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4The rather odd-looking transformation on the differ-

ential dt in Eq. (4) results from the fact that we insist
on a "universal time" t as our fourth coordinate so that
it can no longer be dimensionless, but must carry the
units of time. This may be remedied by introducing the
new dimensionless parameter g according to dt =aj(g)dq

anddt = aug so that the line elements are then related by
the second of Eqs. (4). However, we still obtain the
same relation between the two universal times t and t if
we wish to reintroduce them.

5This statement is obviously true because it was just
the UT of Eg. (4) which generated the other formalisms
and their new cosmic times.

6In fact, the gravitational constant may be considered
as either increasing or decreasing, depending upon the
units of measure. Since y~„~ = tp~g &", and G-y~„~, it is
evident that for ~ =1, the gravitational constant is de-
creasing, while for a = —1, it is increasing.
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Using the Robertson-Walker metric, exact general solutions to the Brans-Dicke cosmolo-
gies for p = ap are found. The two first integrals which exist for this case reduce the problem
to quadratures. In the case of flat space the quadratures may be integrated explicitly in
terms of elementary functions, while in the curved spaces (k=+1), the solutions may be ex-
pressed in terms of elliptic integrals. The limit as a approaches ~ (or am~ for a closed uni-
verse) may be evaluated for positive, negative, and zero curvature, and leads to the rather
surprising result that the scalar field A, approaches a constant.

I. INTRODUCTION

In a previous paper' we have written down the
cosmological equations for the Brans-Dicke (BD)
theory in arbitrary units under the usual assump-
tions of a Robertson-Walker metric and an iso-
tropic matter tensor in comoving coordinates.
Here we find exact solutions for flat (k= 0) and
curved spaces (k= + 1) in the case of a radiation-
filled universe. We initially restrict ourselves to
the gravitational unit formalism' (n = 0 of Ref. 1),
and find the limiting behavior of the solutions for
t -0 and t -~. The rather unexpected result ap-
pears that the scalar field A. asymptotically ap-
proaches a constant in a radiation-filled universe.
Finally, we outline a general procedure for ob-
taining the solutions in other units, i.e., in terms
of their appropriate cosmological time. ' In gen-
eral, this procedure cannot be carried out analy-
tically except in the limiting behavior as t —0, ~.
In the limit as t - 0 the scalar field A[t&„&], the ex-
pansion parameter a&~&[t& &], and the density p& &[I& &]

display somewhat different time dependences for
the three natural unit systems, 4 while in the limit
as t ~ there is no difference, since X- constant.

H. FIELD EQUATIONS AND SOLUTIONS

For e =0 and. e =-,' the field equations of Ref. 1

reduce to

(a/a)'=-,'(p, 'p+ —,', (ho+3)A' —ka ', (la}

a A=B—= a A, (Ib)

(1c)

( PB2+ + -|~ 2 k 4)-x/2 2dt
(2)

where P = —,'(2&a + 3). Equation (3) immediately
yields the quadrature

t(a) = (,'PB'+ 'sy, 'qu' -ku') -'~'u'du, —
N=O

(3)

where we have set the integration constant equal
to zero so that a = 0 when f = 0. Equation (3}gives
a implicitly as a function of t and, therefore, Eq.
(lc) immediately gives p implicitly as a function
of t Equation (lb} m. ay now be solved for A(a) by
using the expression for dt/da in Eq. (2). We ob-
tain'

4 4pa =Q= ppap

where we have suppressed bracketed subscripts
(0}referring to the units, and where a dot denotes
differentiation with respect to the cosmic time t«&.
We have also absorbed a factor of 8m into the def-
inition of p and have set tc' = 1. Substituting the two
first integrals (11) and (1c) into (la), we obtain
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a=a
A-AO=B [,»—'+—,qr, 'qu -ku ] /u 'du.

u=. a' 0

(4)

We have thus reduced the problem of the BD radiation cosmology to the integration of quadratures (3) and

(4)
In the case of flat space (k = 0), Eqs. (3) and (4) may be integrated immediately to yield

(i) for k=0,

f - ('»2)-&/2/~~/2 '{$(l+ $2)~/2 In[(+ (1 y (2)~/2])

) {(-1[(I+ (2)1/2 I ]]. (8/8) / {(-1[(I+( 2)l/2 I]],-(s/8) /

p=q)"h '
where

h=))'"a, )) =q). 'q/»
For the curved-space cases, we can write down the solutions in terms of elliptic integrals of the first and
second kind, viz. ,

(ii) for k= -1,
t(a) = a[(l '+ a')/(m '+ a')]' ' —l E(n, p),

)„{[(I2 ~ 2)1/2(m 2+a2)-1/2 I /m ][(I 2 ~ a2)l/2(m 2 +a2) -1/2+ I / ]-1]$(g/8) / {a a ] -i(3/8) / .

