0.
0

(3.27)

v~i(q2) = 2ii(f ~ii /Mr~2)6(q' —ME~~)i

a', (q') = 2v(f, '/M, ')6(q' —M,'),

v, (q') =2ii(f '/M ')5(q' —M~').

From Eqs. (3.26} and (3.27) we obtain

(3.28)

(3.29)

(3.30)

f 2/M 2 f ~2/M ~2 f 2/M ~2

From (3.31) and the known value of f~', we can
calculate the widths for the decays I- v+K*(890)
and l —v+ Q(1313):

(3.31)

I et us assume that v~|-a', is dominated by K*(890)
in v~i and Q(1313}in a'„and that v, -v~| is dominated
by p(760} in v, and K*(890) in v', . These assump-
tions mean that when using the sum rules we may
let

Let us assume that either S" do not exist or
M, & M~. The decay width of l' - v, +hadron con-
tinuum can be estimated from the results of e'+ e
-hadrons using Eq. (3.14). In order to do this let
us make the following reasonable assumptions:

(1) When q' is large, say q') 1 GeV', the mag-
nitudes of v, (q'), a,(q'), v~i(q'), and a~i(q') cor-
responding to the decay l- v, +hadron continuum
are roughly equal to each other. This can be re-
garded as the basic assumption about the symme-
try of currents.

(2) The spectral functions for J=0 states a, (q'),
v, (q'), and a~0(q') in Eq. (3.9) are negligible com-
pared with the spectral functions for J =1 states
when q' is large. This is true if we accept the
notion that the symmetry of currents becomes
exact in the limit q'- ~.

(3) The isoscalar part of the cross sections for
e'+ e -hadrons is small compared with the iso-
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vector part. For production of p, Q, and (d, the
ratios of these cross sections are given experi-
mentally by

isovector to the isoscalar cross sections. If we
accept this, then Eq. (3.14) becomes

2 1 ~ 1 ~ 1
4 7Tg&P ~ 4 fag&@ ~ 47Tgy~ 2 ~ 15 ~ 11 5 ~ lim v, (q') =—

4 4m'(y' (3.36)

Hence the isovector cross section is three times
as large as the isoscalar cross section. Whether
this is true for large q' is an interesting open
question. SU(3) gives the ratio of 3 to 1 for the

These assumptions say that for estimating the
partial width of l - v, +hadron continuum we may
let He=0, a, =0, and v, = a, in Eq. (3.9); hence

I'(l —v, +hadron continuum) =
(

„, „dq'(M, ' —q')'(M, '+2q')—
2 4w2(y2

(3.3'I)

2 4n n'
=—X ——

3 3
(3.38}

and the quoted cross section from Frascati" as

a„„„„;(e'+e-hadron) = —,a(e'+ e - p. '+ p, ).

(3.39}

Substituting Eq. (3.38) into Eq. (3.36), we obtain

I (l —hadron continuum)

M' M' M

(3.40)

This result corresponds to using the quark mod-
el. If we use Eq. (3.39), the right-hand side of
Eq. (3.40) would be multiplied by 2. A should be
taken to be -1 GeV. We notice that as A'/M, ' -0,
the ratio R becomes unity if the quark model were
used, and the ratio becomes two if the experimen-

The e'+ e colliding-beam experiment of
Frascati" shows that in the energy range 1.6 GeV
~ vq' ~ 2.0 GeV, the cross section for e'+ e
-hadrons is (3+ 0.3) x 10 "cm' compared with the
cross section for e'+ e —p, '+ p. of 2.5 x10 "cm'
at 1.8 GeV. However, it is not clear whether the
observed cross section really represents the pro-
cess e'+ e -hadrons. For example, some of the
events may be due to the production of heavy lep-
tons as considered in Sec. IV of this paper, or
some may be due to the two-photon process. " It is
interesting to note that in the quark-parton model,
the cross section for e'+e -hadron is less than
that of e'+e —p, '+p. by a factor of -,'. Let us
denote the cross section for e'+ e -hadron given
by the quark-parton model as

o~„„&(e'+ e -hadron) = -', o(e' + e —p,
' + p, )

tal result of Frascati is taken at its face value.

