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Inequalities derived previously from rigorous positivity and analyticity for the n%-n® double
partial-wave amplitudes (a, ;) are reexpressed in terms of Roskies’s crossing-symmetric
parametrization. Using theorems on moment problems, the “best” inequalities for any
value of 0=1 +n are discussed, and the result is expressed as an allowed region of the
otherwise unrestriéted parameter space. The o=4 and 0=5 “best” inequalities are explicitly
calculated and compared with results previously given by Roskies for the case 0 =4. New
inequalities relating the partial-wave amplitudes f,;(s) and their derivatives f,’(s) are de-
rived, valid for all I =2, and all 0 =s =1. They are combined into the general analysis and
compared with similar conditions. The moment approach is used to examine the nature of
the inequalities resulting from an alternative method due to Roskies and to Piguet and
Wanders; we discuss the advantages and disadvantages of this approach. Finally, applications
are discussed, to show the constraint that is present in these inequalities. The extension of
the method to the case of the m-m amplitudes with isospin is given in an Appendix.

I. INTRODUCTION

In this work we continue the study of the con-
straint placed on possible 7°-7° amplitudes by
crossing symmetry, positivity, and analyticity
using an approach developed previously.! As
pointed out by Roskies,? these constraints, ex-

pressed as inequalities involving only a finite num-

ber of the Balachandran and Nuyts® double partial

waves, a,, are most economically studied by using

a crossing-symmetric parametrization of the am-
plitude, and expressing all the inequalities in
terms of the coefficients of this expansion —this
ensures that all results will automatically be con-
sistent with crossing symmetry.

The emphasis in this work is on establishing a
method to discuss the “best” inequalities that fol-
low from the positivity of the absorptive part,

A(s, t), and of its derivative, dA(s, ¢)/ds, when
combined with crossing symmetry. This positivity
leads to positive combinations of partial waves and
their derivatives [the simplest is the familiar
fi(s)=0for 0 <s<4p? 1=2], each of which gives
rise to an infinite sequence of inequalities on the
a,’s. Many of these inequalities are redundant,

and by using theorems on moment problems, we
are able to pick out a “best” set of inequalities,
necessary and sufficient for the positivity of each
combination. In addition, the method organizes
the different inequalities, and clarifies the rela-
tionship between them, automatically picking out
the “best” set of these. We do not have to examine
the many redundant inequalities in detail.* The
analysis is general and works with equal facility
for all [>2.

Only constraints on the amplitude within the
Mandelstam triangle have been considered; in ad-
dition, the consequences of full positivity
[Imf,(¢) =0 for ¢> 4u® and all /] have only been
partially explored. As a consequence of this, our
final results are not the most constraining pos-
sible.®

In Sec. II we establish our notation, review as-
pects of our previous work,! and collect pertinent
results on the Balachandran and Nuyts expansion,®
on Roskies’s parametrization of a crossing-sym-
metric 7°-7° amplitude,® and on the relation of our
inequalities to moment problems. Section III ob-
tains and examines specific inequalities, utilizing
only simple positivity, A(s, {)>0, and a compari-
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son with other work is made. The importance of
full positivity, and the related derivative condition,
d"A(s, 1)/ds"= 0, is noted. This leads, in Sec. IV,
to a sequence of inequalities relating partial waves
and their derivatives, similar to those found by
Auberson, Common, Martin, and others.””® These
too can be analyzed in the same general fashion to
give inequalities on a finite number of ¢,,’s. Be-
cause of certain simplifying approximations made,
they are somewhat weak, although of an interest-
ing form. For tighter constraints, depending on
full positivity, we turn in Sec. V to an approach
developed by Roskies? and by Piguet and Wanders.'°
The moment-problem approach developed here and
previously’ is used to extend and refine their meth-
od.

Finally, in Sec. VI, the results are discussed and
applications indicated. The extension of the method
and results to all the isospin amplitudes of the 7-7
problem is given in the Appendixes.

II. NOTATION AND REVIEW OF PERTINENT
DETAILS

Throughout this section and the bulk of the paper,
we will discuss only the 7°-7° amplitude; the nota-
tionally more complicated case with isospin will
be considered in Appendix B.

We are studying the 7°-7° scattering amplitude

21

F(s, )= Y (2z+1)f,(s)P,(1+ s_1>, (2.1)
1=even

with energy units chosen so that 4u%=1. The par-

tial waves for even /> 2 are given by the Froissart-

Gribov projection

4 = 2t
f,(s)=m.£ dtA(s, f)Q;(T—l) (2.2)

S

=%'£:dzA(s,z)Q,(z), (2.3)

with z,(s)=(1+s)/(1-s). The ¢-channel absorptive
part A(s, t) has the expansion

Als, 0= 3 (21+1)Imf,(t)P,<1+ 72_3—1> (2.4)
1=even
which converges and is positive for ¢=>1 and
Osss<1.

This positivity follows from f-channel unitarity,
Imfi(£)>0, t>1, and the 7°-7° combination f,(¢)
=3f2(1) + 3£3(2).

For notational convenience throughout, we use
vy=1-sand z=2t/y-1; we also use the same let-
ter for the function A(s, t), and the corresponding
function of z, A(s,3(z+1)y)=A(s, z).

In order to examine s-f crossing symmetry
F(t, s) in terms of the partial waves, we introduce

the expansion over the Mandelstam triangle® (0 <s,
t<1):

Fi(s)= 35 2(n+1+1)(1 = $) PR 19 (25 ~ 1)a,, .
H (2.5)

By considering the coefficients a,, as elements of
a series of vectors b° with ¥} =a,_,,,, Balachan-
dran ef al.® reduced the problem of crossing sym-
metry to a series of matrix eigenvector problems,
°=X°b°, of dimension o +1:

a
b= 33 X[ by, (2.6)
=0
where the crossing matrix X° has o +1 orthogonal
eigenvectors E °(k), normalized by
a
E°(R)®E°(k) =) E](R)2L+1)E] (')

=0
=6kk' (2.7)

and with eigenvalues (-1)*. An arbitrary crossing
even amplitude will have a,,’s given by

¥= 3 cJER), 2.8)

k=even

with the coefficients given simply by
i =E°(R)®Db°. (2.9)

For the 7°-7° problem, we have in addition to
s-t crossing symmetry, also s-u symmetry, which
means in particular that =0 for odd [, the simul-
taneous eigenvectors will be some combinations,
E°(p), of the E°(k), with even k.

Roskies,® using an alternative approach, estab-
lished an explicit set of independent 7°-7° eigen-
vectors:

(ag) =(o=01(o+1+1)1
X j:ldz P,(2)(22 +3)°P7 (1 - 22)°2*
(2.10)

where p runs from {0/3} to [¢/2], resulting in n,
=[0/2] ={0/3}+1 independent eigenvectors. (We
use 2[0/2] to denote the nearest multiple of 2, not
greater than o; and 3{0/3} to denote the nearest
multiple of 3, not less than 0.) If ¢ has the value
0=(0,1,2,3,4,5,6, or 7), then n, has the value
n,=(1,0,1,1,1,1,2, or 1), respectively. Although
Roskies did not do this, we may use the set (2.10)
to generate the n orthogonal eigenvectors, E°(k),
k=0,...,n,-1, normalized according to Eq. (2.7).

An arbitrary crossing-symmetric n°-7° ampli-
tude may then be expanded in the Mandelstam tri-
angle as

ng =1
b°= 3 cGE°(p),

=0

(2.11)
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where the c‘; are completely arbitrary real num-
bers. For 0=0, 2 to 5, and 7, there is only one

eigenvector (and none at all for o=1), and the c}
may be obtained from integrals over the S-wave

alone, related to

a(,o:flds(l = 8)fo(s)PHO(2s - 1). (2.12)

For higher o, higher partial waves are needed to
determine all the ¢,, which may be simply obtained
using the orthonormality of E°(p):

¢, =E°(p)®D°. (2.13)

As shown by the author,® positivity and analyticity
constraints on the partial waves f,(s), derived by
Yndurain,!! lead to inequalities on the q,, that will
now severely restrict the allowed c,’s.

We consider the moments of f,(s), defined by

(%], =L1 ds(1 - s\ (s) . (2.14)

Provided k> [, the orthogonality of the Jacobi poly-
nomials leads to a finite sum over »:

r=1
[k], =3 Dy
n=0

R
- 35 67Dk, (2.15)
o=1

with the D%, given simply by

1
D, =2(n+1+ 1)] ds(1— s+ 1PRITLO (26 _ 1) |
0

(2.16)
Yndurain,!! considering a moment problem as-
sociated with (2.2), obtained the necessary and
“almost sufficient” conditions on the partial waves
f,(s) for A(s, z) to be non-negative:

ICD ) () MBI
i=o
for all » >0 and even [> 2, and with
Uy(s) =2, +(z,2 = 1)*2=(1+s+2Vs )/y.

For m =0 this implies f,(s) =0, and thus also [k],
> 0. Practically, of course, we cannot use the
sufficiency, since we would have to check an in-
finite number of conditions. For practical work,
we must also modify u,(s) in order to obtain from
(2.17) relations involving only a finite number of
the a,,’s. The author has shown' that (2.17) with
uo(s) replaced by any u,(s) <u,(s) for 0 s <1 is
also a necessary consequence of (2.3). A suitable
choice of «,(s) leads to positive moments

(2.17)

1
[]= [ as(1 - sy 26m 7 (s) (2.18)

involving only a finite number of a,’s. (We will
always use [k], without subscripts, to mean some
moment in general. The suppressed indexes, such

as I, m, and u,, will always be obvious for a spe-
cific case.)

We get in fact a sequence of moments [k], each
involving more a,,’s than the previous (higher o)
and using a u,(s) which is a closer approximation
to u,(s); as we will see, these closer approxima-
tions involving “more” of the positivity and analy-
ticity contained in (2.17) give more constraining
inequalities on the a,, .

One sequence of approximations is given by
u,(s¥=y", where n>-2. For n=0, u; <1; so
these do not go to » as s~ 1, while of course, u,
does. However, u,>=1/y or 1/y% do go to =, and
follow the behavior of u, much more closely. The
corresponding moments (2.23) for «,%>=y" are given
in terms of [#];:

[k]=i(;”)(—1>’[k+njl,+z,,

i=0

(2.19)

where, to ensure that the various sums on 7 in
[#’], are finite, k+nj>1+2j for j=0, 1,...,m.