(iii) for k=+1,
2 2 2 y/2

t(a) = (~+'+m+')' '&(r, r) —
(I 2 2)$/2 F(y, r)'- a
(&+ +m+ ) , +a

)(. =)(. {[(m '+a')'/'(l ' —a') '/'-m /l ][(m '+a')' '(l '-a'} ' '+m /l ] ]i' {a=a] ''/I

+m
y = are sin (a/I, )

m+ +a (8)

P = (I 2 m ~)~/2/I

r = I, /(I, '+m, ')'/3,

I '=-,'(-.'q, -'q)[1+ (I-S)"],
m '= 2(sq. 'q)[1-(I-S)'"],

l, =a = —'(—'cp q)[(1+S) / +1],

m, '= 2(3((. 'q)[(I+&)'" —1],

»»'/(q. 'q-)'-
III. LIMITING BEHAVIOR OF SOLUTIONS

Although the analytic solutions given in Sec. II

where {a= a,] is the expression in braces above
evaluated at a=ao, Xo=)(.(ao), and

sin&
&(&,p) = (1—p'y')' '(1 —y') ' 'dy,

0

sing
F(y, r) = (1-y') ' '(1-r'y') ' 'dy,

0

n=arctan(a/m ), p=(l ' -m ')'/'/I,

completely solve the problem of the BD radiation-
filled universe, they do not make their behavior
very apparent in the two important regions near
the initial singularity (a-0) and for late epochs
a —~ (k = -1,0} or a —a (k =+ 1). In addition, we
shall find in Sec. IV that although the general
problem of transforming the present solutions to
other unit-formalisms cannot be solved'~analytical-
ly, it can be achieved in the two limiting regions.
This might give some further insight as to the pos-
sible significance of units in the BD theory.

For these reasons, we now turn to the problem
of finding the limiting behavior of the solutions of
the last section. There are two methods which
may be used to find the behavior of these solutions.
The first simply involves expanding the exact so-
lutions in the appropriate regions; the second in-
volves asymptotic expansion of the quadratures
given in Eqs. (3) and (4). The second method can
be used even when the explicit solutions are not
known, and moreover it provides a convenient
check on the asymptotic behaviors of the exact so-
lutions to within an additive constant (see Appen-
dix). We have computed the limiting behavior of
the solution using both methods, and of course we
find that the results agree. We summarize them
as follows:
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(i) For k=0,

t ——
(
—pB2) 1/ a

—Jp (ap}(1 1/2 )(3/8)
0 2V

1
(jqt

—lq)- 1/2a2

)], =XpeXP[-Jo(ap)][1-B(—39)p 'q) '/'a '];

(9)

(ii) for k=-1,

(1pB2)-I/2a3

A. =)[ exp[-J (a,)](1-S)('/8)" "(-'p."a)"/8)'"t

a 2-1/2(lqt -lq)1/2 [14 (1 $)i/2]l/2@(1]( p)

)].=Xpexp[-J (ap)][(1-S)/(1+2S ') ]' 8 /4(1- 2Ba )

(iii) for k=1,

t=-', (-', PB') '"a'
)(=X epxp[- J(a )p](1 +S)" " /'(-'. (1'/'a)" /8)

(—'q) -lq)1/2()&-'[(I 4.$}»2+1][1+$]-1/4[1 (a/a )2]1!2

)].=)]pexp[-J+(ap)]{1- (3/p)'/ 2 '/2[(1+$)' ' —l][1+S] ' [1—(a/a, „)'] /2],

where the quantity J,(a,) (k = 0, a 1) is the expres-
sion for the integral A (i.e., drop /]].p) evaluated at
a, [see Eqs. (5)-(8)] and t,„=t(a,„). From the
above solutions (S)-(11), we see that as a-0 the
expansion parameter has the same t' ' behavior
for all k and the common time scale T= —,'(3/pB')' ',
which is determined by the initial conditions on
the scalar field by means of the constant B=Aoap3
[cf. Eq. (1b)]. For a, -10"cm and Ao -10 " (the
value obtained by equating the scalar energy den-
sity to the radiation energy density), we find
B-10 ', so that the time scale is extremely small
near the singularity. It is also evident that for all