IV. e'+ e ~1'+1 AND DECAY CORRELATIONS

The cross section for this reaction is well known.
Ignoring the mass of the electron, we have in the
center-of-mass system, "

ckT Q Sin 8, P 1+cos'0+ y' (4 1)

27r
(

' -l' l )=~,P(1 ~
2y' (4.2)

Since heavy leptons are unstable particles and
their decay angular distributions depend upon their
spin orientations, we have to know the probabilities
of the heavy leptons coming out at different spin
orientations. In order to do this let us calculate
the probability of the reaction e'+ e —l'+ l with
the spin of l in the direction s and the spin of I'
in the direction s'. s and s' are unit vectors de-
fined in the rest frames of l and l', respectively.
In order to calculate the spin effect covariantly,
1st us define two four-vectors (axial) s- and s,
which reduce to the three-vectors s and s', re-
spectively, in the rest frames of l and l'. Let us
choose a coordinate system where the direction of
p in the center-of-mass system is the z axis, and
the direction p &&p, is the y axis, as shown in Fig.
4. In this frame the components of s and s, can
be written in terms of the components of s and s'
as

= (Pyszz S„z S& & ysz}z (4.3)

(4.4)

Let us denote the four-momenta of e, e', L,
and l' by p„p„p, andp„respectively. We
have then

where E is the energy of l' or l, P=(E' —M, ')'~'/E,
and y = E/M, . Integrating Eq. (4.1) with respect to
the solid angle, we obtain the total cross section
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P 1+y5 g+ -P + + M)

2 2M
(4.7)

P(
We use the following representation for y ma-

trices:

p xp(
01 10

~' .&0 ' ~0 0-1'
0 v,and

Let us show that Eq. (4 "t) in. deed is the required
projection operator for l' with spin s'. In the rest
frame of l' we have

P+

FIG. 4. Coordinate system and notations used in the
calculation of the cross section of e++e l++l .

(1 g )
(1+&'s )

0

-P'+M( 0 0
2M, 01'

0
(1 —o s') (4 6)

p = (E, 0, 0, pE },

p, = (E, 0, 0, pE}, -
p =-!(p,-p.)

(4.5)

hence

1+y,g, -P+ Mg 0 0
2M, 0 —,'(1-cr s'} ' (4.9}

1+ysk- P +Mr
2 2M,

(4.6)

and for l' with momentum p, and spin s' is

= (0, E sins, 0, E cos 8).

The projection operator for l with momentum p
and spin in the direction s is then

In our representation, a positron with spin in s'
direction is represented by a negative-energy
state with spin in -s' direction; hence the pro-
jection operator is —,'(1-o .s'). (Notice the nega-
tive sign in front of o for positrons and positive
sign for electrons. )

The desired cross section can be calculated in
the standard way:

p+ p- 5&(+ + p—(s~ s ) —
(2s)2 4(p p ) 2E 2E ~&+ &

— +

s1n'8
P 1+cos 8+ + s,s,' 1+cos 8—

+ s&sg 1 + 2 sin 8 Sysy sin 8 + s~sz + sgsz s1n2 8y' (4.11}

x ,' tr(p', +—m)y„(p',—m)y„~ tr(1+y, 8 )(p' + M, )y&(1+y54+)(P+ —W)yu

(4.10}

We notice that s and s' occur only bilinearly.
This means that if only one particle is analyzed,
then no effect of polarization can be observed, but
if two particles are analyzed simultaneously, their
spins are correlated. The correlation is such that
if s, =+1, then the cross section is maximum when
s,'=~1. In other words, the helicities of l' and l
prefer to be opposite to each other. We also notice
that the coefficients of s„s„' and s,s,' do not approach
zero as y -~. For a massless lepton pair the
terms s,s„' and s„s„' need not be considered, and
hence we have always s, =+1 and s,'=~1. In this
case l' and l always have the opposite helicity.
When the leptons have finite mass, the spin corre-
lation is not complete even in the limit of y —~.

2—„„(.-, -') = 6,.~tl. (.- p}(-' p}],
threshold

(4.12)

where p is the unit vector along the direction of
the incident electron. Equation (4.12) shows that
s and s' prefer to be both parallel or both antipar-
allel to the direction of the incident electron beam.