A closer approximation than the above is given
by u,(s)=2z4(s)=(1+s)/y, or better still u,(s)
=(1+3s)/y; these involve even more values of a,,,
and have not been exploited in this paper.

Any choice of m and u, leads to a sequence of
moments [%] for k> some k,. These moments are
all obviously positive, from the positivity of 6™f,(s);
in addition, there are various combinations of mo-
ments that are positive, too.

Theorems relating to the complete set of inequal-
ities that may be obtained in this way from a mo-
ment problem are given by Akhiezer,'? and have
been used by Yndurain,!! Common,!3 and Griss.!
We restate two of particular importance here.

Theovem 1. The necessary and sufficient con-
ditions for the “truncated” moment problem,

1
sh=fdu¢>(u)u”, k=0,1,...,m-1
) (2.20)
s,,2f du ¢ (u)u",
1]

to have a solution with non-negative ¢(«) on
0 <u <1 are that for even n=2m, the determinants

SO sl e sk

Sy
DO, k)= |... ’
Sk Sar
(2.21)
(s, =s,) (85~ 83) *** (Sp_y —Sp)
AD(1, k)=
(Sp-1—Sp) * (a1 = Sz2)
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be positive, while for odd »=2#+1 the determin-
nants

S, Sy *** Spey

D(l, k)= ees )
Spa1 “* Sops1
(2.22)
(So—Sl) (81—32) o (sk_sk+1)
AD(0, )=
(Sp—Sps1) *+* (Spp = Sppe1)

be positive (for all & such that m > k> 0).
Theorem 2. For a moment problem

$n = Jy u"¢(u)du, in which n—, alternative (Haus-

dorff) necessary and sufficient conditions for ¢(u)

to be non-negative on 0 <% <gq are

o™s, = Z (ZZ) (=1)*s,,a"*>0

k=0
(for all » and m > 0, and a the upper limit of the
moment integral).

The importance of Eqs. (2.21) and (2.22) is that
they are sufficient, and are hence the “best” nec-
essary conditions that may be derived. Notice
that Eqs. (2.23) are also necessary for the trun-
cated problem, but are not sufficient, because
they are based on examining only a certain class,
u"(a - u)", of all the polynomials which are positive
on [0,a]. Theorem 1 uses a theorem of Lukacs on
the representation of the most general positive
polynomial in the interval 0 sw <1. (See Griss!
and Akhiezer.'?)

The inequalities derived from a given moment
problem, with positive weight ¢(u), lead to a char-
acteristic region in the space of the moments {s,}.
In Sec. ITI we obtain a number of moment problems,
each following from positivity -analyticity, and re-
quiring up to a certain maximum o¢; the weight
functions, although different, are related by cross-
ing symmetry and lead to relations between the
corresponding sets of moments, best displayed by
relating all moments, through the a,’s, to the
crossing-symmetric parameters ¢} . Our problem
is then to superimpose the various regions, dis-
torted and rotated by crossing symmetry, as
shapes in the parameter space {c‘;}; the resulting
allowed region for the parameters ¢ is then the
intersection of all the superimposed regions, and
will be smaller than any separately. It is this as-
pect of rotation and distortion by crossing sym-
metry that makes it important to study o (and
hence ) higher than we actually intend to compare
with a model; the projection of the resulting “body”

(2.23)

onto the space of dimension that we are really in-
terested in will be smaller than if we had consid-
ered only this subspace at the start. This is a con-
sequence of the crossing, and not of a single mo-
ment problem, as we will now see.

The moment problem and the resulting inequali-
ties are homogeneous in ¢(u); since s,>0, we
study the ratio »,=s,/s, and the characteristic
“positivity” region in the space {r,}, where of
course 7,=1.

For n=1, Theorem 1 gives the inequalities », >0
and v, -7, 20, i.e,

1>2%,20. (2.24)
For n=2, the inequalities are

7020, ry,-7,>>0, and 7»,-7,20,
ie, (2.25)

2
VIV 27,

which is displayed in Fig. 1. Notice that the pro-
jection on the 7, axis is just (2.24).

If we use Theorem 2 with a=1, we are led instead
to the inequalities for n+m <2:

7,20, »,20, 7,20, r,—-7,20,
2.26
v, =720, and 7»,-27,+7,>0. ( )
All except the last one are included in (2.24) and
(2.25). In fact, as shown by the dotted line in Fig.
1, 1-2y, +7, is tangent to the parabola of (2.25)
and leads to a slightly larger region - it is not as
“tight” a constraint. This is true in general; the
linear constraints given by Theorem 2 reproduce
the content of the nonlinear determinants only as

0.5

FIG. 1. The basic positivity region in (r;,7,) space
for the moment problem 7, =fé¢, @)u"du , with 'ro=f(‘,¢(u)du
=1. The solid lines and hatched region result from the
determinants of Theorem 1, while the dotted line and
extra stippled region is that due to the weaker Hausdorff
conditions of Theorem 2.
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the envelope of an infinite sequence of tangent
lines — hence the advantage of the determinants.
For n=3 the inequalities are

7,20, v7,—r,220, 1-»,20,
Q=7 =7y = (r, =1, =0. (2.27)
Since they imply that », and 1 -, are positive, we
obtain

(ri=7) 752

Vp——— 2y, >

. 2.28
1-7, o (2.28)

The projection onto (r,, ,) space is then obtained
by eliminating (r,), leading to

(ry=r)ry=7®)=0 (2.29)

which is again the region specified by (2.25) (since
r,=7,20).

III. EXPLICIT INEQUALITIES FOR 0 <5, USING
POSITIVITY AND CROSSING SYMMETRY

In this section we analyze the inequalities that
involve a,;’s with n+1=0 <5, arising from the ap-
plication of simple positivity, A(s, t)>0, to the
crossing-symmetric n°-7° amplitude.

For o <4, we may use only the double partial
waves ag,, a,, and a,, for the D(I=2) wave, and
ay, in the I=4 wave. The coefficient q,, is present
only in the S wave, and is not related by crossing
symmetry to any wave to which our positivity in-
equalities apply.

The moments [k], [defined in (2.14)] that we may
evaluate are then

1=2: [2]2: [312; [4]2y
1=4: [4],. (3.1
Using the explicit values of D¥, from Table I, we
then have
[2Jz )
[3}2 = ?;'(6002 - alz) ’
(4], = %(27ay, - 8a,, +ay,),
[4]4 SQoy -

Our conditions are all homogeneous in f,(s), and
hence in the q,,’s, and because [2],=ay, >0, we
will divide by ag, to “normalize” the moments,
leaving undetermined the coefficients a,, and a,.

In order to compare our results with those of

Roskies,? we will not use the {c$} as basic vari-
ables, but an alternative set:

(3.2)

Xy = =1/ Gopy Xy = Upy/ gy - (3.3)

Crossing symmetry, using (2.10), then relates
a,,’s with the same values of 0 =n+1, enabling us
to relate ay, to a,,; in addition [see discussion after

Eq. (2.11)] we may express all our variables (for
o0=4) in terms of the S-wave components, a,,:
Age = 'zs'azo’ Ay = —Uzgy Qa3 = Agg = :;)'aqo: so that

PR / _ 5 /
Xy = =03/ Aoy = 2030/ 0305

(3.4)
/ 5 /
Xy = Uy /gy = Aoy /Agp = 040/ g -
The moments become very simply
[2]z =1 )
[3]2 = %(6 +X1),
(3.5)

[4],= %27 +8x, +x,),
[4],=x,.

We now write down the best inequalities for these
moments, following from the constraint of positiv-
ity on the combinations [%] in (2.19), for a given
l,m, and u,(s).

For /=2, m=0, [k]=[k],. There are three mo-
ments, and so we apply the determinantal inequal-
ities of (2.21):

(2],=0, (3.6a)
[2],(4), -[3],(3],>0, (3.6b)
(3],-[4],=0. (3.6¢)

It is interesting to note that these three relations

TABLE I. Values of D?, for o up to 5.
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already contain all the “chains,” [k]>[k+1]= [k +2]
>...>0, found in a previous paper.! In particular,

since [2]> 0, we see that [4]>[3]?/[2]>0; hence
[4]=0, [2][3]>[2][4]>[3F, so that [2]>[3] giving

(2],>(3),>[4],>0. (3.7)
For /=4 and m=0, [k]=[k], and all we have is
[4],>0. (3.8)

For 1=2, m=1, and u*=y", [k]=[k], ~[k+n],
leading to a set of relations:

n=2, [2],-[4],20,
n=1, [3],-[4],>0, (3.9)
n=0, [4],-[4],>0.

The chain (3.7) immediately shows that n=0 gives
the “best” constraint; it corresponds to u,(s)=1,
which is the closest of three to u,(s), confirming
our feeling' that as u, approaches u, more closely,
more positivity and analyticity are used, giving
tighter inequalities.

Expressed in terms of the x,, the best inequal-
ities are

+(6+x,)> (27 +8x, +x,), (3.10a)
(27 +8x, +x,) = [+(6 +x,) 7, (3.10Dp)

$

\N

&

o

f

\

X = =01/ 00p

} |
T T
-6.0 -4.0

FIG. 2. Allowed region of x;= —ayy/ay and x, =ay/a g,
determined by positivity and crossing symmetry for
o=4. The solid lines @, b, ¢, and d), corresponding to
simple positivity, are given by Egs. (3.10). In addition,
the dashed lines, e and f, derived from Roskies’s
“one-zero” method in Sec. V, are shown for complete-
ness.
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x, 20,

(3.10¢)

(2T +8+x,+%,) = x, . (3.104)

The corresponding curves, labeled a, b, ¢, and
d in Fig. 2, delineate the allowed region. We rec-
ognize the characteristic “positivity” shape (lines
a and b for 1=2 positivity); it is distorted and ro-
tated, because we have reexpressed the basic mo-
ments [%], in terms of the natural crossing-sym-
metry variables, x;. Lines c¢ and d are each a sin-
gle line from separate moment problems, and their
characteristic regions only appear in a higher-
dimensional space (x;, ¢ > 3); superimposed on the
above [=2 positivity region, they considerably re-
strict the allowed region —a consequence of com-
bined positivity and crossing symmetry. Figure 3
displays this allowed region more clearly.