(318)~ +/3k the scalar field A. approaches zero as t' 8

In the limit as a approaches ~ (or a,„), we find
that the scalar field approaches a constant. The
time scales and time dependences involved in Eqs.
(9)-(11)are quite different from one another. The
k =0 time scale T=-2'(3/happ 'q)' ' depends only upon
the initial condition of the matter field. On the
other hand, the k =-1 time scale is independent of
both the matter and scalar field initial conditions.
The k =+1 time scale depends upon both the matter
and scalar-field initial conditions.

IV. UNIT-TRANSFORMED COSMOLOGIES

Up to now we have considered the e = 0 BD for-
malism and have obtained quadratures and limit-
ing forms for p, a, and X in a radiation-filled

universe. In order to find the solutions in arbi-
trary units (n), we may (at least in principle)
simply apply the following units transformation7:

- -'n
a()= A. 2

a(0)&

- -'a
dt(f)f)

—A. dt(P) ~

2C
p(n)=~ p(o)~

(12a)

(12b)

(12c)

X =a[a(,)],

&
=

p(p) [a(p)],

(13)

where the square brackets denote functional de-
pendence. In order to express Eqs. (12a) and

(12c) as functions of t( ), we first must integrate
Eq. (12b) with the help of Eqs. (13) to obtain

t(([ ((] ft "[ (,(]t ,[ (,(]4(=((„(. '(14)

Equation (14) may be inverted (at least numerical-
ly) to give a(,)= a(»[t(„)], and then, using this ex-
pression together with Eqs. (13) in Eqs. (12a) and

(12c), we obtain the desired solution

ab) [t(.)l =) -'"[p,)[t(„)1]a(,) [t(„)], (15a)

where the bracketed subscripts refer to the units
in which quantities are expressed. However, the
solutions for Q(0) p(p) and A. , which appear in Eqs.
(12), have been obtained as functions of t(» not

t(~) ~ viz. ~

(o) (o) [ (o)] t
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p(.)P(.)] =) "[~(.)[&(gll p(.)[e.) l&(.)]]

where the relation between the two cosmic times
is given functionally as

t(&&)
= t(o) [+(0)[t(a)7] ~ (15c)

Although the procedure outlined above cannot, in
general, be carried out analytically, it can be per-
formed analytically in the limiting regions consid-
ered in Sec. III. We find the following results for
k=0, +1 as a-0:

B -k fA t Eb-k {3/8)'/'~/ts-- (/8)a/2
a(n) —

~ ~ u (~)I

Aa) = &a(a)

B (g t )(3/8) /h-in(3/8)~/2)
k 0 (n)

("PB2)-&/2(g t )3/(3-ia(3/(&)~/ )

V. SUMMARY AND CONCLUSIONS

We have reduced the problem of the BD radiation
cosmology to that of integrating quadratures and
have found explicit solutions in the cases of flat

TABLE I. Effect of units on time dependence of
ra.dia, tion cosmology for ~ = 5.

B,= )&.,exp[-Z, (a(,) )](1+yS)('/»' '«(& &~/2)(~/» '/'

~,=B,' [8--: (8/t) /l.
In TaMe I we display the dependence of ((( ) [tb)],

&[t(„)], and p( &[t(„&] on the units specified by ~ = 0,
al as obtained from E(I. (16) for the choice &u = 5.
Although the time dependence does not show any
drastic changes as we change units (and therefore
cosmic times) it does seem to make a significant
difference in the behavior of the density where
the exponent changes from -0.84 (o. = 1) to -1.68
(a =-1) compared with the exponent of -2 for GR.
As ~ becomes larger the differences from unit to
unit become smaller.

In the limit of large a, A. approaches a constant
for the radiation cosmologies and, therefore,
q„)[t( )] has the same functional form as a(,)[t«)] and
similarly for p( ). Thus we may conclude that the
effects of the choice of units on the time depen-
dence of p, a, and A, cannot be distinguished at
the present epoch.

and curved spaces (0 =0, +1). If we take our ini-
tial condition on the scalar field to be AD=0 (B= 0)
the solutions reduce to those of GB. Gn the other
hand, A, 40 gives the solutions (5)-(8), in which
the sourceless scalar field varies extremely slowly
from zero at the initial singularity to a finite value
as a-~ (or u,„).