Let us try to understand Eqs. (4.11) and (4.12)
using a more illuminating but clumsier method.
Let us denote the electron-positron current by

For example, the probability for s, =l and s,'=(-,')'~'
and s„'= (-,')'~' is not zero even if we let y-~.
Another interesting feature is the behavior near
threshold. Near the threshold we have P-0 and
y-1. Hence Eq. (4.11)gives
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j„=v(P, )r „u(P,) (4.13) by

i, = k(i.*ij.)
Writing

1
u(P, ) = (E+M)'"

(4.14)

(4.15)

Current conservation gives 2Ej,=0, therefore,
j, 0 If the mass of the electron is ignored, we
have

Pli„= P, (P,)=0= i. P,i-.= P,i.-;
hence j,=O. Instead of j„and j„ it is more con-
venient to consider

J„=u(P )r„v(P, ) .
Then

J] j"=-j.J.-i,Jy=-2i.J -2j J+

because j,= j,=O. Now, for discussion of the ma-
trix element of J„, it is more convenient to quan-
tize the angular momentum along the direction of
motion of p than along the direction of the in-
cident electron. Using the coordinate system shown
in Fig. 4 and denoting it by a prime, we obtain

J, —:2(J+iJ)

), &, &x p, /(E+M) (4.16)
hence

= —,'(J„'cos8 —J,'sin8+ iJ,'}
(cos 8 s 1)J', +;(cos8+ 1)J' ——,

' sin 8 J,';

j =2E'%+0 y,

where

(4.17)

where g is the two-component spinor representing
the spin state of the electron in its rest frame and
%' is the two-component spinor representing the
spin state of the hole. For example, X

= [',] repre-
sents a state with spin up for the electron, but
%"=[',] represents a hole state with spin up; hence
it represents a positron with spin down. A positron
with helicity + and momentum p, satisfies a .P,'N
= -'W. From Eqs. (4.13)-(4.16) we have

J', =2Eg 0, 'N and J,'=2M, g'cr, W. (4.19)

In our representation the states of l with spin
pointing in x', y', and z' directions are given,
respectively, by

J j"=j,[(l —cos8)J', —(1+cos8)J' +sin8 J,']
+j [-(1+cos 8)J', + (1 —cos 8)J' + sin8 J,'].

(4.18)

In terms of two-component spinors, J', and J,' can
be written as

00
and a 10'

1 1
X

1 1
~2 s and gz'

V 0
(4.20)

and the axis of quantization is along the direction
of p, . Taking the spin average, we notice that j,
is nonvanishing only when the electron has negative
helicity and the positron has a positive helicity,
whereas j is nonvanishing only when the electron
has a positive helicity, and the positron has a
negative helicity. The numerical value of each
matrix element is 2E Equation (4. .17) shows also
that the total angular momentum of the electron-
positron system is unity, and the direction of the
angular momentum is parallel to the total spin
s, + s, which is either parallel or antiparallel to
the direction of the incident electron.

Let us denote the current of the final lepton pair

Similarly, the states of l' with spin pointing in
x', y', and z' directions are given, respectively,
by

l1" 1 1 0'
VP„i= ~, 'N i= ~ . , and %g. = ~

(4.21)

The cross section is proportional to the square of
Eq. (4.18}. Since the helicity states contributing to
j, are different from those contributing to j, the
two square-bracket terms do not interfere with
each other. Averaging over the spin of the incident
particles, we obtain

GV sin8(s, s')= 6, y, (l-cos8)v, —(1+cos8)o + o, vp, ,
'y

sin&+ y, -(1+cos8)c, + (1 —cos8)o + c, %,.
y

(4.22)

With the aid of Eqs. (4.20) and (4.21}, we can verify Eq. (4.11) from Eq. (4.22). The latter derivation of
the spin correlation is clumsy, but it brings out many subtle points of the problem.
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Let us discuss qualitatively the experimental consequences of spin correlation. In Sec. II, we calculated

the decay angular distribution of arbitrary polarized l and l'. In general, we may write symbolically

r(r x)-fd.n(
2

A+Bq w dQ (4.23)

r((' x)-fd=n ), "r'"
2

A'+B q,
' w' dQ', (4.24)

where q and q' are momenta of the decay products to be detected. Let us write symbolically the spin cor-
relation in the production, Eq. (4.11), as

dQ = C + D~gs~ s~ ~ (4.25)

The combined angular distribution of the decay products l —X and l' -X' for a fixed production angle,
can be written as

do CAA'+ D~&q~ q&BB'
T'to

(4.26)

where I;„is the total width of l', dA, is the solid angle for l (or l') in the center-of-mass system, dQ

and dQ' are solid angles for the decay products of l and l', respectively. Equation (4.26) can be derived
in the following way: w represents the polarization vector of l, and by definition each component of
w = (w„, w„w, ) represents

No. of L polarized along e; -No. of l polarized along -e;
No. of L polarized along e,. + No. of l polarizedalong -e,.

