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We consider the nature of the current-algebra constraints on the on-mass-shell amplitudes
of pion-nucleon scattering at s =m~, t =2m . We prove that, at this point, an even ampli-
tude is determined up to corrections of order m and that the corrections to an odd ampli-
tude are of order m„~. Thus, the g term in the even amplitude, which is of order m ~, can
be determined, confirming the recent work of Cheng and Dashen. However, such a determin-
ation cannot be made with a mixture of even and odd amplitudes as von Hippel and Kim have
attempted to do. We estimate the actual magnitude of the corrections from what should be
the dominant physical mechanisms: the large nucleon size and the proximity of the strong
3-3 resonance state. These corrections are insignificant for the even amplitude. For the
odd amplitude, they are separately large, about 10%, but they cancel for the most part and
give a much smaller contribution. Corrections due to other resonances are insignificant
compared to the 3-3 contribution. The Adler-Weisberger theorem, with our on-shell
method, relates the pion-nucleon coupling constant f to the pion decay constant and an inte-
gral over the absorptive part of the physical x-N scattering amplitude; it does not involve
the axial-vector coupling constant gz. We find that this relation gives f = 0.077, which is
to be compared to direct evaluations which range from f = 0.082 tof = 0.076. We conclude
that these current-algebra theorems may well be satisfied to a considerable degree of
accuracy. More precise low-energy pion-nucleon scattering data are needed, however, for
a definitive test.

I. INTRODUCTION AND SUMMARY

It is our purpose to reexamine critically the na-
ture of the current-algebra constraints on the pion-
nucleon scattering amplitude. We write these con-
straints as an identity involving a remainder term
that is largely unknown except that it is explicitly
bilinear in the pion momenta q', q. We always
keep the pions on their mass shells and remain
within the Lehmann ellipse in order that our am-
plitudes be unambiguously related to physical mN

scattering. At the special point v= v~=0 (s=m„',
t= 2m ') the correction due to the remainder is of
order m,' in an isospin-even amplitude and of order
m„ in a particular combination of isospin-odd am-
plitudes. We calculate what should be the largest
contributions to the remainder at this point and
find that the net correction is small. The uncer-
tainty in the odd amplitude is formally of order
m„' at other points in the v- v~ plane, and we verify
that the results obtained at v= t= 0 and at threshold
are in reasonable agreement with that obtained at
v= v&=0. However, the remainder involves the
fewest unknown functions at v= v& =0, and we be-
lieve results obtained there are most reliable. We
shall summarize and discuss our results before
presenting our work in detail.

We label the initial and final momenta of the
pions by q and q' and that of the nucleons by P and
P'. The energy-momentum balance reads

q +P = q+P-

We use the variables

v=-q (p'+p)/2m

=-q' (p'+p)/2m

and

v~ = q' ~ q/2m.

(2)

Here m is the proton mass, and we shall now de-
note the charged-pion mass by p, . We write the
amplitude for the scattering of a pion from iso-
spin index a to a' as'

T' ' = [A '+ —,'y (q'+ q) B ']5' '

+[A' '+-,'y (q'+q)B ']ic' "7;. (4)

Here, as throughout the paper, the nucleon spinors
are omitted although we always keep the nucleons
on their mass shells and tacitly assume that the
amplitude appears between spinors. Since the
Born term is ill defined at v= v& = 0, we define a
set of amplitudes with it removed. With pseudo-
scalar coupling, the Born term contributes only
to the B amplitudes, and its contribution is dis-
played by writing

2

B '
(v, v; -q" = —q'=g') =—, , +B ',

(5a.)

2

(5b)
With these preliminaries out of the way, we turn
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to discuss the current-algebra constraints.
We consider first the even amplitudes. There is

no constraint on B '~ since, by virtue of crossing
symmetry, it is already of order v, but we do have
a constraint on A. ':
A"t, ; g'1=—E ~—1 ~(

—) ~ ( ) 5 ~ (
—
)
(6)

