
PHYSICAL REVIEW D VOLUME 4, NUMBER 9 1 NOV EMB ER 1971

S-Wave mir Scattering in the Effective-Potential Approximatione

Allen E. Everett
DePartment of Physics, Tufts University, Medford, Massachusetts 02155

(Received 8 January 1971)

The I =0 and I =2 ~7( 8-wave phase shifts are calculated, using the effective-potential model
with p and f exchange which has yielded an earlier successful p-f double bootstrap. Scatter-
ing lengths and a broad S-wave resonance in fair qualitative agreement with current experi-
mental indications are obtained. However, the I = 0 phase shift becomes negative between
about 350 and 700 MeV, in disagreement with the dispersion-theory analysis of Morgan and
Shaw and with current-algebra predictions on the energy derivative of the amplitude.

For some time there has been intensive effort
devoted to the difficult problem of obtaining infor-
mation on the S-wave» system. As a result of
additional experimental data of various kinds, plus
improved procedures for obtaining information
from data on &+X-2&+N, a somewhat clearer
picture seems to be emerging. For example, a
recent paper by Morgan and Shaw' (hereafter re-
ferred to as MS} reports having obtained an essen-
tially unique set of S-wave phase shifts up to 850
MeV through the combination of available experi-
mental information with the use of forward-scatter-
ing dispersion relations. The scattering lengths
obtained in MS are in agreement with Weinberg's
theoretical predictions, ' based on current algebra.
It thus seems worthwhile to see whether the boot-
strap calculations, which now seem to be reason-
ably successful in giving an understanding of the
higher partial waves in the resonance region, ' '
can also give at least a partial understanding of the
behavior of the S waves. The bootstrap calcula-
tions are, of course, likely to be much less reli-
able for the S wave, because of the well-known fact
that the absence of a centripetal barrier in the S
wave makes it more sensitive to short-range
forces or distant singularities, and also because
of the possibility that the S wave might be especi-
ally sensitive to neglected inelastic channels. None-
theless, it would seem to be of interest to see how
far one can go in understanding the S waves by the
same methods which appear to be fairly success-
ful for other aspects of low-energy» scattering.

Johnson and Collins have reported their results
for the S-wave scattering lengths and phase shifts
in the third paper in Ref. 4. Their results for the
scattering lingths are in excellent agreement with
the current-algebra predictions' and with the anal-
ysis of MS. The phase shifts are also in reason-
able agreement with those of MS, though tending
perhaps to fall somewhat lower. In view of the
possible theoretical difficulties in S-wave calcula-
tions, however, it would appear to be valuable to
compare the results obtained from different cal-

culational procedures. We report here on the re-
sults obtained for S -wave scattering by the meth-
ods of I. To summarize briefly the method em-
ployed there, one obtains the» partial-wave scat-
tering amplitudes in the direct (s} channel from the
solution of the nonrelativistic Schrodinger equation
with an energy-dependent effective potential, con-
structed from the t-channel absorptive part using
the method devised by Balazs. ' The t-channel ab-
sorptive part is taken to be dominated by the p and

fo contributions.
Here we calculate the low-energy S-wave scat-

tering, in both the I= 0 and I= 2 states, by this
method, using the p+f' exchange potential, with
the parameters chosen to have the self-consistent
values found in I. The values obtained for the iso-
spin-0 and isospin-2 S-wave scattering lengths,
a, and a» are ao = 0.72 and a, = -0.28. The values
obtained by MS, consistent with the current-alge-
bra results, ' are Qp 0 16+0 04 and a~=-0.05
+0.01. Hence there is only rough qualitative agree-
ment between the effective-potential scattering
lengths and those obtained by Morgan and Shaw
from the analysis of experimental data; the effec-
tive-potential results do have the correct sign, but
while they are fairly small in magnitude, they are
still larger than the MS values by factors of 4 or 5.
However, the values obtained for the scattering
lengths are very sensitive to small variations in
the parameters of the input potential. If one takes
the potential to correspond to the present best phys-
ical values of the p and f' masses and widths, ' one
obtains a, = 0.083 and a, = -0.046, values essential-
ly in agreement with MS, although in this case the
self-consistency is much worse, as one obtains
output resonance widths differing by more than 50%%uo

from the input values. Since this is an approximate
calculation, there must, of necessity, be some un-
certainty in the values of the input parameters
which should be used in calculating the scattering
lengths. In particular, there is no a Priori reason
why these should be the values which maximize the
self-consistency between the input and output p and
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FIG. 1. The solid lines give the effective-potential
results for the I =0 and 2 S-wave phase shifts, 6& and
52O, as obtained in this calculation. The upper and lower
pairs of dashed lines indicate the range of values for
l50 and 50, respectively, obtained by Morgan and Shaw
in Ref. 1. The experimental points, indicated by the
circles, are from Ref. 9. The error bars are omitted
for the sake of clarity; the errors in the experimental
points are of the order of + 10'.

