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range of t at high energy. This concludes our com-
ments on the case P&0.

Looking back over our argument, we see that
too strong a branch point is inconsistent with t-
channel elastic unitarity unless high trajectories
other than those of Eq. (1) are introduced. Too

weak a branch point produces an anomalous dif-
fraction pattern. We cannot rule out exceptions,
but we expect these qualitative conclusions to be
valid for quite general partial-wave amplitudes.
The constraints we have discussed should be kept
in mind when constructing model amplitudes.

*This work is supported in part through funds pro-
vided by the Atomic Energy Commission under Con-
tract No. AT(30-1)-2098.
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The two-variable perturbation-theoretical integral representation (the Deser-Gilbert-Sudarshan
representation) for the off-the-mass-shell forward scattering amplitude is explicitly proved to
all orders in perturbation theory under certain natural spectral conditions.

Recently, much attention has been paid to inelas-
tic electron-proton scattering. Its structure func-
tions can be expressed in terms of the forward
virtual-photon-proton scattering amplitude. A
number of authors' have discussed this amplitude
by using the so-called DGS (Deser-Gilbert-Sudar-
shan) representation or the two-variable PTIR,
where PTIR is an abbreviation of perturbation-
theoretical integral representation.

The two-variable PTIR for the vertex function
was used first in the Bethe-Salpeter equation by
Wick, ' Cutkosky, ' and Wanders. ' Its derivation
based on the axiomatic field theory was made in-
dependently by Fafnberg, ' Deser, Gilbert, and
Sudarshan, ' and Ida, ' but the incorrectness of their

reasoning was pointed out by Minguzzi and Streat-
er.' The present author, ' however, proved that
the two-variable PTIR for the vertex function holds
to all orders in perturbation theory.

The two-variable PTIR for the forward scatter-
ing amplitude was heuristically derived also by
Deser, Gilbert, and Sudarshan. " On the other
hand, the present author" proposed PTIR's for the
general off-the-mass-shell scattering amplitude
and for the on-the-mass-shell one, and investigat-
ed their support properties on the basis of Feyn-
man integrals. A perturbation-theoretical proof of
the two-variable PTIR of Ref. 10, however, has
never been given explicitly, though it is implicitly
contained in the present author's previous
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work. ""Therefore, it is probably not futile to
present an explicit proof of the two-variable PTIR
for the forward scattering amplitude.

I et g ={a,b, c, d] be the set of four external
lines. Any nontrivial division (hlg —h) of g defines
a channel. There are seven channels correspond-
ing to h=(a), (b't, {c], (d], (a, b), (a, cj, and (a,dj.
(For simplicity, we shall hereafter omit parenthe-
ses and commas in writing the elements of h. ) let
M» be the smallest possible total mass of inter-
mediate states belonging to the channel (hlg-h).
Furthermore, let p„be the outgoing external mo-

mentum of the channel (hlg —h). Since we are con-
sidering the forward scattering, we can set p, =-p~
=p and p, = -p„=q. The momentum p is put on the
nucleon mass shell, that is, p'=M'.

With the above notation, the integral representa-
tion of Ref. 10 reads

+j. ~+ y(z, y)
dz '

dy —2' g —$6

where the weight distribution y(z, y) vanishes un-
less

y ~ max [(M„—M )~ + 2M (M„—M )z, (M~ —M ) —2M (M« —M )z ] (2)

(the maximum should be taken for each z fixed) if

and

2M «M,~+ M~, (3)

y & max [-,'(itf„'+ M«'} —M' +-,'(M„' -M«')z, —M'z']

(4)

otherwise. In what follows, we prove (2} under the
assumption (3) to all orders in perturbation theory,
apart from the subtraction problem.

As is well known, the analyticity of a Feynman
integral can be analyzed by means of the denomi-
nator function, called V, in the Feynman-para-
metric formula. The general form of V is"

I'=Z«mi'-K&I &I i
1 »

(5)

where n, and m, (~ 0) denote a Feynman parameter
and an internal mass of a line l, respectively, g
is a function of Feynman parameters such that
&„~ 0 for o., ~ 0 (all I), and the summation+„runs
over all possible channels (hlg —h). The Feynman-
parametric integral can be transformed into the
form of (1) by introducing the following integration
variables:

12M M..I-.M«.

In (5}, we insert (8) with

~,=-~, =M„-M;
then (9) is obvious, and (11) and (12) guarantee
(10). Therefore, the main theorem implies

(12)

(13)

(14)

gn, m, ' -(g.+g)M' -(g, +g„)(M„-M}'
—~M„' —~(2M-M )'~ 0.

(15)

We also need the following auxiliary theorem":
If h and h' are two d&sj oint subsets of g, then M„,
M, , and M»». satisfy the triangular inequalities
(including the equality cases) in any Lagrangian
field theory (involving real masses only).

From the stability condition for the nucleon, we
can set M, = M, = M. Then the auxiliary theorem
implies

max(lM —Ml, lM~ —Ml) min(M, , Mg),

because M„=M„and M~ =M„. Under the assump-
tion (3), we can also show that

Q+ r&+r,.+r« ' (6) By using (6) and (7), the inequality (15) is rewrit-
ten as

gn, m, ' —(g. +g+g. +~)M'
4+&.+4.+U (7)

y& (M -M) +2M(M« —M)z.

Likewise, by setting

(16)

Now, the basic tool of our proof is the following
theorem"'4 .

When n, ~ 0, V is positive semidefinite for A,
satisfying

A. =-~~ —-M, X = -gq= —M~+M,

we find

y ~ (M~ —M) —2M(M~ —M)z.

(17)

(18)

g =~»p with p'=1,
+A.~+ A, +A,~=0,

(8)

(9}

(10)

Thus (2) has been established.

In the case 2M&M„+M~, which is not needed
for the practical application, we are unable to
prove (4). We can only prove that
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(19)

from the support property of the off-the-ma, ss-
shell PTIR'"" and the stability condition.

Finally, we remark that the asymptotic behavior
and the subtraction problem of the two-variable
PTIR were already investigated in detail. " Two
remarkable results are as follows:

(a) The unsubtracted PTIR can describe the
Regge-type asymptotic behavior.

(b) The subtraction term of PTIR is a polyno-
mial. No single spectral terms are necessary to
be added.

Of course, some modifications are necessary
for (1), because it is not of the standard form of
PTIR.
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It is shown that for a wide class of potentials the slightly modified form of the Glauber
eikonal approximation, recently proposed by Abarbanel and Itzykson, is essentially equiv-
alent to the simplified form of the Saxon-Schiff formula obtained by Sugar and Blankenbecler.
Insight into the relationship among several high-energy approximations is thereby gained.
It is then suggested that the above modified Glauber approximation may possess a rather
large angular range of validity and may be as reliable as several of the recently proposed
"improved" high-energy approximations. This is also numerically illustrated.

The eikonal approximation of Glauber' provides
an attractive method for studying high-energy
scattering. The elastic scattering amplitude for
a particle of mass m and momentum ko incident on
a potential V is given in this approximation by

(kz (TJko) =~ d'b e ' '~(exp[(im/ko)g(b)] —I),
(Ia)

where

(b) = —~ V(b, g)dz, (1b)

4 =k& —ko, r =b+z. (1c)

Since the above expression can easily be obtained
by assuming high-energy and small-angle scat-
tering, it is believed to have a rather limited range


