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We prove the following statement: In any of the standard bootstrap frameworks, if one be-
gins with a meson world chosen so that (a) it is symmetric with respect to some simple, com-
pact Lie algebra, £, (b) all particles belong to N-fold degenerate families, each classifiable
under the identical representation R, and (c) the discrete quantum numbers are such that both
symmetric and antisymmetric trilinear couplings exist, then for a given choice of I (I =the
number of mutually commuting conserved charges) the minimal degeneracy turns out to be
N=(l +1)? and the corresponding minimal representation R =adjointdsinglet of SU(l +1).

I. INTRODUCTION

In this paper we extend a result we have derived
previously!® dealing with self-consistent worlds
composed of mesons only.

Our assumptions are as follows:

(a) The meson world in question is symmetric
with respect to some simple, compact Lie algebra,
£.

(b) All particles belong to N-fold degenerate fam-
ilies. Each such family is classifiable under the
same (in general reducible) representation R of £.

(c) The dynamical framework is that,of one of the
known bootstrap schemes: N/D, finite-energy sum
rules (FESR), Z=0, narrow-resonance models,
etc.

(d) The discrete quantum numbers are such that
trilinear couplings of both antisymmetric and sym-
metric types exist.

(e) The number of particles, N, in each family is
minimal,

In I we considered assumptions (a)—(d), and, in
addition, assumed that R =adjoint & singlet of some
arbitrary £. We then showed that £ necessarily
was SU(/+1), where [ is the number of mutually
commuting conserved charges, (i.e., the rank) of
the algebra £.}

Here we drop our previous assumption about the
nature of R and replace it by the minimality as-
sumption (e). Our new result is that, under as-
sumptions (a)-(e), £ is SU(/+1), R =adjoint & sing-
let, and N =(l+1)®, In the present framework we
see absolutely no way to determine ! and/or N.

In the following section we will briefly review the
rules of the game and indicate how the result
arises, Mathematical details can be found in the

4

Appendix below, and a more detailed discussion of
the general framework, with illustrative examples,
can be found in I.

II. EXPLANATION OF RESULTS
A. Dynamical Framework
Let & be the amplitude for the elastic process
R“)tBR“)-'R(”éBR(”, (1)

where all particles belong to a representation R of
some Lie algebra £, as in (a) and (b) above, and
the superscript (7) represents. all labels other than
those associated with £. (R=AeBaC®---, where
the terms on the right-hand side are irreducible
representations of £.)

By assumption (c) we are in the dynamical
framework of one of the known bootstrap schemes.
In these schemes an amplitude such as ¢ must sat-
isfy a self-consistency equation of the schematic
form

£=CMsg, (2

where C is a crossing operator associated with the
internal-symmetry algebra £, and M is a crossing
matrix in ordinary helicity space.

All simple bootstrap schemes have a crucial
property in common which amounts to a general-
ized pole approximation. In each case, amplitudes
such as ¢ can be expressed as a sum over simple
“tree diagrams” in all channels, with the inter-
mediate states having definite internal quantum
numbers and external labels (i). Of course, self-
consistency then requires that the intermediate
states have internal-symmetry properties identical
to the external scattering states, so that any one
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4 BOOTSTRAP MODELS...II. 2477

generalized pole diagram must be proportional to
a bilinear form in the trilinear coupling of R to it-
self.

Consider any one particular reaction (1) and its
associated amplitude £. In general, in the boot-
strap framework it is always possible to write §
as a product

§=§K (3)

of internal-symmetry and kinematic factors, so
that (2) takes the schematic form

£&=C'g; (4)

for the internal-symmetry piece, where C’ is relat-
ed to C by certain phase factors, and channel la-
bels have been suppressed throughout. If it is de-
sired one can extend these considerations to a set
of particles of various masses, parities, spins,
etc., for example, as in the narrow-resonance-
model bootstrap.? The price that one is forced to
pay for factorizing out the internal-symmetry de-
pendence as in Eq. (3) is that certain intermediate
states in general acquire negative norms. We will
ignore that problem here, treating all reactions as
though all spins were zero and dealing with the pure
algebraic constraints (4).