Here F, =92.56 MeV is the pion decay constant and
Z (the "cr term") is, essentially, the nucleon ma-
trix element of the equal-time commutator of the
axial-vector current with its divergence. It is a
function only of t —= 2(ij, ' —mvs). The correction
terms coming from the remainder are indicated
with the nonsingular, dimensionless functions a,
b, and C. We note that at the special point v= v~
=0, the contribution of the remainder is minimal
and of order (p/m)'. This point, where s=m',
I, = 2ILL', is not a physical point for pion-nucleon
scattering. Nevertheless, it is within the Lehmann
ellipse so that the amplitude can be computed from
physical values of the pion-nucleon phase shifts.
It is important that the correction term be of or-
der (p, /m)', not of order (g/m)', for otherwise the
Z term, of order (p/m)', could not be determined.
At threshold, where v= p and vs= -u'/2m, the
contributions of the remainder are of the same
order as the Z term. At any rate, we have

A '(0, 0 ')=~ +—1+ — a
m m

The size of a is estimated in Sec. III. Most of its
contribution comes from the 6(1236) which is both
near and strongly coupled; we find that

a~= 0.8.
Moreover, the spin-~" resonances do not contri-
bute to the remainder at v= v~ =0, while the spin-

resonances give a contribution that is two
orders of magnitude smaller than that of the spin-

Hence, barring anomalously large contri-
butions from very high mass states or large sub-
traction constants, we conclude that the correction
is predominantly given by the 4 contribution, which
is indeed of order (g/m)'.

The magnitude of the Z term can be estimated in
several ways. The cr model' (where g=m/F„) with
a v mass near that of the p, gives Z =g/m~' and
(y'/F. )Z = (g'/m)(ttt/m)'&&2. This corresponds to a
nucleon matrix element of the chiral-symmetry-
breaking part of the Lagrangian

{-Sss)„„,=(p, 'm/g}Z =40 MeV (o model). (9)

where X, are the generators of chiral transfor-
mations with an isospin normalization. If the
chiral-symmetry-breaking part of the Lagrangian
belongs' to the (3, 3*)$(3*,3) representation of
chiral SU(3) SU(3),

then

= Qp+ CQ8,

g'F, Z =-', (c+&2){u,+ &2ug„„, . (12)

The contribution of u, can be estimated by assum-
ing that cu, taken in first order accounts for the
mass splitting of the baryon octet. The Gell-Mann-
Okubo formula then gives

{cu,) „„,= -215 MeV . (13)

The constant c can be estimated' from the mass
splitting of the meson octet to be about

c = -1.25. (14)

Kim and von Hippel' have applied current-alge-
bra techniques to conclude that

{ug„„,=+215 MeV,

and thus they obtain

g'F, Z = 20 MeV (K-vH).

(15)

(16)

—T„" = (4 —d) (uo+ cu, ) + const,

and hence

(u, + cu,)„„,=m/(4 —d) .

{17)

(18)

If we use the Gell-Mann —Okubo estimate for
{cup„„, and the dimension d =3 suggested by the
quark model, we obtain'

{ug„„,=1155 MeV,

and, with c = -1.25,

(19)

However, the result of Kim and von Hippel is
questionable, for they work with amplitudes of de-
finite isospin rather than with even and odd ampli-
tudes, and they evaluate their amplitudes at thresh-
old rather than at the special point y = v& = 0. Such
an analysis incurs errors of order (p/m)' and thus,
does not furnish a reliable evaluation of the Z
term.

An alternative evaluation of {ug„„,can be ob-
tained if we assume that, except for a constant,
the only part of the Lagrangian that breaks scale
invariance is the chiral-symmetry-breaking term
Qp + cQ8 with a single dimension' d. With this hy-
pothesis the trace of the stress-energy tensor is
given by

In general,

p'F„Z = —,'+{[X„[X„-g ]])„„,, (10)

p, 'F,Z =99 MeV (broken dilational invariance) .
(20}

We should emphasize that this number is very
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If we use Adler's' evaluation of A ' and p. 'I', Z
=105 MeV, we get

f' = (0.085 % 0.003) —0.005 =0.080, (25)

to be compared with other determinations" that
range from f'=0.076 to f'=0.082.

We turn now to the odd amplitudes. We prove
in Sec. II that current algebra does not constrain
the combination A ~ + vB~, but that it does pro-
vide a constraint on the mass-shell amplitude

G= v '[A —vB ], (26)

sensitive to c+ v 2, which is quite small and hence
very poorly determined.