The lines b and ¢ were previously found by Ros-
kies? using a different, more complicated method
based on full positivity [Imf,(t) =0 for all >0, and
t>1]. In addition, he obtained lines e, f, and g,
shown dotted in Figs. 2 and 3, which restrict the
allowed region even more. This improvement uses
more than simple positivity, and the method be-
comes rapidly more complex as higher ! and o are
considered. Previous to our study, these lines of
Roskies were the best found for ¢ <4. Roskies’s
method will be discussed and extended in Sec. V,
showing the connection with our inequalities;
phrased in our “moment” language, it becomes
simpler to study, and we find a slight improvement
to line g, not found by Roskies.

These extra lines, a consequence of more than
simple positivity, are shown in order to compare
with the improvement that we now find when we
consider the extra inequalities that arise when we
include o up to 5. (This is the largest value that
still permits expression of the relevant a,,’s in
terms of a,, of the S wave alone.) We will intro-
duce an extra dimension, x,, and project the new

%o S5 30 -o05 0.0 05 - 10
X)7 =012/ 00

FIG. 3. An enlarged view of the hatched region from
Fig. 2. Lines b, ¢, and d correspond to those of Fig.
3, as do e and f. The extra dotted line g is that due to
Roskies, while an improved line #, shown dot-dashed,
is also a consequence of the 0=4, “one-zero” method;
it is derived in Sec. V, Eq. (5.38). The “best” region
is that contained by lines ¢, f, &, and b.
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region onto the (x,, x,) subspace for comparison
with previous results.

We define x, = —a,,/a,,, and crossing symmetry
for 0=5 gives a,, = a,, = —3as, SO that the new mo-
ments (5], and [5], become

[5], = 55(220 + 88x, +20x, +2x,),

(6],= $r(10x, +x;) .

(3.11)

We obtain the best inequalities from the determi-
nants of (2.27). For [=2, m=0:

(2],-[3],>0, (3.12a)
([2]2 - [3]2)([4]2 - [512) - ([3]2 - [4]2)2 = 0, (3.12b)

(3],>0, (3.12¢)
(3L,[5], - ([4],)=0. (3.12d)
Again the chain
(2],>[3],>[4],>[5],>0 (3.13)
is obvious. For [=4, m=0:
[4],-[5],>0, (3.14)
(5],>0. (3.15)

For 1=2, m=1, and u?=y", [k]=[k], - [k +n], with
n=0, we have

(4], -[4],>0, (3.16a)

(5],-[5)=>0, (3.16b)
and n=-1 gives

[5],-[4],>0. (3.17)

Again u,=1/y is the best approximation to u, per-
mitted here, and in fact, the chains [Eqs. (3.13)-
(3.15) and Eq. (3.17)] imply (3.16) as well.

In terms of the x,;, the best inequalities are then
3+(1-x)=0, (3.18a)

1-x <165 —88x, = 65x, — 12x3>

7 1980

_ (27 -20x, - Tx, 220
252 ’

(3.18b)

i(x,+6)=0, (3.18¢)
X1 +6<220+88x1+20x2 +2x3> _(27 +8x; +x2>2 -0

7 330 36
(3.18d)
ic%lﬁ >0, (3.18e)
10x121+x3 >0, (3.18f)
220+88x§;020x2 +2x3 -x,>0. (3.18g)

| v

These may all be expressed in the form

U(xy, %) 2 x3= Ly(xy, x,), i=1,...,7 (3.19)

where we set U,(x,, x,)= += [or L,(x,, x,)= —] if
the inequality does not give an upper (or lower)
bound to x,.

These inequalities, corresponding to a number of
different moment problems are combined through
the crossing-symmetric expansion by evaluating
the bounds

Z yplxy, %) 2 X3 = Z 40 (%3, %), (3.20)
where
Zyp= ,:Ifl'.i'n”,, Ui(xy, %5),
(3.21)

Z 4n=  max , L(x,, x;) .

These upper and lower bounds to x, Z,,(x;, %),
and Z,,(x,, x,), are shown in the contour plots of
Fig. 4. The boundary corresponds to points (x,, x,)
for which Z,(x,, x,) = Z 4,(x,, x,); the points outside
of the plotted region violate inequality (3.20). One
must also realize that although Z,=Z 4, on the bor-
der of the plots, the “falloff” may be extremely
rapid, particularly along the upper edge, and is
not visible in the contours. [This falloff is even
faster than the rate of change near the edge marked
-0.3 in Fig. 4(a).] The resulting curve in (x,, x,)
space is the “projection” of the three-dimensional
body onto the (x,, x,) plane, and may be compared
with Fig. 3; the major improvement over o=4 oc-

z
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| 1.
1.0+ g =5 0
! (SIMPLE POSITIVITY)
S
S
N
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" b 0.4
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L il L L L L
0% 555 S0 %° 05 0.0 05 1.0
X = =02/00p
Zgn (b)
1.0+ o =5 1.0
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~
N
& os
"
N
>
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220

FIG. 4. (a) and (b): Contours of the upper and lower
bounds to x3, Zyp, and Zyy, for the case 0=5, following
from simple positivity and crossing symmetry. In
particular, notice the ‘projected’” improvement near
xy=-1.5, as compared with Fig. 3.
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curs near x, =-1.5, and in a lowering of line d.

It is these “projected” improvements, a conse-
quence of positivity in higher partial waves re-
flected back to lower waves by crossing symmetry,
that makes it important and useful to go to as high
an [ as possible.

If we were to now examine o=6, which would ne-
cessitate an extra two parameters, x, and x;, an
extremely large number of extra inequalities would
be found. In particular, we could use u,*>=1/y?
which is even closer to u, and we anticipate a fur-
ther improvement to line d in the projection onto
(%, %,).1

We notice from Figs. 2, 3, and 4 that the point
x%,=1, x,=1, and x,=1 continues to be an allowed
point, and does not seem to be affected by the pro-
jection from higher-dimension spaces; this follows
from the fact that we are only considering positivity
in its simplest form, A(s, t)>0, and not full posi-
tivity. Examining the inequalities (2.21) and (2.22),
we see that a possible solution is s, =s, for all &.
In terms of the moments [%], that we introduced in
(2.14) this means that [k], =[], for all 2> 1. Our
choice of x; then implies that this point corresponds
to x;=1, i.e., double partial-wave amplitudes, a,,
of about the same magnitude, and not dropping off
rapidly as o increases. (This behavior is found in
many model calculations.®''®) Note, too, that even
the condition 6™f;(s) > 0 does not require that the
a, drop off, since this decrease f,,,/f, ~ 1/u(s)
as s—1is simply a consequence of the expected
threshold behavior f,(s)~(1 -s)’.

The point that is missing is some “smoothness”
information on the f;(s) in the interval 0 <s <1,
related to the “smoothness” of A(s, ). Using only
simple positivity, the f,(s) could oscillate wildly,
contributing to a,, for very large 0. In fact, A(s, ¢)
is not an arbitrary positive function in the integral
(2.2), but has many smoothness properties.”=®
These can be seen in the expression (2.4), following
from the positivity of Imf,(¢) and the smoothness of
P,(1+2s/(t-1)).%¢

We are thus led to consider relations involving
derivatives of f,(s); this will be done in Sec. IV,
while Roskies’s conditions, incorporating this
smoothness directly by use of full positivity, will
be discussed in Sec. V.

IV. DERIVATIVE CONDITIONS

In this section we will derive and examine a num-
ber of inequalities that are a consequence of more
than simple positivity, A(s, /)= 0. It can be shown
that not only is P,(1+x) >0 for all / and x > 0 [this
leads to positivity via the expansion (2.4)], but also
all the derivatives are positive”

d"P,(1+x)

~ 20 for x>0and 2=0, 1,....
dx

(4.1)
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Using the expansion (2.4), we may then show that

d—‘f}s%’i)aomr 0<s<1, t>1, and n=0, 1, ... .
(4.2)

This derivative condition is not sufficient to ensure
the full positivity [Imf,(s)> 0 for all Zand t>1], al-
though “almost” so,’” but it may be used to derive
many valuable inequalities. In particular, we are
interested in relations similar to those for the

7° S wave’™®

%=f0'(s)s0for 0<s5<0.2818, (4.3)

a(s)fy'(s)+fo(1 =s)=fy(s) <0 for 0.65 <s<1
(4.4)

[where the prime denotes the derivative with re-
spect to the argument, and a(s) is positive for
0.65 <s <1, but not of simple form], and for the
D wave®

f,'(s)sO0for 0.4<s<1. (4.5)

The derivations of Eqs. (4.3)—(4.5) are not at all
simple, and in addition to (4.2), they utilize the
crossing symmetry of the full amplitude, F(s, f).

We will now derive a sequence of similar condi-
tions, using only (4.2). No crossing symmetry is
used, and consequently the conditions may be
somewhat weaker than the inequalities (4.3)—-(4.5).
They are valid for all /> 2, and amenable to the
systematic approach developed in Secs. II and III
for 5™f,(s) = 0.

The important point that leads to 6™f,(s) > 0 is the
fact that we can express the f,(s) as “moments” of
a positive function B(s,w),*'*

f,(s):fo( dww I TUB(s,w) for 0<s<1.  (4.6)
uUopls

Application of Theorem 2 (Sec. II) then leads to the
complete set of inequalities 6™f, > 0; any function
m,(s) with this kind of positive-moment represen-
tation, may be processed to give inequalities simi-
lar to those found previously.

In order to derive (4.6), we make use of the rep-
resentation for the @,(z),*'!%18

Q;(Z)=j;w(—b‘2—ibl—)1,3[z+(zz—l)l/zb]"'l. (4.7)

Defining w = z +b5(2* - 1)*/? and u= z + (22 - 1)'2, this
becomes

o w1
@,(2) —j:; dw (w? = 2wz +1)172

so that (2.3) becomes

(4.8)
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2 e 0 w-l-l
f’(s)=;,£ dzA(s,z)j; dw ———(wz—2w3+1)”2

0

=f dww™'"*B(s,w), (4.9)
uo
9 w2+ /2w
B(s,w)=-n-f dzA(s, z)/w? -2wz +1)2,
20
(4.10)

where

uy=2o+ (22 = 1)2=(1+s+2Vs )/(1=-s). (4.11)

Equation (4.9) is the desired moment representa-
tion, to which Theorem 2 may be applied after a
change of variable w=1/Vx . The resulting condi-
tions are necessary and sufficient for B(s,w) to be
positive, but because of (4.10), only necessary for
A(s,w) to be positive. [If A(s, z) does not oscillate
violently, the conditions are “almost” sufficient.]
Replacing u,(s) by some u,(s) < u,(s) leads to trac-
table,! necessary conditions for A(s, z) to be non-
negative.