B. Algebraic Results

Let the trilinear couplings of R to itself be g”k y
where (i, j, k) are labels for partlcles in R, each
index running from 1 to N, and where P=+ or -
depending on whether g;;, =+g;;, or —g;jx. (The
first two subscripts in g will always refer to ex-
ternal scattering particles.) By assumption (d),
some g*and some g~ are not zero. Let the s-chan-
nel process (1) be a +b—~c +d, and for illustrative
purposes let g{;,=0 and g{;, =F;;,, the structure
constants of any £. In this simple case, Eq.(4)
can be equivalently written as the Jacobi identity®

)

Fops Feas + Fogy Fycu=Foct Fyate (5)

To implement assumptions (d) and (e) and prove
the main assertion above, it is sufficient to find the
set of R’s such that

(I) dim(R)= N < (1+1),

(I) R is self-conjugate,

(OI) R % R contains at least a part of R in both the
symmetric and antisymmetric Kronecker products,

(IV) R is a solution of the crossing constraint (4).

Besides these algebraic conditions, we also will
require that the amplitudes involved are globally
nonpathological in that essential singularities and/
or spurious poles and cuts are forbidden.*

In I, we considered the special case R = R, =ad-
jointg singlet of SU(/+1), and this choice was
shown to be consistent with assumptions (a)-(d)
above, Here we replace our assumption R = R, by

the minimality condition (I).

Condition (III) arises from assumption (d), g}
just being the numbers which appear in the anti-
symmetrized and symmetrized Clebsch-Gordan
series for R®R.

Condition (IV) has two crucial features. First, it
requires that f R=A$ B3 C®--+ is a sum of ir-
reducible representatlons, the subreactions con-
tained in R + R — R + R++- must each be self-consis-
tent (e.g., A+A—~ B+ B,C+C~C+C,etc.). Second-
ly, it requires that the “force” between s-channel
scattering particles generated by a ¢/-channel ex-
change be attractive rather than repulsive. This
last requirement will be crucial in the elimination
of {7} & {1} of G,. In fact, it turns out that condi-
tions (I)—(III) are so tight that we will need to in-
voke condition (IV) only to deal with G,.

To prove our assertion we proceed by exhaustion,
first finding all self-adjoint representations of all
£’s satisfying condition (I), and then computing the
Kronecker square of each and checking condition
(Im).

Cartan’s list of all £’s is 4;, B, (1= 2), C, (= 3),
D, (= 4), G,, F,, E;, E,, E;. Inthe Appendix we
give a detailed verification of our assertion for
l>2. For clarity and to illustrate what is involved
we will consider A, [SU(3)], B,, and G, here. Con-
dition (I) states that dim(R) < 9 in this case.

A,

The lowest dimensional possibilities are {1}, {3},
{3+}, {6}, {6*}, {8}. From I we know that {8} can
work in conjunction with {1}, The combination {6}
&{6*} is self-adjoint but has dimensionality 12, so
{6} and {6*} can be eliminated.

Consider {3}®{3*}. This R contains a part that is
3+3~3+3 in one channel (s) and 3 +3*~3+3* in
the other two channels (¢L,u). In the s channel the
intermediate states are {3}®{3}={6}®{3*}, while in
the ¢ and « channels we have {1}&{8}, neither of
which is in {3}&{3*}. The possibility {3}&{3*} is
therefore unsatisfactory, leaving only {3}&{3*}a{1}.

