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~By proper choice of orientations and locations on
earth, three mutually orthogonal detectors can be
obtained in practice. However, only two detectors are

really needed if use is made of the rotation of detectors
with that of the earth and if the source of the signals
is believed to be the same at different times.

7The three 4-h blocks chosen by Weber (Ref. 2) in our
coordinates are (-2)-(+2) h, 2-6 h, and 6-10 h. The
latter two blocks of low intensity are now identical.
The anisotropy, however, is not as pronounced as with
our choice.
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Amplitudes containing Schwarz-type Regge trajectories must satisfy certain constraints.
Some recent examples in the literature do not do so.

Recently several authors have suggested that
Regge trajectories of the type discussed by
Schwarz' may be present in nature. These are

n, (t)= 1~i@( t)' '+0(-t),

t( j) = + O((j —1)'),
y

where t(j) is the moving singularity in the energy
plane. Such trajectories have occurred in boot-
strap models of the Pomeranchukon, '' in the
Regge-eikonal model, ' in models of the violation
of the Pomeranchuk theorem, 4 ' and in models of
diffraction scattering in which the diffraction pat-
tern shrinks faster than (lns} '.' In the papers
dealing with violation of the Pomeranchuk theorem,
there are Schwarz trajectories of negative as well
as positive signature. In the present paper we
point out that general considerations rule out am-
plitudes containing oddly Schwarz trajectories, un-
less the latter are poles. In particular, model
amplitudes presented in Refs. 2, 3, and 4 are un-
acceptable as they stand.

For simplicity we consider the scattering of
identical spinless particles in the t channel. Then
one of the following alternatives hold:

(1} The partial-wave amplitude in the t channel
is infinite at j = o.,(t) for an interval of t or j. In
this case there must be additional singularities
that cross n, (t) at t=4p'. This is required by t
channel elastic unitarity, and the conclusion holds
except when the Schwarz singularities are poles.
Since 4p' can be very small compared to the en-
ergy over which Regge singularities move, these

f(t,j)=aI(j I)'-r'tI'+ R, - (2)

where R is smaller near t=t(j) than the first term,
and P is an arbitrary real number. Here we have
suppressed possible t or j dependence of a, P, and
y', and we shall mention how such dependence af-
fects our conclusions as we proceed. Our family
is obviously not exhaustive, ' but it contains enough
possibilities to expose the difficulty in construct-
ing amplitudes with Schwarz singularities only.

additional singularities are potentially as impor-
tant for diffraction scattering as the original
Schwarz cuts. All the amplitudes presented in
Refs. 2, 3, and 4 have only Schwarz cuts and are
infinite at j = o,(t), so they are in violation of t
channel unitarity. Oehme recognizes the need for
additional singularities under the circumstances
discussed here. '"

(2) The partial-wave amplitude in the t channel
is finite at j = n, (t}. In this case the secondary,
tertiary, and subsequent diffraction maxima be-
come successively higher. This possibility arises
because Rea, (t)—= 1 for t &0, and the trend of the
differential cross section with t is controlled by
interference between the contributions of the two
Schwarz singularities to the Sommerfeld-Watson
integral. Here again, only the presence of addi-
tional singularities can modify our conclusion, and
Oehme provides an example. ' A diffraction pattern
with increasing subsidiary maxima is incompatible
with experimental data presently available. '

To study these questions we examine the family
of partial-wave amplitudes
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The Froissart bound requires p ~--,'. ' The Regge-
eikonal model gives p = -&, as do some of the boot-
strap models. ' '

The consequences of elastic t-channel unitarity
for the threshold behavior of Regge-cut discontin-
uities have been discussed, '' with the general con-
clusion that the discontinuity must vanish except
at isolated points and under special circumstances.
Here we shall pursue the investigations further to
see what happens if we insist on the behavior in-
dicated in Eq. (2), with P&0, p a-1. The partial-
wave amplitude has the representation

f(f,j)=[W(t, j)+ Y(f, j)] ', (3)

t, is chosen large enough so that YR is a real mero-
morphic function of f (for real j) in a region that
includes f(j) and 4p, '. For -1&p&0, the only way
to obtain the behavior of Eq. (2) is to demand that

where W(t, j) has the elastic unitarity cut and

Y(t, j) has all the other cuts, including the cut f(j)
in the energy plane.

DiscW(t, j)= 2t '~'(4t —p.
')~''~' -(t&4p, '). (4)

Comparing Eqs. (2) and (3), we see that for P & 0,
p W-l, Y has a leading singularity at t(j) of the
form [(j-1)'-y't] 9, which permits a subtracted
disper sion representation

t t(j) '&-dt'Disc Y(t', j)
Y(t, j)= [„~)](„)+ Y„(t,j ). (5)

The presence of CDD (Castillejo-Dalitz-Dyson)
poles in Y„at or near t=4p, ' and j=j, does not
affect our argument since W(f(j),j}has branch
points at j =j,. We do not consider an infinite ac-
cumulation of poles.

Possibilities (1) and (2) put fixed cuts into f(t j )
at j,. These are absent in Eq. (2), and probably
violate the Froissart bound' because j, &1 if the

O(t) term in Eq. (1) can be neglected over the

range 0& t&4p . Possibility (3) does not share
the problem of the Froissart bound, but it also in-
troduces singularities that are both absent in Eq.
(2) and potentially important for diffraction scatter-
ing. Note that t or j dependence of a, p, and y' in

Eq. (2) does not affect these conclusions as long
as p & 0 for some range of j, for then Eq. (6b) must
be an identity in j.