Derivation Conditions for all [ > 2:
A(s, t) and dA(s, t)/ds Independent

We now work with a function

g,(s)=§1ryf,(s)=]: Als, 0Q,(2)dt, (4.12)
and consider (recall y=1-s, z=2¢/y-1)
dg,(s
gi(9)= B sryr(5) - bari(s)
- f AD (s, 1@, (2)dt
1
© z+1 d@,(z)
+ | dtA(s, t) TR (4.13)
where
d _dz d _z+1 d w_ 4A
ds ds dz y d andA—dSBO.
(4.14)
Now
dQ,(z) _ = db 1ep dw
o (z+1)£ Gopm e @)

with dw/dz=1+2zb(2? - 1)"?, so that the second
integral in (4.14) is clearly negative.

(1+s)(1+1)
2s(1-s) &

1

vg = g<(1+1)(1 +8)—2s

°“ . db (I+1)A [1+s zw-1
= d[f &, -i=2| 4D _
j; L BE-1ypr? [A wraTs \(zs YT

If we assume that A(s, ) and A® (s, ¢) are indepen-
dent positive functions [in fact they are correlated
through (2.4)], we consider

k(s)g,(s) +g,"(s) = fl " atA(s, 19, (2)

« z+1 dQ
+J; dtA(s, t)(kQ,+ 5 d—g’-)

(4.16)

as a possible candidate for a positive-moment rep-
resentation: k(s) should be some function, depend-
ing on / and s, simple enough to lead to a tractable
set of inequalities. In fact, all we have to show is

that

z+1 dw

y 4

k(sw - (1+1)

=

for allz=zyand b=1. (4.17)

Introducing %= yk/(l1+1) and » = (2* = 1)*/2, this is
simply

R(z+7b) = (z+1)(1+2b/7)=0

for all b and any z2>2,. (4.18)
As b— o, we require
—_(z+z 2z(z+1) 1 1
et e T e sl (419)

which has its maximum at z=2z,(s), so that we
choose

1 zy _1+s
z,=1 z,—-1  2s

k=14 (4.20)

This turns out to be sufficient for the case b=1,
too, since then we show that

(z+1)(r+2)  z+1
vy +z)

T -1

z+1\7? A
= < <R.
<z—1> ((2_1)2> k

2 5) (1= )7,(9)

(4.21)
So with
U+ +s)
k(s)= “2sd-35) ’ (4.22)
we obtain as moments of a positive function
(4.23)




4 ANALYSIS OF THE

Multiplying through by some factors, we see that
fia(s)=[(1+1)(1 +s) =2s]f,(s) +2s(1 = s)f,"(s)
(4.24)

may be used to generate a sequence of positive
functions

5", (5) = 2( YW ) (4.25)
For example,
fia(s)=0, (4.26)

which is very similar to the expressions (4.3)-
(4.5).
In fact, for 1=2, (4.26) becomes

(3+8)fy(s)+2s(1=s)f,'(s)=0,

which unfortunately does not require f,’(s) to be
negative, although it does give a rather interesting
bound to a negative £,’(s).* The reason that this
result is so weak is that we did not use any relation
between A(s, #) and AY(s, #); in fact, we have over-
estimated the “amount” of positive g;(s) that must
be added to cancel the negative part of dg/ds.

(4.27)

Conditions Using Connection Between
A(s, t) and Al(s, t)

Since P,(1 +x) may be expanded as a polynomial
in x with positive coefficients,® it is obvious that

dP,(1
—lt—(i-fﬁ > %[P,(l+x)-—P,(1)J for x>0and all [.

(4.28)

When combined with the expansion (2.4), this
leads to the corresponding inequality

dA(s,t) _ 1
_'le— S[A(s,t)-—A(O,t)], Oss<1, t=1.
(4.29)

Using this in the above expression (4.16), and not-

J

2shy(s)=) 2(n+1+1)(1-s)a, (n [2y(2n+a) -

n=0
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ing that @,(z) is a decreasing function of z (i.e., de-
creasing function of s for fixed #), we finally con-
clude that

1 (I+1)(1+s)—-

£(0)+ 21 -5)

2s(1-5s)

g (s)+g'(s)

(4.30)

has a positive-moment representation. This ex-
pression, although “better” than (4.24), involves a
constant g,(0)=37f(0). This constant cannot be han-
dled usefully in our approach, because it does not
use the explicit, full, partial-wave amplitude.

Analysis of Derivative Conditions in Terms of a,;

We now proceed to analyze the consequences of
these new expressions, using the expansion (2.5).
With x=2s -1, the argument of the Jacobi polyno-
mial, we obtain

(1=9)f,’(s)==1f(s)+h(s) (4.31)
with the new function
I (s) Z 200+ 1+ Dy (1= 5V 4 peo(as -
:Z% 2(n+ 1+ 1a,, (1 -5s)2(1 - s);_xp<g.o)(x)] .
(4.32)

Using now the relation for the derivative of the
Jacobi polynomial®®

d P (x)

2n+a)(1-x2) o

=nla - (2n+a)x|P@O(x)+ 2n(n + )P0 (x),

We then define moments of 2s#,(s), analogously to (2.14):

1
[kJmEj; ds(l -s)*"(2sh,), k=1

Rl1-1

= 3 2nay (D3t +
n=0

n+2l+1 n+l+1
2n+nl+1 n+l Dy

+1 =1
= Z nlanl .

(4.33)
and the fact that
1-x=2(1-35s), 1+x=2s, x=(1-2y), (4.34)
we obtain
) 2n(n+a) (0.0
2n]P{(x) + g Do) (4.35)
n2 lanl
2n+21+1 (4.36)

(4.37)
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Values of ,D%, for ¢ up to 5 are given in Table II.
From (4.31), we see then that the moments [k],’ of
2s(1-s)f(s)=2(1=)yf,"(s)
= =2U(1 - y)f,(s)+[2sh,(s)] (4.38)
are
[k, ==2U(k], - [ +1],)+[%], ,

for k>1. (4.39)

Consequences of Our Derivative Conditions

We now examine the content of (4.25), which we
have shown to be valid for all s in(0, 1). Using
(4.31), f, ,(s) becomes

fia(s)=(1+1)(1 = s)f,(s) +2shy(s), (4.40)
leading to moments
ARl =+ D)[k+1], +[R], , for k=1 (4.41)

which obey the usual determinantal inequalities:
(for 1=2, 0=4)

3], = 4 (81 = 32x, - 13x,) > 0,
(2], = ,[3], = sk (81 = 172x, +91x,) > 0.

(4.42a)
(4.42b)

These lines are not shown, as the improvement is
imperceptible; (4.42b) does produce a slight im-

TABLE II. Values of \D¥, for o up to 5.

1=0
n\ & 0 1 2 3 4
0 0 0 0 0 0
1 2 5 T T F
2 0 -5 ~% -+ A
3 0 0 T S
4 0 0 0 -5 -
5 0 0 0 0 #
1=2
n \ k 2 3 4
0 0 0 0
3 0 0 &
1=4
n \k 4
0 0
1 2

L. GRISS 4

provement in the region x, =~ 1.
For 0=5, we have the additional moments (for
=2 and [=4)

1[4]2 = 3[5]2 +[4]2,1

2o 34 - FN - TN, (4.432)
1[4]4 = [5]4 +[4]4_1
= '1![(509(2 - qua); (4.43b)

which give rise to the set of inequalities for 7=2
and m=0:

1[2]2==‘,—(18—11xl)20, (4.44a)
1[2]2 1[4]2 - (1[3]2)2 = %(18 -11x,) - §x1 -8
- 155(81 = 32x, — 13x,)2>0,

(4.44b)
(8L = 1[4 =% - 8x, +dx, + x>0, (4.44c)
For I=4 and m=0,
4], =4 (50x, - 17x,)> 0, (4.45)
while /=2, m=1, and u, =1 give
A4l = [4),=2 -4, - 8x,+Ex,>0. (4.46)

If we now combine these derivative inequalities,
with those found previously for o=5 [Eq. (3.18)],
and reevaluate the bounds on x,, Z ups and Z,,, we
discover a marked improvement shown in the con-

Zyp (a)
|.O,L o =5 4
(DERIVATIVE METHOD) i
N 0.6 %
% + /\ 1
N 0,5+ a
© t 04 |
< 3 ( 0.2 |
LL AN -0.3 {
0.0 S| 0.0 ! PR |
220 -5 -1.0 ~0.5 0.0 05 0.0
X| = =013/0g;
Z, (b)
|.Ok =5
L (DERIVATIVE METHOD)
8 i
S
~ {
N+
& 05+
" r
N
> F
0055 0 %9 =55 0.0 05 0
X| =70, /oO2

FIG. 5. (a) and (b): Contours of the upper and lower
bounds to x3, Zy,, and Zy,, for 0=5, using simple
positivity augmented with the derivative conditions of
Eq. (3.18). Compare the improvement in Zy, and the
“projected” improvement with Fig. 4 and Fig. 3,
respectively.
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tours of Fig. 5. In particular, the (x,, x,) projec-
tion is improved near the vertex at x,=1, x,=1,
although not as much as by Roskies’s lines, and
the lower bound Z,, is considerably improved.

V. ROSKIES’S ONE-ZERO METHOD AND
EXTENSIONS

We are able to derive some additional constraints,
following from more than just simple positivity
A(s, t) =0, by using an alternative approach, for-
mulated by Piguet and Wanders!® and by Roskies.?
In order to obtain stronger inequalites using this
method, we will have to satisfy certain subsidiary
conditions related to the positivity of certain “test”
functions. This will prove to be a disadvantage,
hindering a simple application of the method to
higher values of 0. Nevertheless, use of the mo-
ment approach developed in the previous sections
will enable an organized, systematic analysis of
these new conditions, and allow us to combine them
simply with our previous results.