f' parameters, since the effect of the approxima-
tions is presumably different in the S waves than
in the P and D waves; of course, if the method is
to have any meaning or usefulness, the values of
the parameters to be used in calculating the scat-
tering lengths ought to be reasonably close to the
"bootstrap" or self-consistent values. However,
if the results turn out to be highly sensitive to
moderate variations in the input parameters, this
must be reflected in a large uncertainty in the pre-
dicted values of the scattering lengths. If one
takes, as seems perhaps reasonable, the differ-
ence between the self-consistent values of the p
and f' parameters obtained in I and their physical
values as an indication of the uncertainty in the po-
tential parameters which should be used in calcu-
lating the scattering lengths, then the correspond-
ing range of values for the scattering lengths is,
as we haye seen, a, =0.40~0.32 and a, =-0.16
+0.12, so that the results for the scattering lengths
seem to be consistent with, but by no means imply,
the values obtained by MS.

In Fig. 1 we give the values of the S-wave phase
shifts as a function of the c.m. energy, obtained
with the potential determined by the parameters of
I. For comparison, we also show the upper and
lower bounds of the range of values for the phase
shifts obtained by MS in their analysis. (Note: The
value of the I=2 phase shift at the mass of the p is

taken as an input parameter, whose general order
of magnitude is taken from other work, ' by MS and
is not determined by their analysis. ) We also show

the lower of the two sets of phase shifts obtained
by Scharenguivel et al. ' from extrapolation to the
pion pole of the forward-backward asymmetry in
m-p-m &'n. A second set of phase shifts, lying
higher and involving a fairly narrow resonance and

related to those shown in Fig. 1 by the up-down

ambiguity, " is also obtained by Scharenguivel et
al. , and, in fact, preferred by them on the basis
of considerations related to the absorption model.
That set is in disagreement with the analysis of
MS, as well as with the results here; the latter
fact is not surprising in view of the well-known
difficulty of generating sharp S-wave resonances.
For the sake of clarity this second set of phase
shifts from Ref. 9 has been omitted from Fig. 1.

There is fair qualitative agreement at high ener-
gy between the I= 0 S-wave phase shifts obtained
from the effective-potential model and those found
in Refs. 1 and 9. However, the experimental value
of the phase shift appears to reach 90' in the vicin-
ity of 1 BeV, while the phase shift yielded by the
effective-potential calculation reaches 90' at an

energy about 200 MeV higher. Also, the slope of
the theoretical phase shift as a function of energy
in the region where it goes through 90' is some-
what less than twice that suggested by the experi-
mental results, although the resonance predicted
by the effective-potential results is still very
broad, with a full width of about 500 MeV. In the
energy region below the p mass, however, the
effective-potential-model phase shifts become
negative, whereas the MS phase shifts, obtained
by the use of forward-scattering dispersion rela-
tions in the energy region below that at which there
are experimental results, remain positive through-
out the whole region down to threshold. As we dis-
cuss below, the negative dip in the I=0 phase shift
reflects a departure of the effective-potential am-
plitude from the predictions of current algebra.
Finally, we may remark that, unlike the scatter-
ing lengths, the behavior of the phase shifts is
rather insensitive to moderate variations in the
parameters of the potential.

The general behavior of the I=2 phase shifts ob-
tained from the effective-potential calculation is
very reasonable up to an energy of about 1100 MeV.
At that point one finds highly anomalous behavior,
namely a narrow I =2 S-wave resonance. This ef-
fect occurs as a result of the fact that at these en-
ergies, because of its more rapid energy depen-
dence, the f'-exchange potential, which is attrac-
tive in all isospin states, comes to dominate the
p-exchange force, which is repulsive in states with
I =2. Despite the drastic difference between this
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A(1, f, u)=0.02,

sA(1, t, u)/as=0. 1,

(la)

(lb)

provided t and u lie within the range of validity of
the expansion. One then assumes that the expan-
sion remains valid, and that it remains sufficient
to consider only first-order terms, all the way up
to the physical threshold, s =4. A necessary con-
dition for the expansion to bear any relation to the
actual amplitude at threshold is that the disconti-
nuity across the physical cut near threshold must
be small. As far as the necessity for only first-
order terms is concerned, Khuri has argued that
at least the quadratic terms should be small. "
With these assumptions one then derives the well-
known result for the scattering length, ao 0 16.
This agrees with MS, and hence, as discussed in
the above, agrees roughly with the effective-poten-
tial calculation; as we shall see, this is probably
fortuitous. If this linear extrapolation is valid,
then

behavior and that found in the real world, we are
not inclined to view this result as a cause for great
concern. This is because of the fact that the the-
oretical I =2 scattering is being determined by the
(relatively) small difference in the magnitudes of
the large p- and f'-exchange potentials at these
energies, in contrast to the situation in the I =0
state where these potentials enter with the same
sign. Hence the I=2 results are likely to be par-
ticularly sensitive to short-range forces, and
hence unreliable. We might note, for example,
that the presence of an additional short-range force
due to the exchange of an I=1 particle, e.g., the

j=3 recurrence of the p trajectory, could well have
the effect of suppressing the undesired I=2 reso-
nance and could at the same time, by providing
additional attraction, cause the 1=0 phase shift to
rise somewhat more rapidly as a function of ener-
gy. Hopefully, because of its shorter range, such
a force would have comparatively little effect on
the results of I.

