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Assuming a Robertson-Walker metric and an equation of state p =e'p {0& e ~ 1), the Brans-
Djcke {BD) field equations are found to yield a fjrst integral of the form gs

=const, where o. is the parameter denoting the particular units in which the field equations
are expressed. This first integral is employed in the remaining field equations to yield poly-
nomial solutions for a, p, and A. , For e =0, 3, these solutions properly reduce to previously
obtained pressure-free and radiation-filled universes, respectively.

I. INTRODUCTION

In a previous paper' we considered a general
units transformation (UT) in which length, time,

-'(1-a)and reciprocal mass scaled as X' ' ', and found
that in terms of the parameter o. , the Brans-Dicke
(BD}field equations could be written down in the
following form:

Q, , = (sgp, '/c')x "T„+—,'(2Id+3 — 'o)A
&
A ~

——,'(2(g+3+n')g, )A„Ar+n(A, .l g, q -A),

(8ny, '/c')X "T
OA+nA„A'" =

2(d +3

where A =—1nA., and the barred notation is kept in
order to remind us that, in contrast with the origi-
nal unbarred version of the BD theory, T" is not,
in general, divergence-free, and in addition to re-
mind us that the equations of motion are nongeode-
sic. In Ref. 1 we obtained the local Schwarzschild
solution and found that the same predictions result
for the three tests in all units. It has also been
shown' that the BD theory predicts the same effects
for the Schiff gyroscope in all units. These results
are in accord with the units interpretation of these
various formalisms and the dimensionless charac-
ter of the measured quantities.

For local phenomena, units of measure are un-
important, but it appears that they may play a sig-
nificant role in cosmological considerations. Al-
though it is of course true that the various unit-
transformed BD field equations are but different
realizations of the same basic theory, the physical
input data (mass and pressure distributions) must
be expressed in units appropriate to the formalism
we intend to use. It is not entirely clear how one

can guarantee that this will be the ease.
Since observationally one records only one nu-

merical value for a given quantity (e.g. , p, -10 "-
10 "g/cm'), one must consider carefully how

this number was obtained, so as to determine rela-
tive to the constancy of which units it is being ex-
pressed.

Logically, it would seem that the units determin-
ed by the nature of observation are those associat-
ed with the dominant interaction. Thus, for exam-
ple, physical measurements made in the labora-
tory (where gravitation is weak) would naturally
be phrased in constant atomic units, and on the
grander scale of the universe, measurements
would be phrased in constant gravitational units.
In principle, this criterion should certainly be cor-
rect, but in practice, astrophysical measurements
are so very indirect that their interpretation in
these terms is unclear.

It is not our purpose to attempt such an analysis
here, but only to point out that if the actual process
of measurement cannot be conceived of as being
taken relative to all units being constant, then, as-
suming that an actual relative variation between
units exists (as in BD theory), it follows that the
number we record must be readjusted in such a
manner that it may be considered as having been
taken relative to one set of constant units (with re-
spect to which other sets vary).

To illustrate these ideas more explicitly, let us
consider the following idealized situation: As-
sume that all distance measurements are taken

by parallax with the Earth-Sun orbit (assumed cir-
cular} as base. Then, taking note of the relation
between the astronomical unit (AU) and the
Schwarzschild radius of the sun R„viz., 1 AU
= —2R, (v/c) ', all distances will be dimensionless
numbers which represent a multiple of the AU (or
equivalently R,) taken as a constant unit. This
number may be used Q.rectly in a theory for which

R, is constant. If, however, one wishes to use this
number in a theory for which R, varies (e.g. , con-
stant atomic units), then the number actually ob-
served is an overestimate, since the unit we are
now employing (varying R, ) was larger in the past
(G is decreasing with time). Hence, we must use a
number which is smaller than that which is ac-
tually observed if we enter this datum into the
atomic-unit formalism. If now we assume, for
example, that the mass is actually measured rel-
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ative to constant atomic units, then the net result
will be to increase the number we enter for the
density of matter. It is therefore conceivable that
the universe could actually have a density suffi-
cient for closure even though the "observed" mat-
ter density is too small.