With (2.4) reexpressed in the form

A(s, =313 B (1P (x),
g (5.1)

2s
x=x(s, t)= 1 +1,

where §3,(1)= 0 for ¢> 1 from {-channel unitarity
(this is “full” positivity), and the definitions of
fi(s) and a,, given by (2.2) and (2.5), we express

- : 21
a,,,=£ dt\; B,,(t)j; ds(l-s)‘Q,(l_s -1)

(5.2)

x P25 —1)P,.(x)

(where a =21+1).
We define [n] for an arbitrary set of numbers
{nm} by

[UJ="Z’> nnlanl . (53)

In particular, our moments (%], are given with
N = D%, for fixed I and k by

(%], = j:rdtz By(1) j:ds V*Q,(2)Py(x) .
T

We now define the functions “generated” by the set
qnl )

(5.4)

B =3y [ ds(1 - $)Q(2) PEO@s = DP()
nl 0

(5.5)

The method then proceeds by observing that (5.2)
and (5.3) may be considered as a generalized-
moment problem, where the function that is to be
positive is §;(f) and the moments are a,, . A nec-
essary, and sufficient condition for g,(¢) to be pos-

itive for all ¢>1 and all even 7,2 is that [n]>0
for all B! (t)>0-i.e., all possible sets of {n,,} are
to be found that give positive Bi,'(t). The resulting
inequalities are [n]= 0.

If n,, = D%, which generates [%],, then the cor-

responding function
1
BL(#)= L ds(1 = $)Q,(2)P,(x) (5.6)
is obviously positive, since z=>2z,>1, and so
Q,(z) = 0; likewise for the P,(x). This then implies
that [k], > 0; certain combinations of the @,(z), giv-
en by %
m
Q@)= 3 (7)Y 1@y @) (5.7)
i=o0
for any u, <u,(s)=z,+(z,2 — 1)*/3, are positive, too.
In fact, for any polynomial, P(s), positive in (0,1),
the corresponding B%,(t) is positive;
1
B',;,(t)=fo P(s)(1 - $)'Q,(2)P,(x)ds>0.  (5.8)
Expanding P(s) in terms of y=1-s5, P(s)= Y, P,»",
leads immediately to ¥, P,[k], > 0. The best in-
equalities are then given by Theorems 1 or 2, ex-
actly as in Secs. II, III, and IV.

Roskies? observed that it is not necessary for the
argument of the integral in (5.8) to be positive, to
ensure that B%,(t) be positive for all Zand ¢> 1.

The product @,(z)P,.(x) tends to emphasize values
of s near 1, and so the polynomial P(s) may be neg-
ative in part of the interval, provided it is positive
near s=1. The exact statement of these properties
is given in the following theorems, somewhat mod-
ified from those given by Roskies, and the proofs
follow.

Lemma. 1If g(s)is an arbitrary function, and
I(s) an increasing function, with I(s)= fosi(s’)ds'
+1(0), where i(s) and I(0) are non-negative, define
the function G(s):f:g(s')ds', G(0)=0. Then the
integral

J=f1g(s)1(s)ds
-6 | " Gls)ils) ds

=G(1)I(1)—j;lc(s)i(s)ds

> [G(1) - maxG|I(1) +maxGI(0)
= 0 if the maximum of G on (0,1) occurs at s=1.

We then notice that if g(s) has but one zero in
(0,1) and g(1)= 0, then the maximum of G(s) occurs
either at 0 or at 1; simply test G(1)> G(0)=0. This
leads immediately to Roskies’s theorems.?

Theovem 3. 1If h(s, t) has but one zero in 0 <s <1,
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and h(17, #)>0 for all /> 1and if [, A(s, {)ds >0 for
all £>1, then ['A(s, )P,(1+2s/(t=1))ds >0 for all
land (= 1.

Proof. P,(1)=0 and P,’(1+x)>0; identify with
I(s). Similarly identify (s, t) as g(s). Then G(1)
= f h(s,t)ds = 0 is the condition of the above lemma.

Theorem 4. If k(s) has but one zeroin 0 <s <1,
and (1) >0, and if f k(s)Q,(z,)ds = 0, then
f k(s)Q,(2)dz >0 for all 1> 1 (z=2t/y -1 and
2,=2/y - 1).

Proof. Roskies has shown that Q,(z)/Q,(z,) is an
increasing function of s for ¢ > 1;2 identify this with
I(s), while k(s)@,(z,) is then g(s). The condition is
that of the above lemma.

The lemma and above proofs indicate that we
may, in fact, consider functions with more than
one zero. Possible extrema of G(s) are at the
zeros of g(s), and at s=0, s=1; some are minima,
but the others are to be checked; the condition is
then f g(s)ds =0 for all s, that are maxima of G.
[Some resultmg “two-zero” conditions have been
investigated by the author, but the resulting in-
equalities, similar to (4.42), are too slack to jus-
tify the extra work required.]

The problem of choosing a set of n,, that will give
a polynomial with a zero in it, yet still ensure that
the corresponding B’;;,(t) is positive, is now most
easily expressed in terms of our moments. The
content of the condition, as well as of the resulting
inequalities, becomes extremely transparent.

We choose a polynomial R(s) that automatically
satisfies the “one-zero, positive near s=1" con-
dition of Theorems 3 and 4 as

R(s)=(a - y)P(s), (5.9)

where P(s) is any positive polynomial, and O sas1
to ensure that there is a zero between 0 <s<1.
The function that must be positive is then B%,(¢);
by setting

(s, ) =R(s)y'Q,(2) (5.10)

(the extra factor of y' ensures that only a finite
number of a, enter), Theorems 3 and 4 assure us
that the inequality

(R),= [Ty Bu0) [ ds Y R(9IQ.(2)
-

xP,(1+2s/t-1)=20
(5.11)

is true provided

1
(R(s), sj; ds y'R(s)Q,(24) > 0. (5.12)
(Note that ( ), is an average over a known function,
while [ ], is essentially a functional with unknown
weight function B,/(#).) The linear character of
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both operations () and [ | then shows that
alP(s)]; >

provided
alP(s)),; = (yP(s), .

The expansion of P(s) as 5} y'P, shows the con-
nection with our moments [%], =[y*"],,

[P(S)L:? Pili+1);.

[yP(s)], (5.117)

(5.12")

(5.117")

The average ( ), is easily calculated in terms of
the numbers

1
A,’Ef ds s*v'Q,(z,),
1]
where for /=2, the expression is extremely simple:

AS=2/[(p+1)(p+2)(p+3)]. (5.14)

The resulting averages (y"), for /=2 and 4 are given
in Table III.
The simplest polynomials lead to lines found by

(5.13)

Roskies® previously. If P(s)=1, R(s)=(a-y) which
leads to the inequality

a[y’l, =[y*l,=alt], = [1+1],>0 (5.15)
and the condition

a(y®), =, . (5.16)

Inequality (5.15) is clearly an improvement over
the “chain” that we had previously, and we clearly
want a as close to 0 as possible; this is given by
a=(y,/3%), = (5.17)
using Table II. The inequality a[2], >3], is then
B24+6+x), ie, x,<&. (5.18)

This is a considerable improvement over x, <1,
found from [2], > [3],.
If P(s)=y, and we determine a by
a=(yH,/(y", = $& =0.944,
then the inequality

a[3], - [4],=0.9441(6 +x,) -

(5.19)

2 (27+8x,+x,)=0

(5.20)
leads to line e in Figs. 2 and 3, a clear improve-
ment over line ¢, which corresponds to (3], = [4],.

If P(s)=s=1-y, and we determine a by

<)’>2 - <y 2>2
=2 "2 =0,840 5.21
ORI ’ 5-21)
then the inequality
=[3L) - (8], - [4))
=0.120(1 - x,) — 55 (27 = 20x, = Tx,) = 0,

(5.22)
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TABLE III. The averages (y"), for ¢=5.

=2
(3% =1 (32— (Y2 =7
(Y=t (32— (¥ =2f
(¥52 =13
(¥%2 =iy

l=4
(3=t (3% = (3=
(y1>1=1'g'3'6

shown as line f in Figs. 2 and 3, improves on line
b, which arose from the determinant (3.10b).

Now the most general positive polynomial, of
order one, is a combination of the previous two

Py(s)=(1=x)y+r(1-y)

= A+(1=2)\)y, (5.23)

where 0 <A <1 and an over-all constant has been
divided out. Using this expression leads to an
a=a(}); the inequalities depend on A as well, and
the problem of deciding which value of X gives the
“best” inequality is the major disadvantage of this
method. As polynomials of higher order are con-
sidered, there are more parameters to vary, and
the condition (5.12) depends rather critically on
them. Nevertheless, we can go ahead and pick
some polynomial; satisfying the subsidiary condi-
tion is easy, and we then have a necessary inequal-
ity, possibly redundant. It is the question of redun-
dancy and “best” inequalities that complicate this
method. It appears, in fact, that the best inequal-
ities occur for A=0 and x=1, but for higher orders
there still remain parameters that have to be var-
ied. (See the discussion in Appendix A.) For the
case 0=5, not considered by Roskies, the most
general positive polynomial that involves y? [so that
YP(s)~ x,] is

P(s)=(1=-2)y(1 =y)+ My +a), (5.24)

where « is an arbitrary real parameter and 0 s <1
as before. It appears again that A=0 and x=1 give
the best inequalities, but the optimum value of a,
around -0.5, will in fact depend on the values of
x, and x,. The resulting inequalities are combined
with others in the calculation of Z,and Z,, dis-
played in Fig. 6, and no simple form may be given
to the optimum inequalities; for different values of
x, and x, over the plot, different inequalities be-
come the limiting ones [different values of @ in
(5.24)] .