In fact, R ={3}&{3*}a{1} satisfies conditions (I)-
(IV). Clearly 3+1-3+1land 1+1~1+1 work triv-
ially. The only problem could arise in the 3+3-~3
+3 process mentioned above, and either by “direct
calculation of the SU(3) crossing matrices or by us-
ING €45 €cgs =0 Opg — O4q Oy it is easy to see the al-
gebraic constraints are satisfied.® However, the
global analyticity requirement above cannot be sat-
isfied in this dynamical framework The SU(2) con-
tent of {3t&{3*}&{1} is only } and 0, so that 3 +3-3
+3 contains an analog of KK — KK, with only iso-
spin-zero intermediate states in all channels KK
and KK,

A consideration of the SU(2) crossing matrices
for 3 +3~ 3 +3 reveals® that if isospin-zero satura-
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tion is required, the amplitude must be constructed
out of functions F(s,u) having the properties

D, F(s,u)=D,[F(s,u)+ F(s,t)]=D,F(s,t)=0.* There
is no way to construct such a function in the pole
approximation considered here, without introduc-
ing essential singularities at infinity.”

B,

The smallest possible representations are {1},
{4}, and {5}, each of which is self-adjoint. The rel-
evant Kronecker products are {4} ® {4} ={10}&{5}
®{1} and {5}®{5}={14}®{10}&{1}. Clearly {1}, {4},
{5}, {4}e{1}, {5}®{1}, {4}®{5} are the only possi-
bilities having dim < 9 and none of these can pos-
sibly work. For instance, {4}®{1} contains 4-4
scattering which contains no {4} intermediate state,
but only a {1}, while {5}&{4} contains 5-5 scattering
which has no {4} and no {5} as an intermediate state.

G

The smallest representations are {7} and {1}, the
next one being {14}, which is too large. Now {7}
& {7r={27ts{14}a{7}a{1}, so {7}®{1} is a possibil-
ity. Furthermore, {7}®{7} couples symmetrically
to {1} and antisymmetrically to {7}.® This case
therefore requires us to check the crossing matrix
explicitly, and it turns out that the eigenvalue in
Eq. (4) is =1 rather than +1, which in physical

TABLE I. Representations of A; which have dimensionality =(I +1)2,
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terms implies that a repulsive force generates
bound states,® violating condition (IV).

The arguments above prove the assertion for
n=2. The mathematical details for the remaining
portion of the argument will be found in the Appen-
dix.
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APPENDIX

In this Appendix we complete the general proof of
our assertion above.

First of all, in order to implement condition (I),
we list in Tables I-V all irreducible representa-
tions of A;, B, C, D;, and G,, F,, E;, E,, Eg with
dimensionality < ({+1)? for rank /> 2. The case
l=2 has already been discussed, but is included in
the tables for the sake of comparison.

Condition (II) requires that the representation R
be self-conjugate. Thus if an irreducible represen-
tation D is not equivalent to its conjugate represen-
tation D*, then D and D* must appear in R the same
number of times. It was in this way that we ruled
out the six-dimensional representations of SU(3).
The dimensions of the representations so ruled out

At the top we designate the representations by

their Young shapes. If a representation is conjugate to a representation on its left, it is designated by an asterisk next
to its dimensionality. Self-representations are indicated by the subscript S, adjoint representations by the subscript A,

and pseudoreal representations by the subscript Q.

Algebra e [1] (NI PRI S & I S LT S L IR SO I [2] [2'] (2,471
A, 1 3 3* . oo 6 6* 84
A, 1 4g 6 4% . .o .o 10 10%* 15,
Ay 1 5 1o Lox 5+ : ’ 15 15* 244
A; 1 6 15 200 15% 6" 21 21* 354
Ag 1 1 21 35  35% 21 7« 28 28* 48,
A, 1 8 28 56 56* 28% 8+ 36 36* 63
Ag 1 9 36 6% 9* 45 45+ 804
A, 1 (+1)g 31 +1) GlE+1)* (@+1)* sa+2)@+1) (BE+2( +1)* 1(1+2),
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are shown in Tables I-V without underlines, while
the remaining dimensions are shown with under-
lines. Because of conditions (I) and (II), for large
rank [ there are very few possibilities.