Recently Cheng and Dashen' have computed the
Z term. They consider an amplitude

F(v, vs; p') =A '
(v, ve; p'} —vB '

(v, ve; p') .
(21)

In the limit in which first v& is taken to vanish and
then v is taken to vanish, only the Born term ex-
hibited in Eq. (5a) contributes to B' ', and the cur-
rent-algebra constraint (7) gives

2 2 4

lim limE(v, vs; g') =—Z(2g')+ —— a. (22)
V P V ~P ~7f m

Thus we confirm the assertion of Cheng and Dashen
that the Z term is given by such a limit and, more-
over, we find that the correction term involving
the dimensionless parameter a is completely neg-
ligible. Cheng and Dashen evaluate this amplitude
by a dispersion relation involving a broad area
subtraction and conclude' that

p, 'E„Z = 95-115 MeV (C-D) . (23)

This range of values is certainly consistent with
the simple picture of broken dilational invariance
which we outlined above.

We can use the current-algebra constraint (7} to
get a value for the pion-nucleon coupling constant

2 2 2

shell, the axial-vector coupling constant g„does
not appear. We remark that at the point v= v~= 0
the correction is of order (p/m}'. However, this
is not the only point where the remainder is for-
mally of this order. At any point where v is of
order g and ve is of order p, '/m, the remainder is
also of order (p, /m)'. In addition to the point v=0,
v~=0, there are two other interesting points to
consider: threshold (v= p, vs=-p'/2m) and the
point v=0, vs= -p'/2m (t=0). However, since
there is no a Priori way to determine which of the
remainder coefficients is the smaller or at what
values of v and ve there might be some cancella-
tion between the various terms, the most reason-
able place to evaluate Eq. (27) should be the point
v=0, v~=0, where only d contributes.

In Sec. III we estimate the size of the remainder.
Here again the main contribution comes from the
E(1236). At the point v= vs=0, the ~" resonance
contributions vanish, and a —, resonance contri-
bution is two orders of magnitude smaller than
that of the A(1236). At the other points of interest
the other resonance contributions are still numer-
ically insignificant. At v= v~=0 we find that

d~= -5.84, (28)

which is a sizable correction. However, with
v~=0, t= 2g', and we must take into account the
deviation of E, (2g') from unity. This is not an in-
significant effect, since the nucleon's charge ra-
dius is rather large":

E", (2g') = 1 + 4.16(p/m)' . (29)

Hence, barring untoward circumstances, we find

G(0, 0; p')= —,+, 1 —1.7—, (30)

Thus the total correction is indeed of order (p/m)'.
We may write this as a sum rule for the pion-

nucleon coupling constant,

namely, f'=, (1 —0.037) —
8 G(0, 0; P'),

1T 7f 7T
(31)

1
G(v, ve; g') =—,+,E",(-(q' —q)')

—" d+ "'e+ —'y.
(27}

Here E", (t) is the isovector nucleon electromag-
netic form factor with the normalization E, (0) = 1,
and d, e, and f are dimensionless, nonsingular
functions that represent the contribution of the re-
mainder. This is essentially the Adler-Weis-
berger" relation except that, since the scattering
amplitude is evaluated with the pions on the mass

2

G(0, -p'/2m; p, ') =0.0206. (32)

Adler" also computes the change in going from
t=0 to t=2p2 to be

with the amplitude G evaluated by an unsubtracted
dispersion relation. The point v=0, ve=-g'/2m
corresponds to t=0, and the dispersion integral
involves simply the difference of the n'P and w P
total cross sections. It is the well-known integral
in the Adler-Weisberger relation. Adler" corn-
putes the value
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(d~ —ea) = +11.73 . (35)

We note that this remainder contribution is about
twice as large as, but of opposite sign to, that in
Eq. (28). Since we are at f=0 there is no contri-
bution from variations of the form factor. We re-
mark that since the numerical coefficient in
Eq. (35) is so large, the correction, while for-
mally of order (g/m)', is actually of order p/m.
Thus the point v=0, ve= —p. '/2m is not particu-
larly well suited for accurate comparison with
experiment, for Eq. (35) gives only an estimate of
the remainder. With this cautionary remark
uttered we proceed, nevertheless, to compute f'.
We have now

f'=16 2(1+0.247)-8 G(0, -p'/2m; p, ') (36)16',' 8m

which yields, numerically,

f' = 0.0564 + 0.0206 = 0.077, (37)

in agreement with our previous determination,
Eq. (34).