For [=4, the first inequality corresponds to
P(s)=1, contributing to 0=5. We fix

Zup (O)
1.0k o =5
- ("ONE-ZERO" METHOD)
8 r
° r
~N
N
& O.5v§~
* 0 o.l 7
OOL PRI 1(, L 0.0 ! 1 L
=2.0 -1.5 -1.0 -05 0.0 0.5 1.0
X| =012/ 002
. Z4n (b)
1.oF oc:5 j
~ ("ONE - ZERO" METHOD)
o
o
\N r
SN 0.5
" r .\
~ r X
2 [ 00 0.2
L .03 _ 02
0. PO ——| X I L
=20 -15 -1.0 -0.5 0.0 0.5 1.0

X1 77015 /0g;

FIG. 6. (a) and (b): Contours of the upper and lower
bounds to x3, Z,p, and Z,,, for 0=5, using the “one-
zero” method of Roskies (Sec. V) in addition to the simple
positivity of Sec. III.

a=(y/ =%, (5.25)
and the inequality becomes
al4], - [5],= & x, -4 (10x, + x,)
= 535(25x, — 36x,) >0, (5.26)

which improves on [4], -~ [5],> 0; this is the single
major improvement in the size of Z,, and Z,,,
shown in Fig. 6, as compared with the “no-zero”
case in Fig. 4.

We will now derive line g, which is Roskies’s
improvement to our inequality [4], —[4],> 0, line d
in Fig. 3. Our derivation will be simpler than that
given by Roskies, and in fact we discover that g is
not the optimum that may be obtained, even for the
case 0=4, considered by Roskies.

We consider the function

R(S, t)=P(S)yl[Q,(Z)—(1/a)u12Q1+2(2)], (527)

where P(s) is positive on 0 ss <1. If u,(s) < uy(s)
=2,+(2 =1)"%, and a=1, then R(s, )= 0, so that

1 1 2
[R]:fo dttE’ 3,,(1)_[0 dsR(s, t)P,,<1+ t_s1>>0,
(5.28)

which leads to our inequalities using 6™f,(s)> 0 with
m=1. If a<1, R(s, t) will have a zero in (0 <s<1),
and to ensure [R]> 0, we must ensure that

Bﬁ;(t):j:dsR(s, t)P,,<1+ 2s >>o (5.5")

t-1
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for all > 1 and all I’. [See discussion after Eq.

(5.5).]

Now
- _ wl@@)
R(s, t)—P(s)y'Q,(z)<l 9,(2) (5.29a)
> @m&ﬁ)
/P(S)y’Q,(z)<1— 0. () (5.29b)
because’
Q1+(2) < Qi+ (2y) 5.30
Q@ - @) (5.30)
for z>z,and n=0.
So now
BE(1) aj;ldsr(s, t)p,,<1 +%> (5.31)

where

Alz) w?
(s, t) = P(s)y' Q,(z5) <Q1(Zo)' a Q1+2(Zo)>-

(5.29")

It is clear that »(s, ) has no more than one zero
in 0 <s <1, for any ¢, and because'®

2 Qi+ (2) (1+2)1V (21+1)!
“ le(zz) = )2< 11 >(2l+5)!

=y2G,~0as s-1,

we see that 7(s, t) is non-negative near s=1 (pro-
vided that #,°y?—~0). We may then apply Theorems
3 and 4 to see that the integral in (5.31) is non-
negative, provided that the condition

»= ], s P(8)'[@,(24) = (12/a)Q1+5(20)] = 0
(5.32)

is ensured. This implies that Bk(¢) =0, as re-
quired, and we obtain the inequality

a[P(S)], —[(ul/y)ZP(S)JHz?O, (533)
with the subsidiary condition
al(P(s)), = {(u,/yPP(s)),;,,=0. (5.34)

Of course, (u,;/y)*P(s) must be a polynomial if only
a finite number of a,, are to enter.
If we put P(s)=y and »,®=y, we obtain for =2,

a[3], -[4],=0 (5.35)
and

a= (Y0, / Y, = 15 . (5.36)

This is a clear improvement on [3), - [4], >0, and
is in fact line g, found by Roskies.? Our method
now makes it obvious that we should also examine
P(s)=y% and u,>=1, since [3],>[4];:

al4), -[4],=0,

a> 0./ = % = 1,

(5.37)

which is an improvement on our line d, in Fig. 3,
corresponding to (4], - [4],>0. This line

2 A (27+8x, +x,) — x, = 77 (54 +16x, — 175x,)
= 24 (270 +80x, — 875x,)> 0,
(5.38)

shown as % in Fig. 3, is also a clear improvement
over line g due to Roskies, and also uses only
o=4.

For 0=5, we have in addition to (5.26) the in-
equality with P(s)=v3, »,®=1/y in (5.33):

a5}, -[4},>0 (5.39)
and
az(y0,/(y, =% . (5.40)
Finally, P(s)=y?%(1-1y) and %=1 give
a((4],-[5})> (4], -[5L), (5.41)
with
2 %=y -z, (5.42)

ORI
With these extra “one-zero” inequalities, the im-
provement in Z,, and Z,,is dramatic: Compare
Figs. 4 and 6. Not only is the projection onto
(x,, x,) improved (in fact, it is now superior to the
original region found by Roskies,? shown in Fig.
3), but also the bounds on x;, Z,,, and Z, are
tighter. (We may slightly improve the “one-zero”
bounds of Fig. 6, near x,=0.3, x,=0, by including
the derivative constraints of Fig. 5.)

VI. CONCLUSIONS AND APPLICATIONS

We have seen that the moment approach provides
a very simple and practical method of combining
the positivity and analyticity properties of the dif-
ferent partial waves with the constraint of crossing
symmetry. It permits the evaluation, in a graphic
way, of the content of various proposed relations
between partial waves and their derivatives, and
of the effect of crossing symmetry on relations
that at first sight appear rather weak [for example,
Eq. (4.25)]. Also we can see how important it is
to consider the effect of the positivity of higher
partial waves; this will be reflected, through
crossing symmetry, as restrictions on the lower
waves which are accessible in a particular inves-
tigation.

It is important to notice the clear separation in
our method between the inequalities derived from
positivity and analyticity, and the connections
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established by use of crossing symmetry, that
“tighten” the constraints. The defect, of course,
is that we are restricted to studying only a finite
number of a,’s (n+! up to o) and cannot derive
relations that directly incorporate positivity and
crossing symmetry on the partial waves (and their
derivatives) themselves, as has been done for
some of the lower waves.””® However, in deriving
these S-, P-, and D-wave inequalities,”® certain
compromises have been made in order to get rea-
sonable conditions, and so these conditions may
not lead to very tight constraints when analyzed in
terms of our moments. By combining the resulting
moment inequalities, with our inequalities found
above, we may be able to obtain even better bounds
than those of Fig. 6.

For any application that goes only to some maxi-
mum order in s and {, we can in fact use our
graphic approach to see where in the parameter
space our model “lies.” By analyzing all the avail-
able inequalities in terms of our moments, we can
then decide which are likely to be the limiting ones.

As we go to higher values of ! and consider the
positivity of these higher partial waves, many
more parameters x,; (or c$) will enter, and it will
become prohibitive to evaluate “contours” in these
higher-dimensional spaces; rather we must use
the inequalities with a particular application in
mind. The numbers D?, and the eigenvectors E°(k)
(Sec. II) are very simply generated numerically by
recursion relations, while the a,, may be found
for a given amplitude with reasonable accuracy by
Gauss-point integration. We project out the appro-
priate ¢ using Eq. (2.13), and simply test whether
the appropriate set of inequalities is satisfied and
in what range the “last” variable is permitted to
lie.

There are essentially two classes of application
where we feel that these inequalities may be of
interest or of use in determining parameters, and
we will briefly comment on them, although full re-
sults will be described elsewhere.

In the first class, we are given an explicitly
crossing-symmetric amplitude, and some form of
“approximate unitarity” is enforced on the result-
ing partial waves; in the second, explicitly unitary
parametrizations are used for certain partial
waves (the lowest, usually), and an approximate
form of crossing symmetry enforced.

Explicitly Crossing-Symmetric Amplitudes

We are given an amplitude, F(s, ¢), that is cross-
ing-symmetric, F(s, t)=F({, s). It will enable us
to check the accuracy of the numerical method,
since the a,, must satisfy the crossing relations,
Eq. (2.6). We then compare various methods of
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determining the free parameters; in particular,
to see how restrictive our inequalities are. We
have in mind a ‘“unitarization” of a current-alge-
bra-type amplitude, given by Iliopoulos,?! and sim-
ilar studies by Dilley,?? and by Arbab and Dona-
hue .23

In these models, the 7-7 amplitude (a brief dis-
cussion of the effects of isospin is given in Appen-
dix B) is expanded in a crossing-symmetric way
in terms of the variables k,=0.5(4u? - s)'/3,
k,=0.5(4p% - )'/%, and k,=0.5(4p? - »)'/% this en-
sures the existence of cuts compatible with unitar-
ity, and enables us to examine the partial waves
a short distance out of the triangle and compare
with the physical phase shifts. Approximate uni-
tarity is enforced by equating coefficients of (k)"
to some order, inthe relationImf,(s)=p(s)|f,(s)|?+%
or by satisfying unitarity on a set of energies just
above threshold.?>'>® Some of the remaining para-
meters are determined by physical input, such as
current algebra,?! and the use of the S- and P-wave
inequalities.”® There nevertheless remains some
freedom, and a number of “solutions” appear. By
applying our inequalities, we are able to reduce
some of the ambiguity.

The amplitude A(s, ¢, u) of the n-7 problem with
isospin [Eq. (B1)] is parametrized as

— _ES_ /ku+kt k32
A(s, t,u)=Cy+C, 2 +C‘——2u +C, @uF
kg® k3 +kS
+Cy ot +C) —b et 6.1
S@uF TP (uy (6.1)
The 7°-7° amplitude is then
— = bks+ki+h, — kE+RA+RS
F(s, t,u)=Co+C, =5 2:1 +Cy = (2:1)3 sl REEN

(6.2)

where

Co=8Cy+3C,;; T,=C,+2C, and C,=C,+2C/.

(6.3)
We numerically obtain the q, as
a,, =107%(-211.6C, +72.2C,),
a,,=107°(43.3C, - 4.16C,),
(6.4)

@y, =107%(~13.3T, +0.666C,),
a3, =107%(5.15C, - 0.163C,) .

In terms of the solutions (a), (b), (c), and (d)
given by Iliopoulos,?! we evaluate C,, C/, C,, and
C, in Table IV, along with the corresponding X,
and the bounds Z,, and Z ;, that are given for these
x; and x, in Fig. 6. We see that solution (b) is in
fact eliminated by our inequalities, while the oth-
ers are satisfactory, but quite close to a boundary.
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TABLE IV. Parameters for Iliopoulos model, Egs. (6.1) and (6.2).