Thus we see that the assumption of an expanding
universe leads to some interesting possibilities
regarding the applicability of one BD formalism
over another in the cosmological domain. For
this reason we would like to investigate the BD
cosmologies in arbitrary units.

0=—a p A. p+ 2(d+3 1 Q A 3(x —A

da ~
~ 6 ~

+
d y, 'A. p+ —,'[2(u+3(l- n'}]A'+2n —A

+ n'A'+ nA

The field equations (6a)-(6c) may be used to cast
Eq. (1) in a more natural form (see Appendix A),
V1Zu y

0 =—(pa'}+P—(a'}+-',(1-n)a'A(p 3P-).
dt dt (6)

II. COSMOLOGICAL EQUATIONS AND A
CONSERVED QUANTITY

We take the usual form of the line element in
comoving coordinates, viz. ,

ds'= -dt 2+a (2t)[(1- rk)2'dr'+r'dQ'], (2)

ds'= -dt2+a'(t)[(l —kr') 'dr'+r'dQ'],

and we must identify

dt =z&~'- )dt,

n = x'~'-")a.

(3)

(4)

This is in accord4 with the general units transfor-
mation described in Ref. 1.

We take the matter tensor in comoving coordi-
nates to be in the standard isotropic form

where k = 1, 0, and -1 correspond to closed, open
Euclidean, and open hyperbolic spaces, respec-
tively. It should be remarked at this point that the
comoving coordinates in the original units of Brans
and Dicke' are given by the line element

If we now assume p and p are related by P =ep, Eq.
(8) yields the first integral

pa3& + )g&~~ )& +)= const= q.

We note that for the choice a =1, which corre-
sponds to the original BD theory, we recover the
first integral familiar from general relativity
since, for this choice, the matter tensor is con-
served separately. We also see that for e = —,

' we

again obtain a decoupling of the scalar and matter
fields for all values of n.

Together with the first integral (9), we may take
(6a) and (6c) ss a complete set of equations for p,
a, and X. Equation (6b) is redundant and therefore
unnecessary. In Sec. III below we find power-law
solutions to this set of equations.

III. POWER-LAW SOLUTIONS IN FLAT SPACE

Let us consider flat-space cosmologies (k=0) for
which the solution has the form

~'~ = diag(-P, P, P, P). (5)
a = au(t/f2)', X = (t/tu}', P = pu(t/tu)". (10)

3[(a/a)2+ ka 2] = cp2 ~A. "p+ 4[2m+ 3(1-n2)]A2

-3n(a/a)A, (6a)

2(it/a)+(a/a)2+ ka '= -y, 'X "P-—,'[2&@+3(l-n2)]A2

-2nA(a/a)- n'A'- nA, (6b)

Using the line element (2) and the matter tensor (5)
in the field equations (1) and suppressing the barred
notation, we obtain for the G 0, G'„and scalar
field equations the following expressions:

Substituting Eqs. (10) into Eqs. (6a), (6c), and (9)
we find, respectively,

p rr 3(&+~)Ittt off+&&(&+&)+k &f& &) & I 3&) —const— (13)

r2/l2 l~ lp (f/l )tl N l

+ [2(u+ 3(1-n2)][12/(12t 2)]-nrl/t 2,

3rl/t'+ l(nl 1)/t'—
= [(1-3e)/(2&u+3)]q, 'p, (t/t, )"-"',

(12)

3(a/a)A+A+ nA'= p, 'A. "(p-3P)/(2(u+3), (6c) First of all, we see that for solutions to exist we
must have

where a dot denotes differentiahon with respect to
t and we have taken c' = 1 and absorbed a factor of
Sn into p and P. By taking the divergence of the
right-hand side of Eq (1), or alte. rnatively, by ap-
propriately combining Eqs. (6a) and (6b}, we obtain
the conservation identity

n = o.l-2. (14)

Also, the constancy of Eq. (13) implies that the ex-
ponent must vanish, and this fact together with the
relation (14) yields an expression relating r and l,
VlZe,
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-l(1 —n}(1—3e} —2 el + 4
6(1+ e)