Let us now return to the ease p = -1. In this in-
stance Y has no cut term in Eq. (5), which means
there is no explicit dependence on f(j). Accord-
ingly, possibility (2) no longer leads to fixed j cuts
in j(t,j), and we see that Schwarz trajectories can
occur in isolation if they are poles, and if the tra-
jectories a, (t) have cuts starting at the elastic
threshold 4p'. The presence of such O(t) terms
in Eq. (1) rules out an exactly self-reproducing set
of Mandelstam cuts, however. ' ' This concludes
our analysis of the consistency of the case p&0
with t-channel unitarity.

For p &0 the scattering amplitude in the crossed
channel at high energy is

Disc Y(t', j)= [y f' —(j-1)2] 9,
1

sing
(6a) F(s f) ~ df e -&1r(J-&)~ f2-s&[(7 1)2 2$]9

ln

Y, (f(j),j}+W(f(j),j)= 0 (6b)

For -2 ~p &-1, there is an additional condition
that only strengthens our conclusions. Equation
(6b} is the crucial equation that makes Eq. (2) in-
consistent with elastic unitarity for p & 0, p a 1,
because W has explicit singularities at j,= o, (4p, ').

There are three possibilities entailed by these
explicit singular itic s:

(1) f(j) is analytic at j„as in Eq. (2), and there
are no additional moving cuts in the energy plane.
The explicit singularities of W(f(j),j ) are canceled
by fixed j cuts in Ys(t,j) at j, , with the fixed cuts
having just the properties required to keep f(j) ana-
lytic at j,.

(2) YR(t,j }has no fixed branch point in j at j„
and t(j) is the only moving cut in the energy plane,
but t(j) is modified so that it has branch points at

(3) t(j) and Ys(t, j) have no fixed branch points
in j at j„but there is an additional moving cut in
the energy plane, t(j), with t(j,)=4p'. This addi-
tional moving cut in YR serves the same purpose
as the fixed j cuts in possibility (1).

is
( )

(1 s-n-,'i )"v'

J 9,g,(y(-f)' '(lns- —,'iv)}
[2y(-f)'"(lns--', fw)] ' '" '

Here various kinematic factors nonsingular at
j= 1 have been incorporated into b. For positive-
signature trajectories, Eq. (7) is straightforward
to obtain. For negative-signature trajectories
there is a pole at j=1 in the Sommerfeld-Watson
integral that comes from the signature factor.
This pole is canceled by a linear factor (j-1) that
must be present in Eq. (2) so that the physical P-
wave amplitude f (t, 1) does not have a branch
point at t= 0." Altogether, Eq. (7) also gives the
asymptotic contribution of Schwarz cuts in the neg-
ative -signature partial -wave amplitude provided
b is taken to be pure imaginary. The subsidiary
diffractive maxima in Eq. (7) grow in amplitude
for p &0. This result holds if a, p, and y' are
t- or j-dependent because the diffraction pattern
shrinks like (lns) ', and the maxima we are dis-
cussing are crowded into an arbitrarily small
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range of t at high energy. This concludes our com-
ments on the case P&0.

Looking back over our argument, we see that
too strong a branch point is inconsistent with t-
channel elastic unitarity unless high trajectories
other than those of Eq. (1) are introduced. Too

weak a branch point produces an anomalous dif-
fraction pattern. We cannot rule out exceptions,
but we expect these qualitative conclusions to be
valid for quite general partial-wave amplitudes.
The constraints we have discussed should be kept
in mind when constructing model amplitudes.

*This work is supported in part through funds pro-
vided by the Atomic Energy Commission under Con-
tract No. AT(30-1)-2098.
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The two-variable perturbation-theoretical integral representation (the Deser-Gilbert-Sudarshan
representation) for the off-the-mass-shell forward scattering amplitude is explicitly proved to
all orders in perturbation theory under certain natural spectral conditions.

Recently, much attention has been paid to inelas-
tic electron-proton scattering. Its structure func-
tions can be expressed in terms of the forward
virtual-photon-proton scattering amplitude. A
number of authors' have discussed this amplitude
by using the so-called DGS (Deser-Gilbert-Sudar-
shan) representation or the two-variable PTIR,
where PTIR is an abbreviation of perturbation-
theoretical integral representation.

The two-variable PTIR for the vertex function
was used first in the Bethe-Salpeter equation by
Wick, ' Cutkosky, ' and Wanders. ' Its derivation
based on the axiomatic field theory was made in-
dependently by Fafnberg, ' Deser, Gilbert, and
Sudarshan, ' and Ida, ' but the incorrectness of their

reasoning was pointed out by Minguzzi and Streat-
er.' The present author, ' however, proved that
the two-variable PTIR for the vertex function holds
to all orders in perturbation theory.

The two-variable PTIR for the forward scatter-
ing amplitude was heuristically derived also by
Deser, Gilbert, and Sudarshan. " On the other
hand, the present author" proposed PTIR's for the
general off-the-mass-shell scattering amplitude
and for the on-the-mass-shell one, and investigat-
ed their support properties on the basis of Feyn-
man integrals. A perturbation-theoretical proof of
the two-variable PTIR of Ref. 10, however, has
never been given explicitly, though it is implicitly
contained in the present author's previous