Finally, let us consider the situation at thresh-
old. We find that the correction due to the 4(1236)
is very small here. Basically this occurs because
the coefficients d, e, and f are in the approximate
ratio of 1:3:2(there are, of course, higher-order

2

——[G(0, 0; p, ') —G(0, -y. '/2m; p')] = 0.0126 .
(33)

This is a very large correction of relative order
(y./m)', the same formal order as the remainder
corrections discussed above. It is large because
the b(1236) makes a large contribution to the dis-
persion integral that is proportional to coso, and

cos& differs considerably from unity at t= 2p. '
since the center-of-mass momentum at the energy
of this resonance is small. In fact, the 4(1236)
contributes about 0.037 to Eq. (32), which is eval-
uated at cos6) = 1, while at the & mass, cos0 = 1.36
for t= 2p. ', and we expect a 6 contribution to the
correction Eq. (33) of about 0.037X0.36=0.013.
At any rate, adding up the number gives

f ' = 0.0436+ 0.0206+ 0.0126 = 0.077 . (34)

This is in reasonable agreement with more direct
determinations" that give a range of values of f '
from 0.076 to 0.082.

We now briefly consider the two other interest-
ing points. At v=0, ve =-p'/2m, the left-hand
side of Eq. (27) is simply the Adler-Weisberger
integral. Since, as we just discussed, the &(1236)
has a large variation in going from v&=0 to
vs= —p, '/2m, we should expect that the contribu-
tion to the remainder should be sizable. In fact,
we find

terms, but these also tend to cancel). We obtain
at threshold

jb, contribution) =0.59. (38)

The contributions from higher resonances are
quite small. The function G evaluated at threshold
is a familiar integral,

G(th) =G(u, -V'/2m; V')

, a. n(v-') —a"~(v')dv'
(

/2 2)1/2 (39)

which is sometimes evaluated to obtain the S-wave
scattering-length combination aIg2 Q3/2 via the
dispersion relation

(40)
An accurate evaluation of the integral is difficult
because it is both sensitive to threshold effects
and slowly convergent. Different authors obtain
value s" varying from something like —0.030 to
-0.025 in units of 8v/g'. If we use the value of
Samaranayake and Woolcock, " -(p, '/8w)G(th)
=0.0289, we get

/' = 0.0458+ 0.0289 = 0.075 . (41)

In view of the model-dependent cancellations which
led to the very small 4 contribution (38), we do
not consider this discrepancy with the other two
points significant. "

We can use Eq. (27) to replace G(th) in Eq. (40)
to obtain an evaluation of a„2 —a3/2 that is almost
independent of f'. We get

4v 1+ —&-', (a„,—a„,)gm

= 8' ' 2 +, 1+0.059

or
(a„,—a„,)p = 0.243 .

(42)

(43)

= (gA/F. )(16vf'/P') '". (44)

This is Weinberg's result, " except that he uses
the Goldberger- Treiman relation to approximate
F, . Our value is to be compared with various
other determinations" which range from about
0.245 to 0.297. We remind the reader that we
cannot reliably estimate the sum of the many
small resonance contributions to (42), but our re-
sult clearly favors the lower end of the experi-
mental range.

We note that the Goldberger-Treiman formula
can be expressed in terms of the pionic form factor
of the nucleon, K(t),

ff(0)=(mg„/F, g)



ADLER-WEISBERGER THEOREM REEXAMINED 2805

K(0) = 0.94, {45)

If we use f'=0.079 and the recent value" g„=1.24,

we get
8„A," (x) = y, '-F, P, (x),

and assume that its commutator with the axial
charge density is local; i.e.,

(47)

II. ADLER - WEISBERGER THEOREM

We turn now to review the derivation of the cur-
rent-algebra constraints. We use an isospin nor-
malization so that, for example, the axial-vector
and vector currents are related by

[A,'(r, t), A~(r', t)] =ie,~Y'(r, t)5(r —r') .

We define the pion field P, by

(46)

which is to be compared with K(p, ') =1. This vari-
ation, while substantial on the scale of p'=0.02
GeV, is more reasonable than that obtained pre-
viously from f'=0.081 andy„=1. 18, which gave
%{0)= 0,88.