For the five exceptional algebras, we are left
with only two representations apart from the triv-
jal representations, and one of these, the repre-
sentation {7} of G,, has already been ruled out for
violating condition (IV). For B, C;, and D, with
large [ we are left with only the trivial representa-
tions {1} and the self-representations.”® For 4,
with large [ we are left with the trivial representa-
tions, the adjoint representations, the self-repre-
sentations and their conjugates, and one other
series of representations and their conjugates. All
other series of representations grow faster than
(I+1)? when I gets large.

For small [ apart from the series just mentioned,
we have only the representation {20} of A,, four
spinor representations of the B series, two 14-
dimensional representations of C,, and six spinor
representations of the D series. In order to apply
condition (III), it is necessary to discuss the sym-
metrized and antisymmetrized Kronecker squares
for the remaining representations. Some general
results are available., These can be phrased in
terms of the classification'' of irreducible repre-
sentations of simple compact Lie algebras into
three mutually exclusive types called complex,
potentially real, and pseudoreal. The classifica-
tion is as follows:

If in an irreducible representation D is not equiv-
alent to its complex-conjugate representation D*,
then D is said to be complex. For a complex rep-

TABLE II. Representations of B with dimensionality
=(l +1)2. The subscripts S, Sp, and Q mean self-repre-
sentation, spinor representation, and pseudoreal repre-
sentation, respectively.

Algebra Representations
B, 1 Ss 4sp,0
B, 1 Is 8sp
B, 1 9 16,
B 1 11 3250
Bg 1 135
B, 1 (2L +1)g
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TABLE III. Representations of C; with dimensionality
= (1 +1)2, The subscripts S and Q mean self-representa-
tion and pseudoreal representation, respectively.

Algebra Representations
Cs 1 8s.0 14 4o
Cy 1 85,0
G 1 2l)s 0

resentation, the negative of the highest weight A

is not a weight, while for potentially real and pseu-
doreal representations, —A is a weight. Only the
algebras A,;, D,,,, and E; have complex represen-
tations.

If an irreducible representation D is equivalent
to D*, then it is either potentially real or pseudo-
real. It is defined as potentially real if the matri-
ces representing the algebra in the representation
D can be transformed by a similarity transforma-
tion to matrices of real numbers, Otherwise it is
pseudoreal. The characters of both potentially real
and pseudoreal representations are real. Knowing
the highest weight of an irreducible representation
and the root diagram of the algebra enables one to
determine whether the representation is potentially
real or pseudoreal. Since —A is a weight, and

TABLE IV. Representations of D; with dimensionality
=< (I +1)2. The subscripts S, Sp, and Q mean self-repre-
sentation, spinor representation, and pseudoreal repre-
sentation, respectively.

Algebra Representations
D, 1 8s 8sp 85p
Dy 1 10 16sp 16,
Dy 1 12 32550 32550
D, 1 145 645, 648,
Dy 1 165
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TABLE V. Representations of the exceptional algebras with dimensionality
equal to or less than (I +1)2,

Algebra Representations @ +1)? Comment
G, 1 7 9 Fails because eigenvalue
of crossing matrix is -1
F, 1 25 Fails trivially
E, 1 27 27* 49 Fails because 27 +27+1> 49
E, 1 560 64 {56} is a pseudoreal repre-
sentation
Eg 1 81 Fails trivially
since any weight M is of the form A -¢, -a, -, A (1,0,...,00 ®(1,0,...,0)
- «++ — @, where the o, are (not necessarily distinct)
simple roots,'® we have 2A =2,-=1_q,. . Bose and Pa- =[€2,0,...,0] ym 69[(0:1’0’--"0”,““5”’
tera'® have shown that D@ is potentially real if » (A1)

is even, and pseudoreal if » is odd. We note that
this implies that for pseudoreal representations
there can be no weight M at the origin. However,
some potentially real representations also have no
root at the origin. An adjoint representation
(whose weight diagram is the same as the root di-
agram for the algebra) is always potentially real.
A complete classification of unitary irreducible rep-
resentations into the three types was first given
by Mehta and Srivastava.* In Tables I-V we have
marked the pseudoreal representations with the
subscript @ because of their close relation to qua-
ternions.'®