Now the number of / having spin along the direction e,. with the polarization of l' in a certain direction s'
is proportional to C+D„s~, whereas the corresponding number of l having spin along the direction -e, is
C —D,.~s,'.

Hence

w, =D, ,s&/C,

and the angular distribution of the decay product of l is proportional to

CA + D;,-s'.q; B.

(4.2'l)

(4.28)

For a fixed angular distribution of the decay product of l given by Eq. (4.28), the components of the spin
of l' are given by

w&
——D; &q; B/CA. (4.2S)

Substituting Eq. (4.29) into Eq. (4.24), we obtain the combined angular distribution of the decay products
of l' and l at a fixed production angle:

CA A'+ D, ,q,.q,'.BB'.

In order to obtain the proper normalization factor, we notice that the partial decay width I'(l —K) is inde-
pendent of the polarization, hence

r() x) fd-md-nd =f dd wdn=o.

Similarly

r(r x') fd'dn' add f -B r( =w'dn'=0. ''

(4.30)

(4.31)
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This implies

D, q,.q'. BB'dQ = D; q;q,'BB'dQ' =0 (4.32)

and, therefore, integrating Eq. (4.26) we obtain

e'+e -l'+l
dQ, q )

I'(l' —X')F (l —X)=C
tot

(4.33)

This shows that Eq. (4.26) is indeed properly normalized because C is equal to dQ/dQ, summed over the
poiarizations of l' and l . Equation (4.32) shows explicitly that if the decay angular distribution of only l'
or only l is observed, then the effects of the spin correlation vanish. This is, as mentioned earlier, due
to the absence of the terms linear in s and s' in Eq. (4.11). The absence of linear terms in Eq. (4.11) is
due to the approximation of one-photon exchal~e, and the neglect of the final-state interactions between /'

and l .
In the absence of spin correlation we have only the CAA' term in Eq. (4.26). It is very important to notice

that the existence of B and B' in Eqs. (4.24) and (4.25) is due to parity nonconservation in the decay of
heavy leptons. Since the spin correlation term D, ,q, q,'BB' in Eq. (4.26) is proportional to BB', we conclude
that if we detect in coincidence one Particle from the decay Products of l and one Particle from those of l',
the effects of spin correlation exist only if parity conservation is violated in the decays of both l' and l .
This is due to the fact that the polarization vector for a spin- particle is an axial vector. (This would not
be true if l' and l were spin-1 particles. In this case the correlation exists even if parity is conserved. }

In order to see the effects of the spin correlation, let us compare the magnitudes of the isotropic term
CAA' and the spin-correlation term D, ,q;q,

'BB' in Eq.. (4.26) corresponding to various combinations of de-
cay channels.

Example 1. l -v, +v„+p, , l'- v, + v, +e' and p- and e' are detected in coincidence. From Eqs. (2.1) and
(4.11) we have (ignoring the mass of the muon for simplicity)

SlI12 gCAA' = F 1+cos'9+ 2 x2dx(3 —2x) x"dx'(3 —2x')
0 0

(4.34)

1 1

D, ,q,(q~BB' = -E x2.dx x"dx'(1 —2x)(1 —2x')
0 0

where
O'M]'

3 && 2'v' 16E' ~'

x, q,q,' 1+cos & —,+q, q„' 1+ —, sin'& —q, q,'p'sin'9+(q„q, '+q„'q, }—sin20
y y '' "' "'y

(4.35)

s/ I~ =q f'qmaxy an qmax qmax 2Ml ~

We observe the following:
(1) The correlation is maximum when x and x' a,re both near 1.
(2) In the limit y -~, and both x and x' are near 1, e' and p, prefer to come out either both along the

directions of motion of parent particles, or both opposite to the directions of motion of parent particles.
(3) Near the threshold (y -1},we may write

CA A'+ D;,q;q,'BB'~ (3 —2x)(3 —2x') —(1 —2x)(1 —2x')(g q)(P q') (4.36)

where P is the unit vector along the direction of the incident electron. This shows that the correlation is
maximum when both x and x' are near 1. The effect of correlation vanishes when either q or q' is perpen-
dicular to P; and the maximum correlation occurs when both q and q' are in the direction of the incident
beam. e and p. prefer to come out in the opposite direction from each other if both x and x' are near 1
and both q and q' are in the incident beam direction.