(15)

+ 16(1-Se) = 0. (16)

The solutions to the quadratic equation (16) are
easily found, and upon substitution of the two val-
ues of l into Eqs. (14) and (15) we obtain two sets
of solutions for r, l, and n. However, Eq. (12),
which relates the arbitrary positive constant

0 'pa to' to e, +, and n, may be used to eliminate
one set of solutions since it implies go 'pot, ' & 0
for this set. Thus we are left with the following
solution:

r = [2/3(l + e)]d '[(6&@+9)(1—e }-Sn(l + e)(1—Se)],
l = 4(1-3~)d

n = -2d '[(6&v + 9)(l- e') + (1-Se )(1- 3c-4n)],

rpo 'p t,'0= 4(2(@+3)d '[(6&@+9)(1—e)'- (1-Sa)'],

where

d=—[(6ur + 9)(1-e') + (1-Sc)(1—Sc —2n)].

Since the last of Eqs. (17) must be positive, we
see that the solution (17}fails whenever this ex-
pression vanishes . This occurs for values of e

given by

c = 1- &u '[(1 +'-, &u}'~'- 1]. (18)

From Eq. (18) we see that as we vary &u over the
range (1,~) e takes on the values 0.7 (a& - 1), 0.8
(v - 5), and 1.0 (co- ~). Thus for any value of ~
we have a valid solution for . reasonable equations
of state (0 & e & —,'). The solution also holds for
harder equations of state as the par amete r e be-
comes larger, but holds for c = 1 only as co-~,

Combining Eqs. (11) and (12) so as to eliminate p,
and using Eqs. (14) and (15) to eliminate n and r,
respectively, we find, after some algebra, the fol-
lowing quadratic equation for I:

l '[(1-Se)(1-Se—2u)' + (6(a+ 9)(1-e')(1- Se —2n)]

+ l [-8(1-Se)(1—Sc —2u)-4(1 —e')(6u&+ 9)]

which is the general-relativity (GR) limit of the
BD theory.

In Table I we have displayed the specific ex-
ponents [see Eq. (17)] for the three unit formalisms
of interest, relative to the corresponding exponents
in the Einstein theory . We first note that in the
limit as co-~ we recover the Einstein exponents.
(l- 0 in this limit so the scalar field is constant. )
For the pressure-free case (e = 0) the results agree
with the solutions of Brans and Dicke in the orig-
inal units (n = 1) and in the transformed units
(n = 0, -1).

For 0 & e & —,
' we see from Table I that A. increases

for all n, and that compared to GR a increases
less rapidly for n = 1,0 but increases more rapidly
for u = -1, and that p decx eases less rapidly for
u = 1, is the same for u =0, and decreases more
rapidly for n = -1.

For e = —,', A. becomes constant and all the expo-
nents attain their GR values. Finally, if e & —,

' we

find that A. decreases for al 1 n, and that compared
to GR a increases more rapidly for a = 1 and less
rapidly for a = 0, -1 and that p decreases more
rapidly for n = 1, is the same for n = 0, and de-
creases less rapidly for n = -1.

These results, which are summarized in Table
II, may be qual itatively inte rpreted quite simply
in terms of the first integral given by Eq. (9). The
cosmological expansion is shared by the three
quantities p, a, and A. in such a manner that Eq .
(9) is satisfied. The effect of the different unit
formalisms (i.e., the parameter n) is to distribute
the expansion of p, a, and X in different ways ac-
cording to the value of n.

This effect is evident in the last two columns of
Table I where we see that the functions f (e) tend
to increase or decrease the time dependence of p
and a relative to the GR cas e depending upon the
particular formalism (and the value of e).

IV. CONCLUSIONS

When expressed in terms of a common univers al
time, say t, the cosmol ogie s obtained above are

TABLE I. The exponents as a function of e .