The significance of all of this is the following'*:
If the Clebsch-Gordan series of the direct product
of two representations D, and D, which are not
complex contains a representation D, which also is
not complex, then D, is potentially real if D, and
D, are of the same type. Otherwise D, is pseudo-
real. The Kronecker square of a pseudoreal rep-
resentation can therefore never contain itself.
Thus a representation R of the form {1} 2D with D
irreducible and pseudoreal is ruled out by condi-
tion (III). This leaves us with five series of repre-
sentations of A4,;, the self-representations of B; and
D,, some spinor representations of B;, B,, D,, and
D,, and one of the 14-dimensional representations
of C,.

A direct calculation of the Kronecker squares of
the self-representations rules all of them out by
condition (III) except for the representations {3} and
{3*} of SU(3), which have been discussed above.
The calculations can be made by using weight-dia-
gram techniques!® or in this case very simply by
using Littlewood’s plethysm."

The results for the squares of the self-represen-
tations are, in the notation of Eqs. (B6)-(B10) of I,

B, and D;: (1,0,...,0)®(1,0,...,0)
=[€0,0,...,0)&(2,0,0,...,0)]

sym

8[(0,1,0,...,0] . . (A2)
Cy: (1,0,...,0) ®41,0,...,0)

=[(2,0,0,...,0] . ®[<0,0,...,0)

©(0,1,0,...,00] . . (A3)

The representations (0,0,...,0), (1,0,...,0),
(2,0,0,...,0), and (0,1,0,...,0) in this notation are
the same as the representations ¢, [1], [2], and
[1%], respectively, in the Young-shape notation
used in the column headings of Table I. For each
algebra the number of entries between brackets
is I, In the case of A,, ¢0,1) is the conjugate of
(1,0) ={3}, which is why condition (III) does not rule
out {1}&{3}+{3%}.

For the algebras A; we now have only two series
of representations to rule out. An explicit calcula-
tion for the (0,1,0,...,0) series gives

Al=4): 0,1,0,...,00®40,1,0,...,0)
=1$0,2,0,...,0 ©(0,0,0,1,0,...,0]

®[(1,0,1,0, ."’O>]antisym’ (A4)
Al(l=3): (071,0>®<031,0>
=[(0,2,0}63(0,0,0)]Sym€9[(1,0,1)Jamisym,
which in Young’s notation is
A(l=4): [12 12]=2%|& [1¢ 12
(=0 (Plo[r)=[2le (e (21, o

A 1=3): [1*]®[1%]=[2%]a{1} ®[2,1?%).

Note that the representations (0,1,0,...,0) do not ap-
pear on the right-hand side. The only difficult
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case here is the six-dimensional representation,

{6}=¢0,1,0), of (A3). The representation {1}{4}

®{6}4{4*} has dimension one less than the repre-
sentation adjoint ® singlet. However, by using

{6}® {6} = [{1}@{20}] sym @[{15}]antisym ’
4o {o}={ar}s {20, (a6)
{4} {at=[{10}] & ({6}, ieym »

the reader can easily check, in parallel with our
arguments above, that it is not possible to con-
struct self-consistent amplitudes for 4-4, 6-6, and
4-6 scatterings.

For the spinor representations of B;, B,, D,, D,
we have'®

By: {8fs, ®{8}s, ={1}e{21}a{35},

B,: {16}, ®{16},={1}o{9}®{36}a{84}&{126},
Dy {8}, ®{8}s,={1te{28}®{35}, a7
D,: {8}, ®{8',={8}a{56},

Dg: {16}, ®{16}, ={10}o{120} {126},

D

{16}, ® {16}, = {1}a{45} 5 {210},

In none of these cases do we have spinor represen-
tations appearing on the right-hand side, so they
are ruled out. We conjecture that spinor ® spinor
never contains spinor representations.