Example 2. l -v, +x, l'-v, + anxd v' and x are detected in coincidence. From Eqs. (2.5) and (4.11)
we have
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sm'8
CAA'= E, 1+cos'8+ y' (4.37)

sin'8
D, ,q;q,

'BB'=. F, , q,q,'1+cos'8-, +q,q„'1+, sin'8-q„q„'P'sin'8+(q„q, '+q„'q, )—sin28
qq

"'y
where

(4.38)

I'2 (l - v + v)
(4w)' 16@2~'

Near the threshold we have

CAA'+D, ,q, q,
'BB'=2F,.[1-(p. q)(p q')].

(4.39)

(4.40)

In comparison with the results of example 1, we see that the two cases are very similar except that in the
present case, m' have a definite momentum in the rest frames of l'. As far as the ratio D, ,q, q~BB'/CAA'
is concerned, the present case is identical to x= x' = 1 of the previous example.

Example 3. l -v, +x, 1'-v, +v„+p' and m- and p' are detected in coincidence. From Egs. (2.1}, (2.5},
and (4.11) we obtain

1 sin'8
CA A' = E, (3 —2x')x'2dx' 1+cos28+

0 y' (4.41)

1

D„q,q,
'BB' = -E,. . (1- 2x')x"dx'

0

where

, q,q,' 1+cos28 —
2 +q„q„' 1+—2 sin28-q, q„'p'sin~8+(q, q,'+q,'q, }—sin28,y' "'y

(4.42)
I'(1-v+ v) G'Mi' o'

4m 3x2'm' 16E' '

x =q/qmax and qm~=aW

In this case the effect of spin correlation is again maximum at x' = 1. However, near x' =1, the relative
sign between CAA' and D, ,q,.q, BB' is opposite to the previous two examples. Hence, if m is emitted along
the direction of motion of l, then p,

' prefers to be emitted opposite to the direction of motion of l' when y
is large and x' is near 1. Near the threshold m and p.

' prefers to be emitted in the same direction and
along the incident beams (e' or e ) when x' is near 1.

V. SUMMARY AND CONCLUSIONS

In Table II, we give the partial- and total-decay rates of l for various values of M, . The formulas used
to calculate them are given in Secs. II and III. We collect them here for easy reference. (All masses are
in units of GeV. }

I'(l- v, + v, +p) =3.4'l x10"M,' sec '

F(l- v, + v„+p) =3.47x10"M,'(I -6y+6y' —y' —12y'Iny) sec ', (y =M„'/M, ').
I'(l-v, m)=+5.3x10' M, (1 —M /M )'sec '

r(l- v, +K}=0.46x10"M'(1 —M '/M')'sec '

I'(1-p+ v, ) =18x10"Mp(1 —M '/M, ')'(1+2M '/M') sec '

I (1-IC*+v, ) =1.29x10"M (1 -M;/M')'(1+2M, '/M') sec-'

I'(l-A, + v, ) =7.2xIO"Mp(1 —M '/M, ')'(1+2M '/M') sec-'
1 1

I'(l —Q+ v, ) =0.614 x10"M,'(1 —M '/M ')'(1+ 2M /M '}sec-'

I'(l - v, + hadron continuum) = 3.4'l x 10"M ' 1 — + — sec '.
M Me M8
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TABLE II. Partial and total decay rates of 1 for various values of M, . Decay rate (10 sec ) = (I'j8) =1/~.

Mt (GeV) 0.6 0.8 0.938 1.2 1.8 3.0 6.0

Decay mode

l v)+v +g

V) +V +P

7(+V)

K+v)

p +v)

K*+v

A&+v

q+v,

v, +hadron continuum

l v +hadrons

Total rate

0.266

0.2

1.02

0.0092

1.03

1.5

1.12

0.96

2.57

0.09

0.21

2.87

4.95

2.46

2.21

4.17

0.2

3.8

0.03

8.2

12.9

7.97

9.0

0.55

19

0.96

0.6

0 ~ 5

29.6

46.1

64.6

30

2.3

96

6.3

33.7

0.17

27

195

823

143

11.7
486

15.2

1790

3444

26 600

26 533

1145

98

3900

280

1550

133

25 900

33 006

85 539

Decay length in cm at E, = 5 GeV

Decay length in cm at E&
——50 GeV

16.5

167

3.73

37.7

1.2
12.2

0.26

2.7

0.024

0.257 0.0145

For construction of Table II, we have used the
following numerical values: G = 1.02 x 10 '/M~',
M =0.938, M„=0.106, M =0.14, M =0.495,
M =0.765, M g=0.892, M„=1.070, Mq=1.3,
A = 1, sin'Oc=0. 068, cos'9~ =0.932, and tan'8~
=0.073. We have also computed the decay lengths
in the vacuum corresponding to E, = 5 GeV and
E, =50 GeV. We make the following comments and
observations:

(1) In the pair photoproduction y+z —I'+I +z*,
if the decay length is greater than 1 cm, then l'
and l can be identified visually in a streamer
chamber. " Hence, at SLAC energy (E, ~5 GeV}
we see from Table II that the identification of l'
up to M, =1 GeV is possible. Another scheme,
suggested by Davier, "is to aim a spectrometer in
the decay region and detect that decay products.
If the production region and the decay region are
well separated (&1 cm), l' can be identified. At
National Acceleration Laboratory energies, one
can identify the production of l' if M, & 1.3 GeV
using these two methods.

(2) In Table II, the first four decay modes (e, y, ,
z, and K) depend only on the validity of the current-
current interaction hypothesis of weak interaction.
The decay l -p+ v depends on CVC besides the cur-
rent-current hypothesis. Since we have made a
narrow-width approximation for the p decay, the
numerical value near p threshold is not reliable.
This can be improved easily if we use the experi-
mental cross section for e' + e- —p' -m'+ ~ in
Eq. (3.14) and Eq. (3.9). The last three modes of

decay depend upon the assumptions of SU(3) sym-
metry and the asymptotic behavior of the spectral
functions. They are probably correct to within a
factor of two except near the threshold where
again the assumption of narrow widths was used.
If the mass M, happens to be near one of these
resonances, one should restore the Breit-Wigner
factor in the spectral function Eq. (3.9) instead of
approximating it by a 6 function [see Eq. (2.16)].

(3) For the partial width I'(l - v+ hadron con-
tinuum} we have used the expression obtained from
the quark model, Eq. (3.38), instead of the quoted
experimental value of the Frascati experiment,
Eq. (3.39).

If both heavy leptons and weak vector bosons
exist and M, & M~, then the decay mode l —W + v,
will completely dominate the widths given in Table
II. For example, if M~=2 GeV and M, =3 GeV,
then from Eq. (3.34), we obtain I'(l —W + v, }/g
= 2.6x10" sec ' which is much larger than the
total weak decay rate of 3.4 x10" sec ' given in
Table II.

W bosons decay rapidly into v, + e, v„+p. , and
hadrons. The leptonic decay widths can be calcu-
lated by using Eq. (3.35). The hadronic decay width
can be estimated by using Eq. (3.'t). Assuming
v, (M~'} = a, (M~') = v,'(M~') = a~ (M~2) and using Eqs.
(3.'I), (3.36), and (3.38) we obtain

I (W —hadrons) = I'(W —e+ v, )

= M~ G/6v 2 v.

This is the result of the quark model. If the ex-
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perimental result from Frascati is taken at its
face value, we obtain

I (W -hadrons) =2I"(W —e+ v, ).

In the experiment e'+e -l'+l, the first thing
to try is to look for p.w coincidence. The energy
and angle of m and p, are correlated, as shown in
Eqs. (4.41) and (4.42). The effects of correlations,
together with the branching ratios into various
channels, can be used to confirm the existence of
l'. The work, as presented in this paper, is not
complete because in the colliding-beam experiment
one probably detects only the decay products;
hence the production angle of l' has to be inte-
grated out. Also, the energy-angle distributions of
the decay products have to be given in the over-all
center-of-mass system instead of the rest frames
of l' and l . Both of these can be done easily be a
computer using the technique similar to the one
used in the calculation of e'+ e- —8"+ 8' - p,

'
+ v„+e + v, by Hearn and the author' many years

ago.
In the experiment v, +z-l+z*, the heavy lepton

is polarized, and we expect the angular distribu-
tion of the decay product to be quite different from
that of an unpolarized l. The calculation of this
process is being performed.

In the experiment y + z —l' + l + z*, the polariza-
tions of l' and l have similar correlations to the
process e'+e- - l'+l . The details of these cor-
relations have never been investigated.
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