We have seen that the current-algebra con-
straints for the pion-nucleon amplitude may well
be obeyed with considerable accuracy. We would

like to emphasize, however, that more precise
data are needed for a definitive test. "Though I
could have foreseen this from the beginning, I
nevertheless did not want to withhold from the
reader this spur to further efforts. Oh, that we

could live to see the day when both sets of figures
agree with each other. " (Kepler)

[A,'(r, t), P,(r', t)] =iZ„(r, t)5(r —r') . (48)

The additional assumption that the symmetry-
breaking term in the Lagrangian is local enables
this Z term to be written as

p'F, Z„(x)=[X,(t), [X,(t), -2, (x)]],

where

(49)

X.(t}= d'rA,o(r, t). (50)

It follows from the Jacobi identity and the invari-
ance of Zs ~ under isospin rotations that Z„ is
symmetrical in its indices:

Z„(x}= Z„(x) . (51)

&P
'

I Z. (0)IP) = 5.W( -V ' -P)') (52}

The formula (10) stated in the Introduction follows
immediately from Eqs. (49) and (52}.

We shall write the Fourier transform of a co-
variant, time-ordered product between nucleon
states in an abbreviated fashion; for example,

Hence the nucleon matrix element can only involve
isospin zero in the nucleon-antinucleon channel

i(A," (q')A,"(q)), =— d'x e "'(P'i i T*(A,".(x)A,"(0)) iP) . (58)

It should be borne in mind that P'+ q' = P+ q and that nucleon spinors are always implicit. The commutation
relations given above, along with the definition of the pion field in terms of the divergence of the axial-
vector current, imply the divergence condition

q„'.q„i(A.".(q')A."(q))+ =ie...,,'(q'+ q)„V,"(q —q—')+ ll'F. 5...Z( (q' —q)')+ (p'F-. )' (tP. , ( q)P. (q)), .
Here

V,"(k) =[y"F, (—k') —io' k „E,"(-k')]-,'r,
is the nucleon matrix element of the isospin current, and we have used its conservation

k„V~'(k) = 0

(54)

(55)

(56)

to write the first term in Eq. (54) in terms of the symmetrical combination of pion momenta ~(q + q).
In order to achieve a nonsingular expression, the pion poles must be removed from the axial-vector cur-

rent matrix element. It follows from the definition (47) of the pion field that we can define an axial-vector
current without a pion pole,

A~ =a~+ "a~a„y,", (57)

where the quotation marks indicate that the derivative is to be taken outside a time-ordered product so as
not to introduce any equal-time commutator terms. Thus, if we use A,"(q) to indicate that the pion pole
has been removed, we have

i(A,".(q')A,"(q)), = i@," (q')A,"(q)},—iq'" F„i(p, (q')2."(q)), +iq"F„i(A," (q')p, (q)), + q'" q"F,'i(p, (q')p, ( }),q.

(58)
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If we invert this procedure,

i(&." (q') 4.(q)), = i(A." (q') 4.(q)).
+iq'" E.(A. (q') P.(q)). ,

we can compute

(59)

obeys, in virtue of the pion-field definition (47),

i(P' P)-,A."(P' P)-= v'E. &P 'I y. (P)IP)

.E z&.rg( (O' -P)'-)
(65)

(P -P)"~'

q„' i(A," (q') y.(q)). =iE.(q" + )r') i(y. (q') y.(q)).
+ i6. ,Z(-(q' —q)'). (6p)

Similarly,

q„i(Q.(q')&."(q)), = -iE.(q'+ W')i(P. (q') 4.(q)).

We may write the general solution to this con-
straint as

A,"(k) = y" +, , gF,K( k')-
2m

+ (yak —key ~ k)ff( k') iy-, r, . (66)

—i 5. .Z(-(q' —q)'I. (61)

T. .(q', q) = (q" + V')(q'+ V')i(4. (q')4. (q)). , (62)

Putting all this into Eq. (54) gives an identity for
the pion-nucleon scattering amplitude,

Here we have written the covariant attached to the
form factor H( k') in s-uch a way that it is con-
served even when the nucleons are off their mass
shell. Hence it will not contribute to the contrac-
tion of the axial-vector Born term with q„' q„. We
note that the axial-vector coupling constant g„ is
defined by

A."(k=o) =Z ir, (-,'r.), (67}
which is not singular when the pions are on the
mass shell:

T...= F, 'ie,-„,(q'+ q},-V;(q —q')

—E, '(q" + q'+ lr') 5...Z(-(q' —q)')

and thus the Goldberger-Treiman formula (44)
follows from Eq. (66}. At any rate, we omit the
pion-pole contribution involving k" (k'+ lr') ' from
the vertex (66} to compute the axial-vector —cur-
rent Born term B,"," and write