Finally we are left with the interesting case of
the 14-dimensional representation of C,. Here we
have

{14} ® {14} =[{1}a{14}a{90}] o a({21}a{70}]

antisym *

(A8)

If we try R ={1}®{14} we see that there is no anti-
symmetri—é trilinear coupling as neither the {1} nor
the {14} couple to themselves antisymmetrically via
{1} or {14}.

This proves our assertion.

!C. M. Andersen and J. Yellin, Phys. Rev. D 3, 846
(1971), referred to in the text below as I. A detailed set
of references can be found there, as well as an exhaus-
tive set of definitions of the mathematical and physical
terminology used here.

’S. Mandelstam, Phys. Rev. 184, 1625 (1969).

3We use the crossing conventions of C. Rebbi and
R. Slansky, Rev. Mod. Phys. 42, 68 (1970), in which the
channels are

(s) a+b—c+d,
(¢) a+c—~b+d,
() a+d—b +c.

The details of the procedure for going from Eq. (4) to a
relation between coupling constants of the form of Eq. (5)
are given in Sec. I of I, and further in C. Schmid and

J. Yellin, Phys. Rev. 182, 1449 (1969), Sec. III and the
Appendix; Phys. Rev. D 2, 1354(E) (1970).

This requirement g'uarantees that our bootstrap struc-
ture cannot include completely self-consistent scalar in-
termediate states. (No Pomeranchon is admissible here.)
We will return to this point below,

5In the notation of Ref. 3, the crossing matrices are

<A5(3*>> (¥ % <At<1>>: -5 -4 <Au<1)>
A4(6) L -2/\4,0) -2 4,8

3

’

and

Xtu=Xut:

wp= ol
ol cofoo

Ifu, is a 3, then the antisymmetric combination € °®u u,
=ufisa 3* and €°® is exactly the Clebsch-Gordan co-

efficient we need.

éThe symbol D means “discontinuity in s.”

"In 2 more approximate, and perhaps more realistic,
treatment of the bootstrap constraints, this difficulty, in
which a (Pomeranchon) scalar intermediate state is dis-
allowed, can be avoided. See J. Mandula, J. Weyers,
and G. Zweig, Ann. Rev. Nucl. Sci. 20, 289 (1970).

8n {7} ® {7} the antisymmetric piece contains {7} ® {14}
and the symmetric piece contains {27} ® {1} .

H.-M. Chan, P. DeCelles, and J. E. Paton, Phys. Rev.
Letters 11, 521 (1963); Y. Ne’eman, Nuovo Cimento 33,
133 (1964).

0The self-representations of the simple classical Lie
algebras are the representations associated with the
classical groups themselves, e.g., the n-dimensional
representation of R (n). Usually the self-representation
is a lowest-dimensional nontrivial representation of the
algebra, but in the case of B, and D, there are spinor or
“double-valued” representations of lower dimension.

Uy, p, Wigner, Group Theory and its Application to the
Quantum Mechanics of Atomic Spectra (Academic, New
York, 1959), English edition, Chap. 24. Earlier refer-
ences are A, Loewy, Trans. Am. Math, Soc. 4, 171 (1903)
and G. Frobenius and I. Schur, Sitzber. Preuss. Akad.
Wiss., Phys.-Math. K1, 186 (1906).

2The simple roots ay,as,, ...,a; are roots which are
chosen such that any positive root o satisfies a = k oy
+koay+eeet+kyo; with non- negative integers k

13 K. Bose and J. Patera, J. Math. Phys. 11 2231
(1970).

1“M. L. Mehta, J. Math. Phys. 7, 1824 (1966); M. L.
Mehta and P. K Srivastava, ibid, 7 , 1833 (1966).

15F, J. Dyson, J. Math, Phys 3, 1199 (1962).



2482 J. YELLIN AND C. M. ANDERSEN 4

6Reference 1 and C. M. Andersen, J. Math. Phys. 8,
988 (1967).