(~ /~&) ' (n /n@)
b

1 -3e
3'(1-e2) +4

k(1 - 3~)'
3' (1-e2) + 5 —3~

-3c (1-3~)
3~ (1-g2) + 6(1-g)

2f«(e')

4fp(e)
1—36

-2f -«(&)
3E'

1 -f«(e)

1 -fo(&)

1-f «(&)

1-f«(e)

f «. (&)

3E

e denotes the particular units. o' = 1 corresponds to atomic units, n = 0 corresponds to gravitational units (G = const),
and e =-1 corresponds to Schwarzschild units (2Gm /c =const) .

vQ 3 (1 +e ) and nz =- -2 are the exponents in the Einstein theory.
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TABLE H. Nature of solutions in different units as a function of e.

Equation of state
P =&0

Atomic
units
+=1

Gravitational
units
n=o

Schvrarzschild
units

0; =-1

A, incr.
~/~~ & 1
e/I~&1

A. incr.
~/~~& 1
I/I ~=1

A, incr.
~/r~& 1
I/n~& 1

A. deer.
~/~~& 1
m/nE& 1

A, deer.
~/~~& 1
n/n~=1

3, deer.
~/~~& 1
n/I~&1

~em~ is determined from Eq. (18) of the text.

identical'; that is, A. is the same function of the
common time t and the numerical quantities are
related by the UT given in Eqs. (4). However, the
cosmologies are distinct in the sense that each ob-
server views the universe as isotropie and homo-
geneous Rnd then chooses whatever units he pleases
to be constant by taking Eq. (2}as his line element
in comoving coordinates. In so doing, he chooses
a paxticular universal time t which depends upon
his choice of units (n). When expressed in terms
of a given universal time t, the BD cosmologies
yield p(I}, a(t}, and X(t) according to Eqs. (17)
(restoring barred notation), which are different
functions of t for each set of units. ' This will of
course have an effect on astxophysieal observations
of eosnlologieRl ol lglQ

For example, by employing Eq. (17) and restor-
ing barred notation tile Hubble parameter H(t) is
given by the following expression:

2 (6(v+9)(1 —e') -3n(1+ &}(1—3&)

3(l+ e)t (6(v+9}(l—~')+ {I—3&){1—3&- 2n}

(19)

The fll'st fRetol ls JUst the GR I'88ult Rnd the I'8-
maining factors bring about a fuxther dependence
upon e as well as a dependence upon n (units). We
note that this latter dependence disappears for
e = —,

' as might be expected since then the coupling
of the scalar field to matter becomes zero (except
perhaps for imtial conditions).

Other effects of such a conscious ehoiee of units
of Observatlon3 8Ry on the teIDpex'Rtux'8 history and
particularly its relation to the universal 3 K back-
ground radiation and the hydxogen-helium ratio,
would seeIQ to be worth lnvestlgRtlon IQ R future
papeI' rate hope to look into these problems in some
detail.

APPENDIX

We shall give two derivations of Eq. (6) of the
text. If we multiply Eq. (6b) by three and add it
to Eq. (6a), we obtain

6[(a/a)+{a/a)'+ Ra ']=-,'[2(u+3(1- n)][6(a/a)A]

+ -', [2++3(l —n)](2nA'+ 2A}

--,'[2(o+ 3(l —n')]A'.

0 =y, 'X [(d/dt)(pa') +P(d/dt)a']

-qr, 'Z "pa'nA+-', [2(v+3(1-n')]a'AA

-3a'(nA[(a/a) (a%a)']+—nA(a/a}]

+ 3a'(a/a) (-,'[2(u +3(1-n')]A'- n{a/a}A

+ n'A'+ nA).

Also, by solving Eq. (20) for a/a and Eq. (6a) of
the text for qo 'A. "p and substituting the resulting
expressions into Eq. (20) above, we are left with

o =q. '& "[(d/«)(pa')+P(d/«)a']

+-,'(2~+3)(1-n)a'A[3(a/a)A+A+nA']. (22)

Using Eq. (6c) for the last bracketed expression
above, Eq. (21) yields Eq. (6) of the text.