+F, 'q„'.q„i(A,".(q')A,"(q)l, . (63)

i(A."' (q')2."(q)), = a,"." +If.".", (68)

The axial-vector current matrix element still
has a nucleon pole that must be removed to get an
identity that is well behaved at small pion momen-
ta. In order to do this, we note that the nucleon
matrix element of the axial-vector current

with the remainder R,"," entirely nonsingular. The
current-algebra identity now becomes

T, , = E, 'ie, „-,'(-q'+ q)„V,'(q —q'}

E, '(q" + -q'+ lr') 5...Z(-(q' —q)')

A" (P'-P) =&P'IA". (p)IP) (64)
(pv)+ +a'a ++ff qp 'qpRa'a r (69)

with

(PV) -2 I P 'PB, , =E, q~ q~B, ,
= (Z/ rn)'ff( q'%'( q') -y ~ q'iy-, r. . . y ~ qiy, r, +y ~ qiy, T, , „y~ q'iy, r, . (7o)

the Born term with pseudovector coupling.
It is sometimes convenient to use the Born term with pseudoscalar coupling rather than pseudovector

coupling, since the former vanishes at large energies. Hence, we extract the pseudoscalar Born term
and write

T...=B... +T...,
(Ps)

where

'"
y ~p+qj+m ' ' ''y ~ jp —q'j+m (72)
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With this decomposition, the current-algebra identity (69) appears as

a'a ~a'a +~a'a ~

in which

~. .= [(g '/m)K(-q" }K(-q') —F, '(q" + q'+ V')E(-(q' - q)')] 5. .
+ [(g'/2m')K( q"-)K(-q') —,'F, —'F,"(-(q' —q)')]i e, „r;,'y(q'+ q),

(73)

(74}

and

R, , = q„' q„F„'[R,"," —o" "2F,(-(q' —q)')f yTy]

q[IR a~a
p (75)

In general, the contribution of the remainder to
the invariant amplitudes (4) appears in the form

As+2r (q'+q)B&=q„' q,R" ".
Now between nucleon spinors we have the identity

The amplitude G can be treated similarly. We
rewrite (78) as

[v 2~ -(q'+q)]G~=q,' q~G" ". (82)

By multiplying Eq. (82) from the left by (m- yp')
and from the right by (m —yp) and taking the trace,
we obtain a numerical relation while keeping the
nucleons on their mass shells. It is again a simple
matter to enumerate all possible tensor forms
and thus to prove that

q„'.q„(-i/2 m)o" '" = —,'y ~ (q'+ q) + v (77)
Gz-—(q" + q')d+ vee+ v'f, (83)

which we use to rewrite (76) as

(2v) '(Az+ vB~)q„' q„(-i/2m)H "

+(2v) '(A~ —vs}[v—2r (q'+q)]=q„' q&R" ".
(78}

Hence, current algebra does not constrain the
amplitude combination v '(A + vB ) since, by
crossing symmetry, it is even and nonsingular,
and its contribution to Eq. (78) can be reproduced
by a remainder term. furthermore, if we define
P = p'+ p and use

A~+ = q~.qqA
(+) I jf

with A" " nonsingular. Now A" " is composed of
P, q, q', and g"" and is invariant under both
nucleon crossing (P -P) and meson crossing
(q -q', p' —g). It is a simple matter to write
down all such terms and to perform the contrac-
tion with q„'., q„and obtain

A~' = q"q'a+ v&b+ v'c,

(80)

(81)

with a, b, and c nonsingular. ' Thus, with v= v8=0
and the pions on the mass shell, the amplitude
A ' is determined by the current-algebra con-
straints except for a remainder term of order g'.
Putting everything together, we obtain formula (7),
quoted in the Introduction.

q„' q„[(-i/2m)o" " —(1/4m')P" P"] = —,'vy ~ (q'+ q),
(79}

we see that, since B '~ must be odd in v, current
algebra does not constrain it either. Hence only
A 'l and G= v '(A' ' —vB ) remain as candidates
for current-algebra constraints.

We can use Eq. (79) to write B~' as the contrac-
tion of q„' and q„with a nonsingular tensor. Then
Eq. (76) gives

with d, e, and f nonsingular. This establishes the
discussion in the Introduction and, again putting
everything together, we obtain the formula (27).