Solution? Cy Cy C C, Cs C3 C C, x4 %, %3 Z,, Zay
a 84 -0.28 -0.28 -56.0 32.0 2.88 —0.84 37.7 0.066 0.013 0.003 0.008 —-0.125
b 68.5 —284 -0.064 554.0 -512 5.9 —284 ~500 0.425 0.143 0.057 0.039 -0.036°
c 842.0 312 —-526 —2868 2248 —1484 =740 =720 0.277 0.089 0.035 0.062 —0.079
d 806.0 194 —520 -2160 1344 —-1240 -846 -1136 0.33 0.108 0.043 0.071 —0.053

2See Ref, 21,

P This violates Z,, = x3 =Z,,.

In fact, the limiting inequality that removes case
(b) is that given by our derivative condition Eq.
(4.45). Iliopoulos®! was also able to eliminate this
solution with the help of one of the S-wave deriva-
tive conditions. Possible improvements in the in-
equalities, obtained by going to higher o or tighter
derivative constraints, might eliminate the other
unwanted solutions (c) and (d). Solution (a), cor-
responding to Weinberg’s solution,?* lies closer to
the point x,; = (0, 0, 0) and is less likely to be elimi-
nated.

So far we have ignored isospin, and our 7°#° in-
equalities restrict only the C, combination of the
original C, and C; parameters. Roskies has ex-
tended his parametrization of crossing-symmetric
amplitudes to include the case with isospin as
well?®; in Appendix B we show that a further {¢/3}
parameters, e, are required to fully describe
the amplitude A(s, t, «) [Eq. (6.1)]. By considering
the positivity properties of the 7* 7~ -~ 7°7° ampli-
tude, we derive a further set of inequalities. As
shown in Appendix B, these new inequalities are
very restrictive for the Iliopoulos model,?! and we
are able to eliminate the solutions (b), (c¢), and (d)
at the level of o0=4, without having to resort'® to
the derivative or “one-zero” inequalities of Secs.
IVand V.

One of the calculations performed by Dilley??
considers (6.2) as the amplitude for scalar, neu-
tral pions; following Iliopoulos,?! he enforces S-
wave unitarity at threshold, obtaining two relations
between the C,, which enable us to express the C,
in terms of one variable, a:

o

= 2
==2a%,

C,=8a%(®*-a -0.5)/(1 -3a),
Co=a~-C,-C,/4.
When one evaluates the deviation from S-wave uni-
tarity on a set of points just above threshold (up to
s=5), one discovers that unitarity is satisfied
“best” for two regions®: o about —0.5, and a some-
what less favorable solution at o about 1.0. This
shows that S-wave unitarity at threshold is not
enough to determine the amplitude entirely. The

(6.5)

question then arises whether our inequalities, valid
below threshold, are sufficiently sensitive to “de-
tect” gross violations of unitarity above threshold.
[The sensitivity of course must be related to the
analytic structure of the amplitude, and perhaps
we should not use (6.2) too far above threshold.]
We now examine the effect of our inequalities,
which are simply obtained from (6.5) and the a,,
given in Eq. (6.4). We discover that the range of
a from about 0.1 to about 0.4, as well as the neigh-
borhood of o =3.0, are forbidden by our inequal-
ities. This restriction is not as strong as that due
to unitarity above threshold, but it does indicate
that there is some useful constraint in these in-
equalities, even for so low a value of o.

Explicitly Unitary Partial Waves

An alternative type of application that has re-
ceived much attention recently?® is the direct pa-
rametrization of some of the partial waves for [
up to I, (usually only the S, P, and possible D
waves). Exact unitarity is imposed and by using
a flexible form with correct left- and right-hand
cut structure,?” one can hope to extend the results
further into the physical region than with the full-
amplitude case. The parameters to be determined
either enter into a K matrix,?” or in a pole approxi-
mation to the left-hand cut.?®

Now, of course, crossing symmetry has to be
ensured for the waves that we have; this aspect
has been discussed by Roskies,?® and a somewhat
different approach, more suited to numerical work,
is given in Appendix B. (The “size” of the param-
eters ¢}, allowed by positivity, may aid in deter-
mining how significant a certain deviation from
crossing symmetry is.)

We then assume these partial waves “belong” to
a fully crossing-symmetric amplitude, whose par-
tial waves for I greater than !, “exist,” but are
not directly accessible; we may nevertheless con-
sider the effect of the various positivity inequalities
that may be related to the a,, for /<1, . This is
in addition to the various inequalities on these ac-
cessible partial waves that we may test without
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having to introduce the a,; in particular, we may
use the S-wave inequalities”™® as well as the in-
equality of Sec. IV that required f,(0) [Eq. (4.30)],
which is believed to be better than (4.25); again
our moment technique will help us to “pinpoint”
the significant inequalities.

Finally, another aspect that may be investigated
is the shape of the S wave itself. Results derived
by more involved methods”~® indicate that the S
wave has a unique minimum at s=~0.4. If it is pos-
itive, we get a whole sequence of moments (%], for
k=0 that are positive, and apart from the one co-
efficient g, all variables are related to our x, .
(The appropriate D%, and ,D% are given in Tables
I and II for these investigations.) If it is not posi-
tive, then it may have one or two zeros, s, and s,,
and (s —s,)(s = s,)f,(s) is positive, again leading to
inequalities that may be examined by our method,
giving relations between a,, s,, and s,, and the
Xq.

Particularly interesting will be relations involv-
ing the derivative of the 7°-7° S wave: The coeffi-
cient q,, will be removed by the derivative, and
a,, is not present as a consequence of crossing
symmetry [, =0 in Roskies’s parametrization, Eq.
(2.10)], so that the first coefficient will be a,,,
connected to a,, by crossing symmetry. This
means that these relations can be directly repre-
sented on our contour plots, provided that the ex-
pression is given for all s in (0, 1).
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APPENDIX A: NATURE OF THE “ONE-ZERO”
INEQUALITIES

For a given positive polynomial of order »n, P,(y),
the development in Sec. V leads to the inequality

aP,(], = [yP,(»)];, (A1)
subject to the condition
_ (yPn(y»z
=B, (a2)

[Egs. (5.11) and (5.12) in the most constraining
form| .

The most general polynomial which is positive
on 0 < y<1is given by a theorem of Lukacs!'!? as

P.(»=[AP+y(1 - y)[B(y)P if n is even

or as

P,(y) =AW +(1 - y)[BW)F if nis odd, (A3)

where A(y) and B(y) are arbitrary polynomials of
the appropriate order.

Since (A1) and (A2) are homogeneous in the poly-
nomial P,(y), we may divide out an over-all con-
stant in P,(y), and set the leading coefficients of
A(y) and B(y) to 1.

We may then describe our (normalized) positive
polynomial as

P,y =(1 =" +a,y" t+ e +a, )

AL =YY TR A+ B, P

for n even, m=[n/2], (A4)
and similarly for » odd, m=[(n-1)/2],
P(y)=(1=Ny(y™+ ay™ 4o+ a,)?
FML =P+ By 4+ B (A5)

where clearly 0 <A <1, and the parameters a;, B;
are arbitrary real numbers. Collecting powers of
vy we get finally

Pn(y):(l—zh)yn*'AQ[(a’ By y)+Qo(a’ B, y), (AG)

where @, and @, are polynomials of order » -1 in
y and depend on {a,} and {8,}. For example, the
simplest polynomials are

Py(y) =1,
Py(y) =2+ (1-2))y,
P,(y) =2y(1=y)+ (1 =) (y+a)?
=(1 =202+ Ay = 2ay - a®) + (2ay + a?).

(AT)

The inequality (A1) becomes

alP,(N ] = Ay = [yQ)], = (L =20)[y™];,
(A8)
which leads to both upper and lower bounds on the
moment [y™!], in terms of A, @, B; and the low-
er moments [y*], £=0,...,n.
Defining
a[P,] = A[y@,] = [yQ0]
1-2x

_aN(\) +M(\)
T i-m (49)

B(\) =

(where N and M are linear in X and depend on all
the other variables [y*], «,, B,), we see that

[y"*]<B(A) for 0si<3, (A10)
while the inequality reverses for A>3,
B(X) s [y™!] for s<asl1, (A11)

Setting A = 7 eliminates [y"!], and we have the in-
equality that arises from a (non-normalized) poly-
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nomial P,_, ().
It is important to notice that ¢ depends on A in the
following way:

(A12)

where a; depend on the parameters a; and §;.
The best inequalities on the moment [y™!], are

L(a, B, [y*]) <[y™]< Ule, B, [¥*], (A13)
with
U=min B(A),
0=\<}
L= maxB(}), (a14)
=y

for given fixed a;, B, and [y*].

For a fixed point in the moment space [y*], we
vary a;, B;to give the optimum bounds; the opti-
mum of course depends on the values [y*] and so
the boundary will be “curved,” corresponding to
our determinants, for the simple positivity cov-
ered by Theorem 1. To find L and U, we evaluate
B()) at the end points and at possible extrema at
the zeros of the derivative

%(A) =0 at A, provided 0 sx; s1. (A15)
With
NV =ng+nx, M) =my+m X,
we see that
(1- 2,\)2%41 - ZA)%(no+nl>\)
+an, +my+2any +2my. (A16)

Now if a did not depend on A (as is the case for
simple positivity, equivalent to a =1) we see that
(1 - 2x)28B/ax would also be independent of A. This
means that for best bounds we could use B(0) and
B(1); this is in fact the separation into two sets of
determinants in Theorem 1, Sec. II. The lower
bounds are given by determinants with s, as ele-
ments, and upper bounds by determinants with
S, = Sp.- The determinant itself corresponds to
varying a;, B; over their whole allowed range (see
Ref. 1).

However, a does depend on A (A12) and

da _ 2,4, — 844,

ax (ay+a))?’ (A17)
where (a, +a,\) =0.
Finally, we obtain
(ay +a\)2(1 -2,\)2%=co+clx+c2v, (A18)

a quadratic in A, where the C; depend on «;, B,

and the moments [y*], 2=0, ...,n, There are at
most two zeros that may lead to better bounds on
[y¥*!] than B(0), B(1), but an actual numerical in-
vestigation of (A18) for the simple cases given in
(A7) indicates that these zeros A, rarely give a
significant contribution; either there are no zeros,
or they do not occur in (0 sx<1), or, when they
do, the resulting improvement to the set of in-
equalities is negligible.