AQ Rltel'QRtlve derlvatlon involves simply apply
1Qg the unlt8 tl Rnsformatlon to the knovgQ fix'st ln™
tegral in the original BD formalism where the
matter tensor is conserved independently of the
scalar field. Thus, noting that the density p scales
Rs A, and 8 scales Rs A,

p we 8Rslly find
that a'~'"~ = const becomes precisely Eq. (9). Al-
though this last derivation of the result is certain-
ly valid, it mould perhaps not be so convincing had
we not first derived the results directly from the
field equations.
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ential dt in Eq. (4) results from the fact that we insist
on a "universal time" t as our fourth coordinate so that
it can no longer be dimensionless, but must carry the
units of time. This may be remedied by introducing the
new dimensionless parameter g according to dt =aj(g)dq

anddt = aug so that the line elements are then related by
the second of Eqs. (4). However, we still obtain the
same relation between the two universal times t and t if
we wish to reintroduce them.

5This statement is obviously true because it was just
the UT of Eg. (4) which generated the other formalisms
and their new cosmic times.

6In fact, the gravitational constant may be considered
as either increasing or decreasing, depending upon the
units of measure. Since y~„~ = tp~g &", and G-y~„~, it is
evident that for ~ =1, the gravitational constant is de-
creasing, while for a = —1, it is increasing.
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Using the Robertson-Walker metric, exact general solutions to the Brans-Dicke cosmolo-
gies for p = ap are found. The two first integrals which exist for this case reduce the problem
to quadratures. In the case of flat space the quadratures may be integrated explicitly in
terms of elementary functions, while in the curved spaces (k=+1), the solutions may be ex-
pressed in terms of elliptic integrals. The limit as a approaches ~ (or am~ for a closed uni-
verse) may be evaluated for positive, negative, and zero curvature, and leads to the rather
surprising result that the scalar field A, approaches a constant.

I. INTRODUCTION

In a previous paper' we have written down the
cosmological equations for the Brans-Dicke (BD)
theory in arbitrary units under the usual assump-
tions of a Robertson-Walker metric and an iso-
tropic matter tensor in comoving coordinates.
Here we find exact solutions for flat (k= 0) and
curved spaces (k= + 1) in the case of a radiation-
filled universe. We initially restrict ourselves to
the gravitational unit formalism' (n = 0 of Ref. 1),
and find the limiting behavior of the solutions for
t -0 and t -~. The rather unexpected result ap-
pears that the scalar field A. asymptotically ap-
proaches a constant in a radiation-filled universe.
Finally, we outline a general procedure for ob-
taining the solutions in other units, i.e., in terms
of their appropriate cosmological time. ' In gen-
eral, this procedure cannot be carried out analy-
tically except in the limiting behavior as t —0, ~.
In the limit as t - 0 the scalar field A[t&„&], the ex-
pansion parameter a&~&[t& &], and the density p& &[I& &]

display somewhat different time dependences for
the three natural unit systems, 4 while in the limit
as t ~ there is no difference, since X- constant.

H. FIELD EQUATIONS AND SOLUTIONS

For e =0 and. e =-,' the field equations of Ref. 1

reduce to

(a/a)'=-,'(p, 'p+ —,', (ho+3)A' —ka ', (la}

a A=B—= a A, (Ib)

(1c)

( PB2+ + -|~ 2 k 4)-x/2 2dt
(2)

where P = —,'(2&a + 3). Equation (3) immediately
yields the quadrature

t(a) = (,'PB'+ 'sy, 'qu' -ku') -'~'u'du, —
N=O

(3)

where we have set the integration constant equal
to zero so that a = 0 when f = 0. Equation (3}gives
a implicitly as a function of t and, therefore, Eq.
(lc) immediately gives p implicitly as a function
of t Equation (lb} m. ay now be solved for A(a) by
using the expression for dt/da in Eq. (2). We ob-
tain'

4 4pa =Q= ppap

where we have suppressed bracketed subscripts
(0}referring to the units, and where a dot denotes
differentiation with respect to the cosmic time t«&.
We have also absorbed a factor of 8m into the def-
inition of p and have set tc' = 1. Substituting the two
first integrals (11) and (1c) into (la), we obtain