III ~ REMAINDER ESTIMATE

We consider first the contribution of the 4(1236)
to the remainder term (75). The spin--,", isospin-
—,
' & can be described by a vector-spinor g,". Its
coupling to the nucleon (g) and pion (P,) can be
written as

pj o 0 poja'a a'a ~ (85a)

P.'.= (5. .- -
3Tr.}(I+3v' r') '(I+ ~'-) (85b)

since its orthogonality to T, y, and P guarantees
that it couples only to spin ~ and isospin —,'. Using
this projection operator, it is a simple matter to
compute the decay rate j. z for 4- Nm:

I'~=(1/12m)F~ '(q'/M)(m+E), (86)

where q is the spatial center-of-mass momentum
of the final state, I the 4 mass, and E the c.m.
energy of the produced nucleon. For F&= 120 MeV,
we obtain the coupling-constant value

F&= 65 MeV. (87)

The definition (47) of the pion field in terms of
the divergence of the axial-vector current requires
that the matrix element of this current between
nucleon and 4 states have the structure,

&~, = F~ 'g ((tv 8P, +eHrmiti acnonjugate . (84)

The projection operator P""for the 4 at rest is
given by
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)l l p)(Ml'I+ (2))22)™ 2
)* (Y /Y )+( (2' 2) ) '''j (88)

where the omitted terms are divergence free for the & on the mass shell. Hence they do not contribute to
the & pole in the remainder but, rather, they correspond to subtraction constants. We shall assume that
the dispersion relations for the remainder converge rapidly, and shall therefore neglect such terms.
Moreover, we shall suppress" off-mass-shell spin-& contributions that occur in the 4 propagator by multi-
plying the vertex with the projection

X""= g""+—,'y" y'

that reduces to the identity at the & pole, and write the 4 contribution to the remainder (75) as

z.".,' =z J.( q")L, ( -q') q„', q-„[~„",n..",:(p+ q) ~," + ~,"~."., (p —q )~,", ] .
For the pions on the mass shell, we have

L(p, ') =1.
A permissible 4 propagator can be obtained by a straightforward extension of the rest-frame spin-~

projection operator (85) to a form that is valid in an arbitrary frame. Such an extension can be accom-
plished using an operator that is transverse on the mass shell,

I"'(P) = g""+P"P'//M',

with the result

(89)

(90)

(91)

(92)

Gv,"(p) = (5., 'T.T.)[t '"-(p-) +-'f " '(p) y f"'(p)y.] p2+M2 (93)

However, this propagator contains contact terms that are exhibited by the algebraic reduction

G."."(P)=~.":(P) (5., ,'r. r-2)(li3-M-')P"P'(M yP), -
where

(94)

(95)rr!:(2)= (2..—l . .) (Y"~ (2/2M*)2')r' ~ (2/2M)(2" 2' —r l ) ~ lr'2') '.".
j

.

We note that the contact term p"p'(M —y p) shares the crossing symmetry of the propagator, and thus
b,",'(p) is crossing symmetric. We shall use the propagator &,",'(p) rather than G,","(p) since it vanishes
more rapidly for large p.

It is now straightforward to compute the 4(1236) contribution to AI2' (0, 0; p') and G22(v, v2); g'). We find

and

I

&( ) . 2 2M+m". (0' ")=9m, M(M ~) '

G~(v, vs; p') = — . . . , , (M -m)(M+2m)((, '2 (M +m)'
9I"z,

'M' M' — + 2mvB ' —4 v'

(96)

where

(97)
3M'-m M+2m'

~ (2M }~ 2 / ~ Y ~ Z2j,
'

Y= 2{(4v'(),' —4v'v~)nr'+ ~p'(M'+nr'+4mM)
M +m)'

+ 2 mv [p'2()mM m'+) + -,p'+m (7Mve' —2 mM —3 gpss+ 2 Ivy —2 p, ')]],

(98)
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and

2g= 2p, —gfPlvg. (99)

Evaluating these expressions gives the results
quoted in the Introduction. We should note that the
y" y" terms in the projection (89) give no contri-
bution to A„' (0, 0; p'). Their contribution to
Gs(v, v» p'}, given by Z, is numerically insigni-
ficant at the points of interest.