A units transformation of the 0, =0 cosmology to
more general units (o.) has been made in the two
asymptotic regions, and it is found that the depen-
dence on units is significant only near the initial
singularity. Since X approaches a, constant at the
present epoch, it does not affect the unit trans-
formed solutions there (except for over-all scale
factors).

Finally, we note that according to E(ls. (1b) and
(1c), the ratio of radiation to scalar energy den-
sity is

pc'[(2(v+4)A'c' j82vG, ] '

=6~,a,'[(2(v+4)/82)T] 'B 'g'.

From the above expression, it is seen that the ra-
diation energy density must eventually dominate as
a becomes large for open universes. For a closed
universe, this dominance of radiation over scalar
energy density will depend critically upon the value
of A„ the ratio taking on the value unity for A,

$0~ 19 sec 1

In any event, the scalar-field energy density
dominates as we approach the initial singularity of
the cosmology, and the scalar field must surely
play an important role there.

APPENMX

In this appendix we shall describe a second meth-
od for evaluating the limiting behavior of the cos-
mological solutions. I et I~(a) and J',(a) denote the
value of the integrals in Eqs. (8) and (4) at the point
a, and let I„(a) and J„(a) denote the integrals of the
dominant terms (for the appropriate limit) in the
integrands evaluated at the point a. Further, let
a be the appropriate limit, 0, ~, or a~,„and let ~
be a finite number in the neighborhood of these
limits. Then, by using an intermediate point, say
a*, to split up the integrals, we may write

a~ a

t(s) = lim +
a+~5;a~@

0.38

0.32

0 28

const

0.21

g
0.33

t 0.42

~0.50

P(P(~~

g
-0.84

g
-1~33

-1.88

t -2.00

= lim + lim
a+~5 0 a+ a+, a~a

t(a) = lim f,(a+) -i,(a*) + 1,(a).
a+ ~

And similarly,
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A(a) -A = lim J (a ) —Z~(a") —J,(a )I+ J~(a).
J

(18)

In Eqs. (1V) and (18) the bracketed terms assure us
that the limiting solution matches properly to the
exact solution. It is to be noted that the limit a*-6
is to be taken after the exact integration is per-
formed. Thus, the exact solutions are required,
in general, to evaluate these limits.

Using this procedure-, we can immediately write
down the asymptotic dependence of the solutions
for a-0, viz. ,

t(a) = lim [I~(a") —( ', PB—') '~' 'a —]+('PB—') '~'( ''—
)

a+ ~o

Since a* must drop out of the solution and, more-
over, since we have chosen a =0 at t =0 the limit
term above must vanish. Similarly, as a- 0 we
have for A.

X=X, lim (exp[8,(a")](s*) ' 8' )exp[-g, (s,)]s&'~8&' '.
a+ ~O

Here the limit term must be determined from the
exact solution as given in the text. The other
limits are computed similarly and agree in form
with those of the text.

*Prepared at The Lunar Science Institute (contribution
No. 26) under the joint support of the Universities Space
Research Association and NASA-MSC under Contract
No. 09-051-001.
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From a previous analysis of the proposed gyroscope test of the Lense-Thirring effect, it is
known that all perturbations that contribute more than 10 3 sec/yr to the precession of the
gyroscope must be taken into account. A frame of reference is obtained by rigidly attaching
the gyro housing to a telescope which is trained on some reference star. Here we point out
that the deflection of the light from the reference star due to the sun's gravitational field can
give rise to an apparent. precession of the gyroscope equal to (4.1&&10 cot28) sec, where 0
is the angle between the earth-sun direction and the earth-star direction (m ~0 )0}. Thus,
over a six-month period, this could amount to as much as 1.75 sec, depending on the angle
which the sun-star line makes with the ecliptic.

In a recent analysis of the proposed gyroscope
test of the Lense-Thirring effect, Barker and
O' Connell' pointed out that all perturbations that
contribute more than 10 ' sec/yr to the precession

of the gyroscope must be taken into account. In
particular, with regard to the Lense-Thirring con-
tribution to the precession of a gyroscope in a
satellite in a circular polar orbit 300 miles above