APPENDIX B: THE m-7 AMPLITUDE WITH
ISOSPIN, CROSSING SYMMETRY,
AND POSITIVITY

The 7-7 amplitude is described by the usual in-
variant functions A(s, ¢, u), B(s, ¢, u), and C(s, ¢, u)*®
in terms of which the s-channel isospin amplitudes
are

F°(s, t, u) =3A(s, t, u) + B(s, t, u) + C(s, t, u),
Fl(s, t, u) =B(s, t,u) = C(s, t, u), (B1)
F?(s, t, u)=B(s, t,u) +C(s, t, u).

The 7°-7° amplitude examined in the above work is
given by F(s, ¢, u) = 5(F°+2F) =A + B+ C. Crossing
symmetry relates A, B, and C:

A(s, t,u)=A(s, u, t)=B(¢, s,u)=C(y, t,s). (B2)

The s-channel partial waves of Fi(s, ¢, u), fls,
are given by the Froissart-Gribov projection for
=2

. o
7 =S " a1 g, 3 peater, ),
1 ;=0

(B3)
where A’t(¢, s) is the absorptive part of the ¢-chan-
nel amplitude and is positive for />1and 0 ss <1;
B's’t is the usual isospin crossing matrix.2® Be-
cause of Bose symmetry (I + I, even), we have only
two independent combinations of the fIs(s), corre-
sponding to positive A(¢, s):

RO =307 0+ 2 )
__i;___.fwde( )1A1,=0(t ) ZA’t=2 t
-9 . (23] y S)+ (2 )]

(B4)
and

Fim(s)=5(f0 =)

=(T_i§)—nj.:odl Q](z)%[Altzl(t, S) +A1t=2([, s)]

(B5)
forevenl=2and 0 ss <1,

The n°7° - n°7° partial waves f9°(s) are actually
the f,(s) used in the above work; we will now get a
further set of inequalities by similarly using the
mtr” - 7°7° amplitude, £}~ (s).
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Crossing-Symmetric Parametrization

Roskies?®® has extended his parametrization to
include all the isospin amplitudes; we will follow
a different approach to clarify some properties of
the resulting parametrization.

We project out the double partial waves, A,,, of
A(s, t, u); these make up vectors (4°),=4,_,, of
dimension o+1, With X° the s-f crossing matrix
and U° the u-f crossing matrix, with elements
Ugr=(-1)"*", we observe that the s-u crossing
matrix is given by X°=U°X°U°, The crossing
symmetry of A, B, and C [Eq. (B2)] then gives
the double partial waves of B and C (B, C,,) from
those of A(s, ¢, u):

BO =X0AO ,
(B6)
Co=XC°A°.
Since A(s, ¢, u) is even under {-u exchange, A° has
only even I:

U°A°=A°. (BT)

Of the o+1 eigenvectors of U°, n,=[0/2]+1
“even,” with eigenvalue +1 corresponding to (B7).
We will divide these eigenvectors into two groups,
aof and BJ, according to whether they are also
“even” eigenvectors of X° or not. The set {a’},
obeying X°al = af, is simply the set {a?} of
Eq. (2.10), n,=[0/2]+1~{0/3} in number.® The
remaining n 4=n, -n,={0/3} vectors {8} are not
eigenvectors of X°.

We now expand A° in terms of these », vectors

{ag, B2}

A°= ,E co(ay), +Z;, e (Br)e, (B8)
where ¢, and e;, are n,=n_,+ng arbitrary real co-
efficients. We abbreviate (B8) as

A=0a,+p,, (B9)
where {a,, 8,} obey

Ua,=a,, UB,=B,, and Xo,=Xo,=a,. (B10)

The double partial waves of f{(s) are then (a’g) =a”:

J

{Bg},=(0——l)!(0+l+1)! X

1
' %f dz(3+2%)%"=9" (1 - 22)°"-2"(3 - 22 - 62),
-1

where 0'=0-1and 0”=0-2; p’and p” are re-
stricted in the same way as p in Eq. (2.10), giving
ngi+n .0 vectors, respectively. (We may verify

“BEST” POSITIVITY... 2501

a®=3(a, +B,) + X(a, + B,) + X(a, + B,)
=5a,+ (3B, +(1+ V)] XB,,
a'=X(a,+B,) - X(a,+8,)

2(1— U)Xﬁe; (Bll)
and

a®=X(a, +B,) + X(a, + B,)
=2a,+(1+U)XB,.

Now the totally symmetric n°-7° amplitude corre-
sponds to

3(a® +2a?) =3a, + [B, + (1 + U)XB,] (B12)

and since {a,} includes all the totally symmetric
eigenfunctions, B, must obey

Be:_(1+mXBe' (B13)
We define a set of vectors j3,, with only odd /,
B,=~(1-UV)XB,. (B14)

These may be considered as the even and odd parts
of a vector 8, which obeys

B=-2XB,=-X(1+U)8. (B15)
An important consequence of this definition of 3
and of the fact® that X=FL, where F=F7 (a sym-
metric matrix), and that L and U are diagonal
matrices [with L,,,=(21+1)6,,.], is the orthogonal-
ity relation

B® B =pTLA =48, ® B, =48, ®B!. (B16)

If 8, and B; are orthogonal, then so are 8 and 8,
and also 3, and B].
Equations (B11) then become

a®=5(a), +2(B).,
al :_(B)aq (B17)
a2 = z(a)e - (B)e ’
and all the relations among the af, due to crossing
symmetry are contained in these equations.
Roskies,?® using his alternative approach, has

given explicit expressions for the independent set
of vectors, {87} [{af} is given by Eq. (2.10)]

s fl dz(3+22)%'=0"(1 = 22)9"-2"(1 4 2)

(B18)

that »n g=ne +non.)
We now orthonormalize this set of vectors, {a}
and {8}, giving n,=[0/2]+1 orthogonal vectors:



2502 MARTIN L. GRISS

Ec(p);p:09'°'ync_1
and
f_Io(p),p=0,...,7lB—1,

so that the isospin amplitudes are

=55 ¢JE°(p) +2 %) eS[H(P)),,

a'==733 e [HP) ), (B19)
=23, cfE°(p) -3 el [HP)), -
) )
Because of the orthonormality of E, H, and
Eq. (B16), we have
¢f =tE°(p) ®a® (B20a)
=3E°(p)®a?, p=0,...,n -1 (B20b)
ef = S4H,(p) ® a° (B21a)
= -3H,(p) ®a* (B21b)
=—-4H,(p)®a?®, p=0,...,m5-1. (B21c)

It is of course important that (B20a) and (B20b)
should give the same values of c;, and (B21a),
(B21b), and (B21c) give the same ¢’s. This is one
test of whether the af,, are crossing-symmetric; in
addition, there should be no further components in
(B19) corresponding to vectors not in the set E°(p),
HO(p). In particular, of the n,=0+1-n, vectors
with only odd I, only the {0/3} vectors, H,(p), ap-
pear in the expansion of a'.

A convenient measure of “deviation from cross-
ing symmetry,” which will also indicate the accu-
racy of the numerical method will be given by de-
termining ¢ and ¢y from (B20) and (B21), and
evaluating the deviations from (B19).

6°=33{[a% - 5¢,E2(p), — 2eSHZ(p),]? + [a} + eZHS (D), ]?
1
+[a3 = 2¢CE°(p), + eZHZ (D), ]2Ho + 1)712
(B22)
Inequalities from Positivity
The two amplitudes with positivity properties are
now (B4) and (B5).
10 — 7%7°%
F(s, t, u) = 5(F°+2F?)=A +B + C,
with double partial-wave amplitudes
(an;) =3clE°(p).
T - 7070

F'=(s, t,u) = 3(F° = F?) =A(s, t, u),

(B23)

| >

with double partial waves which we call b,,,
(b)) =cJE°(p) +efHO(D), .

The various moments [%], and [k] derived from
(B23) depend on ¢, only, while the corresponding
moments with a,, replaced by b,, from (B24) de-
pend on the {c{} and the {¢/}. The parameters
which remain unrestricted by the positivity in-
equalities for I> 2 are ay, ay,, and b,,, while b, is
partially restricted.

It is particularly important to notice that the sub-
sidiary conditions of the “one-zero” method (Sec.
V), do not depend on the variables used in the mo-
ments, so that the numerical values of the a’s are
unchanged; e.g., Eq. (5.18) gives for 0 =3 the sets
[3],>0 and £ [2], > [3],, which become

(B24)

%boz . % (Gboz - b12) 20.

(B25)

As an example of the application of these new in-
equalities, we consider the Iliopoulos model with
isospin®! [A(s, ¢, u) given by Eq. (6.1)]. Because the
amplitude is explicitly crossing-symmetric, we do
not have to introduce the (a,) and (B,), but can di-
rectly evaluate the b,,’s:

bop =1073(-211.6C +72.2C3),
b, =107%(43.3C] - 4.16C}),

(

byp =1075(~13.3C! +0.066C%)

by =1075(5.15C] - 0.163C}),
(

boy =1075(=13.3C} +0.666C) + 1.67C,) .

(B26)

[Although the coefficients are the same as for the
a,;» Eq. (6.4), the C; and C] take on values different
from the C;, so that of course b,, #a,,. Notice also
that by, #by,. |

Using the values of C; and C] given in Table IV
for the Iliopoulos solutions (a), (b), (c), and (d),
we discover that all but solution (a) violate the
simple positivity inequalities on the

(%], :ZD:Ibnz/am

For example, solution (b) gives [4],=b,,/a,,
=-0.1058, which is significantly negative. Solution
(c) is the worst of all, and fails even at 0 =3:

[2], - [3], = -0.0505 and [3], - [4], =-0.03. Solution
(d) violates the o =4 determinant, [2],[4], - [3],2
=-0.0041, as well as the “one-zero,” ¢ =3 result
2[2], - [3], ==0.0143.

Solution (a) satisfies all the inequalities, but is
quite close to the limit: [4], =2.06x10-3 is bounded
by the inequalities 0.944(3], — [4], =0 and
[2];[4], —[3F =0, giving the fairly tight constraint

2.36x1077> [4], > 2.02x10"%, (B27)

for o <4,
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