The contributions of higher resonances to the
remainder can be obtained in a similar manner.
Individually, the contribution of each of these res-
onances is much less than that of the 4(1236).
Their coupling constants 1/E„» are smaller than

1/Ea, since the allowable pha, se space for decay
into mais increased, and the partial widths are,
in general, smaller than I'z, = 120 MeV. This re-
duction in the coupling constant is already of an
order of magnitude for resonances around 1500—
1600 MeV. The ~ resonance contributions are
further suppressed by angular momentum; the 1'
axial-vector current connects —,

"to ~' in the S
wave, but can couple ~' to ~ only with & or higher
waves. This is explicitly exhibited by the ampli-

tudes (96), (97), for the parity-reversed a con-
tribution is obtained by the substitution M - -M
and is obviously much smaller.

It is elementary to verify that any contribution
to T' ' of the form
r'r'y q'[E(v, ve}+y (P+q)H(v, ve)]y q

+ (q' —-q, a' a}

(100)

gives a contribution to G or A ' which vanishes at
v= v~=0, provided only that F and H are regular
at v= v&=0. Thus we conclude, without invoking

any particular model, that the —,
" resonances do

not contribute at v = v& = 0.
We find that the addition of the lowest pion-nucle-

on resonances, N(14'f0) a', N(1520) a, N(1535)

, ~(1650) —,', and 4(1670} a, does not affect,
at the point v= v~ = 0, the estimates presented in
Sec. I. At other points it is a simple matter to
estimate that their contributions are not signifi-
cant compared to the one of the 4(1236), except
for threshold where the b(1236} contribution itself
is very small. There the contribution of all these
resonances is comparable to the one of the ~(1236).
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We use the notion of Lorentz contraction of a composite cluster combined with vector-
meson dominance of the one-photon exchange to derive the asymptotic form of the nucleon
form factors. For the three-quark model we find a t prediction which fits the data very
well at large spacelike t. Only the observed vector mesons, p, ~, and P, are used. Our re-
sults predict deviations from the scaling laws which are directly related to the nonvanishing
electric form factor of the neutron and are of the same magnitude.

I. INTRODUCTION

There are two classes of attempts to fit the elec-
tromagnetic form factors of the nucleons. The
first one tries to find a simple analytic expression
without giving it any theoretical justification. The
best known is the dipole fit. ' More recently we
have seen a superposition of exponentials' and a
ratio of 1" functions. ' The data have now become
accurate enough so that clear deviations from the
dipole fit are evident' especially at high (negative)
t. The second method uses dispersion relations'
and vector-meson dominance. ' This has not been
very successful in the region of large spacelike
momentum transfer. In order to get fair agree-
ment with the data, either large negative coup-
lings to unobserved vector mesons had to be as-
sumed, ' or several ad hoc structure parameters
had to be introduced. An extensive list of refer-
ences on additional work on form factors can be
found in review articles. "

We propose a different approach. We assume
that the nucleon at rest is a bound state of three
quarks (or partons). We calculate a quark-nucleon
form factor in the region of large spacelike mo-
mentum transfer by making a Lorentz transforma-
tion of the arguments of the quark wave func-
tions. "" Combining this with the dominance of
only the established vector mesons, we find excel-
lent agreement with experiment.

Our results depend to a certain extent on the
choice of the quark wave function. We find the best
fit for a symmetric Gaussian wave function. We
have tried an antisymmetric Gaussian and an antj-
symmetric exponential wave function. We find
that they both fit very badly at small t.

We assume that the photon couples to the quark
through the known vector mesons p, cg, f. The
vector meson then couples directly to a single
quark, forming the vertex shown in Fig. 1. There
is also a class of vertices where the vector meson
breaks up into a number of pions, which then inter-
act with the same or with different quarks, as
shown in Fig. 2.

We assume that the vertex of Fig. 2(a) is domi-
nant, and neglect the others. It is conceivable
that they might provide small corrections to our
results at low momentum transfers.

An approach somewhat similar to ours has been
tried by Fujimura, Kobayashi, and Namiki. "
They use the relativistic wave function due to
Takabayashi. " With one adjustable parameter
they obtain reasonable agreement with the data.
Because they have a four-dimensional harmonic
oscillator wave function, they get a different de-
pendence of the form factor on the number of con-
stituents. In order to get a t ' behavior they have
to introduce an additional Lorentz factor into the
already covariant meson propagator. Our results
show that this is not needed. Barut" has proposed