11p, E. Littlewood, The Theory of Group Characters and
Matrix Representations of Groups (Oxford Univ. Press,
Oxford, England, 1950), 2nd ed., Appendix A and refer-
ences cited therein. This technique has been recently

discussed by B. G. Wybourne, Symmetvy Prvinciples and
Atomic Spectroscopy (Wiley-Interscience, New York,
1970), p. 49.

18, Gruber and L. O’Raifeartaigh, J. Math. Phys. 5,
1796 (1964).

PHYSICAL REVIEW D

VOLUME 4, NUMBER 8

15 OCTOBER 1971

Analysis of the “Best” Positivity and Analyticity Inequalities on a

General, Crossing-Symmetric m°-7° Amplitude*

Martin L. Grissti
Physics Department, University of Illinois, Urbana, Illinois 61801
(Received 21 June 1971)

Inequalities derived previously from rigorous positivity and analyticity for the n%-n® double
partial-wave amplitudes (a, ;) are reexpressed in terms of Roskies’s crossing-symmetric
parametrization. Using theorems on moment problems, the “best” inequalities for any
value of 0=1 +n are discussed, and the result is expressed as an allowed region of the
otherwise unrestriéted parameter space. The o=4 and 0=5 “best” inequalities are explicitly
calculated and compared with results previously given by Roskies for the case 0 =4. New
inequalities relating the partial-wave amplitudes f,;(s) and their derivatives f,’(s) are de-
rived, valid for all I =2, and all 0 =s =1. They are combined into the general analysis and
compared with similar conditions. The moment approach is used to examine the nature of
the inequalities resulting from an alternative method due to Roskies and to Piguet and
Wanders; we discuss the advantages and disadvantages of this approach. Finally, applications
are discussed, to show the constraint that is present in these inequalities. The extension of
the method to the case of the m-m amplitudes with isospin is given in an Appendix.

I. INTRODUCTION

In this work we continue the study of the con-
straint placed on possible 7°-7° amplitudes by
crossing symmetry, positivity, and analyticity
using an approach developed previously.! As
pointed out by Roskies,? these constraints, ex-

pressed as inequalities involving only a finite num-

ber of the Balachandran and Nuyts® double partial

waves, a,, are most economically studied by using

a crossing-symmetric parametrization of the am-
plitude, and expressing all the inequalities in
terms of the coefficients of this expansion —this
ensures that all results will automatically be con-
sistent with crossing symmetry.

The emphasis in this work is on establishing a
method to discuss the “best” inequalities that fol-
low from the positivity of the absorptive part,

A(s, t), and of its derivative, dA(s, ¢)/ds, when
combined with crossing symmetry. This positivity
leads to positive combinations of partial waves and
their derivatives [the simplest is the familiar
fi(s)=0for 0 <s<4p? 1=2], each of which gives
rise to an infinite sequence of inequalities on the
a,’s. Many of these inequalities are redundant,

and by using theorems on moment problems, we
are able to pick out a “best” set of inequalities,
necessary and sufficient for the positivity of each
combination. In addition, the method organizes
the different inequalities, and clarifies the rela-
tionship between them, automatically picking out
the “best” set of these. We do not have to examine
the many redundant inequalities in detail.* The
analysis is general and works with equal facility
for all [>2.

Only constraints on the amplitude within the
Mandelstam triangle have been considered; in ad-
dition, the consequences of full positivity
[Imf,(¢) =0 for ¢> 4u® and all /] have only been
partially explored. As a consequence of this, our
final results are not the most constraining pos-
sible.®

In Sec. II we establish our notation, review as-
pects of our previous work,! and collect pertinent
results on the Balachandran and Nuyts expansion,®
on Roskies’s parametrization of a crossing-sym-
metric 7°-7° amplitude,® and on the relation of our
inequalities to moment problems. Section III ob-
tains and examines specific inequalities, utilizing
only simple positivity, A(s, {)>0, and a compari-