We now compare the results of this calculation
with the predictions of current algebra. We denote
by A(s, t, u) the invariant amplitude for I= 0 (equal
to the scattering amplitude multiplied by V s },
where s, t, and u are the usual Mandelstam vari-
ables and we suppress the superscript which de-
notes isospin. Then current algebra, coupled with
the assumption that A can be represented as a first-
degree polynomial in s, t, u, and the external
masses when all the variables are of order one
(we take, of course, m, =1, as we have through-
out) yields two predictions for A on the mass shell,
so that s+t+u=4, which may be summarized as
follows':

aA/as = 0.1 (2)

in the vicinity of threshold. [Eq. (2) will not hold
right at threshold, since the low-energy part of the
cut, even if weak, makes an infinite contribution
to aA/as at the branch point. Again, however, if
ImA is small at low energy, Eq. (2) can reasonably
be expected to hold in the low-energy region as long
as one stays a little bit above the threshold branch
point. Equation (2) should also hold for ReA, even
at threshold, provided ImA is sma11.] We assume,
naturally, that in the region near threshold, the
only important contribution to BA/Bs is from the
S wave. One then finds that Eq. (2) is badly violat-
ed by the effective-potential amplitude. To see this,
we note that the value of A at threshold is given by
(we suppress the f and u arguments of A, since we
assume the mass-shell amplitude depends only on
s in the region of interest} A(4) = 2ao while, because
the phase shift goes through 0 and dips into the neg-
ative region at about s =7, we have A(7) = 0. Hence
we can estimate sA/ss in the low-energy region by
BA/Bs = -2ao/(7 —4) = -(-', )ao, so that sA/&s = -0.5.
In fact, the disagreement is even larger, since
when one calculates numerically the value of
Re(sA/ss) at threshold (rather than the average of
aA/Bs over the range 4 c s & 7) one obtains sReA/&s
= -1.0. This also indicates that A is quite nonlinear
in the effective-potential model, i.e., 8'A/Bs' is
rather large at threshold. (A numerical evaluation
shows the third and fourth derivatives are also
large. ) Consequently, there would be no reason to
expect an amplitude which resembled that predict-
ed by the effective-potential model to obey the
current-algebra predictions at threshold, even if
they were to hold in the unphysical region where
they are derived. Finally, we note that predictions
of the effective-potential calculation concerning the
results of extrapolating the amplitude below thresh-
old are suspect, owing to the known failure, em-
phasized by Finkelstein, "of the effective-poten-
tial method near s =0. This results from the pres-
ence of a factor of s "' in the approximate form of
the potential used in calculations.

The general qualitative features which we have
been discussing, namely, the negative value of
sA/as, the nonlinearity at threshold, and the neg-
ative dip in the phase shift, appear to be inherent
in the model and are unchanged by reasonable
changes in the potential. For example, these re-
sults are essentially unchanged when the potential
is taken to correspond to the physical, rather than
the self-consistent values of the resonance param-
eters. The fact that negative values are obtained
for the I= 0 phase shift in the energy range between
about 350 and 700 MeV is unfortunate, in that the
method should be more reliable there than at the
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higher energies where the resonance appears.
It is, perhaps, of interest to compare these re-

sults with those obtained from the effective-poten-
tial model with p exchange alone, with p param-
eters being determined by requiring the p to boot-
strap itself. Such results are given by Finkel-
stein" for the I=O case. He obtains a negative
value of the scattering length, a„and an I=O S-
wave phase shift which becomes xaPidly large and
negative, passing through -90' for c.m. energy in
the vicinity of 400 MeV. Hence the inclusion of f'
exchange, which yields bootstrap values for the p
and fo parameters in much better agreement with

experiment, also produces S-wave scattering

which, qualitatively at least, is much closer to
what appear to be the experimental results.

In conclusion, the model discussed in I predicts
scattering lengths and a broad S-wave resonance in
rough agreement with experiment. However, the
I=O phase shift becomes negative in the region be-
tween threshold and the vicinity of the p mass, in
substantial disagreement with the results of Mor-
gan and Shaw. The introduction of f' exchange, in
addition to p exchange, which led to a fairly suc-
cessful double-bootstrap calculation in I, does im-
prove the S waves, at least qualitatively, as com-
pared with the result obtained from the use of a
self-consistent p-exchange potential alone.
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