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The linear cr model is used to study how full chiral symmetry is realized as the (3, 3*)+ (3*,3)
interaction is turned off. The Lagrangian which fits the observed spin-zero mass spectrum
chooses either a normal realization with degenerate SU(3) & SU(3) multiplets or a Goldstone
realization with an octet of massless pseudoscalar mesons, depending on whether the mass
term of the Lagrangian is greater or less than a certain critical value. The value of the mass
term depends sensitively on the masses of the I=0 scalar resonances and present knowledge
of these masses is compatible with either type of realization. However, the values of the nu-
cleon cr commutators calculated from meson-nucleon scattering data can resolve this issue.
For the normal solution the x-N a commutator is predicted to be about 75 MeV, whereas for
the Goldstone solution the prediction is 30 MeV. The symmetry-breaking parameters are
a =-0.91 and b =-0.16 independent of how full symmetry is achieved.

I. INTRODUCTION

The linear 0 model' provides a framework for
studying various symmetry-breaking schemes.
Generally, the model lends support to the propos-
al' that SU(3) x SU(3) symmetry is violated by an

interaction of the form

L' =E'pQp+C8+8 &

where Qp and u, are the I =0 scalar members of a
(3, 3*)+ (3*,3) representation of operators. In the
tree approximation, the known masses of the pseu-
doscalar mesons can be used to derive predictions
for the masses of the scalar mesons which are
compatible with the available (although incom-
plete) evidence for the existence of these scalar
resonances. This procedure also gives an evalua-
tion of the parameters

a = e,/~2 co and 0 = (0 Iu. I 0)/~2(0 I s. I o&

which respectively measure the ratio of octet to
singlet breaking in the interaction (1) and in the
vacuum state. The estimates so derived are in
approximate agreement with estimates of these
ratios based on other considerations. '~

Since these features of the model agree with
some of the currently favored ideas concerning
the breaking of SU(3) && SU(3), the present work
is motivated by the belief that the model can serve
as a useful guide to understanding how full chiral
symmetry would be achieved if the symmetry-
breaking interactions could be turned off. It is well
known that full chiral symmetry can be realized
either in the normal way with degenerate SU(3)
x SU(3) multiplets or with a number of different
configurations of Goldstone bosons. '

It is found that the question of how full symme-

try is realized depends sensitively on the de-
tailed structure of the Lagrangian. Depending on
the size of the mass term in the Lagrangian that
fits the observed spin-zero mass spectrum, full
symmetry is realized either in the normal way
or with Bn octet of massless pseudoscalar mesons.
Furthermore, the evaluation of this mass term
with sufficient accuracy to decide between these
two possibilities depends on more accurate know-
ledge of the masses of the two I=0 scalar reso-
nances than is now avail3Me. Independently of
how the symmetry limit is achieved, the symme-
try-breaking parameters are determined to be

a=-0.91 and b=-0.16, (2)

indicating that the interaction (1) is approximately
SU(2) x SU(2)-symmetric [SU(2)x SU(2) is exact if
a =-1] and that the vacuum is approximately SU(3)-
symmetric. These results are somewhet surpris-
ing since it appears to be commonly believed that
if the interaction (1) is approximately SU(2) x SU(2)
symmetric, then full symmetry is realized with
an octet of massless pseudoscalar bosons. '

Because the I=0 scalar resonances are very
broad, it may not be possible to determine with
any certainty how full chiral symmetry is achieved
solely on the basis of the observed spin-zero mass
spectrum. This issue, however, can be decided'
from calculation of the 0 commutators from w -N
and K —N scattering data. '

In Sec. II, the 0 model is presented and the spin-
zero mass spectrum is studied. Although a num-
ber of authors" have made similar studies, the
procedure followed here is somewhat different in
that the parameters a and b and the coupling con-
stants of the Lagrangian are evaluated so as to be
compatible with the measured value of fr/f, f'(0)

2440



IS SU(3) x SU(3) REALIZED WITH GOLDSTONE BOSONS? 2441

and the baryon octet mass splitting, as well as
with the spin-zero mass spectrum.

In Sec. III, the model is studied in the SU(3)
xSU(3} limit co=@,=0. Using the values of the
coupling constants determined in Sec. II, it is
found that if the mass term in the Lagrangian is
greater than a certain critical value, full symmetry
is realized in the normal way, and that if the mass
term is less than this value symmetry is realized
with the vanishing of the pseudoscalar octet
masses.

Since it is not possible to decide conclusively
which of these possibilities is chosen because of
lack of knowledge of the I =0 scalar masses, in
Sec. IV it is shown how the value of the cr commu-
tators calculated from w —N and K —N scattering
data can be used to settle the issue. For example,
if the normal solution is chosen then the m —N a
commutator is predicted to be about 75 MeV,
whereas for the Goldstone solution its value is ex-
pected to be 30 MeV.

given by the coefficient of the quadratic terms of
1.(o;, v(),

(6)

l1 ——,a
I"g

0 2
(7)

2 6 0
(dp

In this same approximation the corresponding de-
cay constants are"

B2L
(m,'},=—

Bg ~ Bgg . „p
B 2L

Bv, Bv,
5

Explicit expressions for (5) and (6) are given in

Appendix A.
The masses of the w, K, and K mesons can be put

into the particularly simple forms

II. LINEAR a MODEL

The SU(3) x SU(3)-invariant Lagrangian for the
spin-zero mesons is taken to be

Iu= —,'Tr(s„Ms„M ) --,' a Tr(MM } ,'p[Tr(M-M-)]'
—,'-y Tr(MM MM ) ,'b(de—tM—+detM ), (3)

where

M = (u; +i v&)&;

f,= (—', )' (uo(1+ b),

f»= (-', )' '(uo(1 ——,'b),

f (3)1/2~ b

A. Determination of a and 6

From the Glashow-Weinberg relation' for the
zero-momentum-transfer value of the K» form
factor,

(8)

and the fields u, and v; (i =0 ~ ~ ~ 8) form a (3, 3*)
+(3*,3) representation of the chiral group. Con-
servation of the SU(3)x SU(3) charges is broken by
the additional term (1).

In a theory conserving parity and isospin, up and

us are the only fields which can develop nonzero
vacuum expectation values. These nonzero ex-
pectation values split the masses of the 18 rnesons
through the tadpole mechanism. o

After rewriting L = L„+L' in terms of scalar-
meson fields o„defined by

2+ 2 — 2

f'(0) = f +f
2

and in Eqs. (8) one finds the relation between the
quantity fr/f, f'(0) and the parameter b,

f /f, f'(0) =(1 ——,'b)/(1+b) (10)

[f'(0) =1 independent of b] From th.e value fr/
f,f'(0) =1.28+0.04 determined from Cabibbo theo-
ry, "one finds

g = -0.16+0.02.
0'g =Q- —47 ~ (4)

where ra, =(0)u; )0) (only u&0 and &u, are nonzero in
the model considered here), one must apply the
equilibrium conditions

Equations (7) and the experimental values p, '
=0.0191 BeV and p, ~ =0.246 BeV give

g = -0.911 +0.003 (12)

=0=0, (5)
B+0 at =v~ =0 B~S a~ =v& =0

Equations (5) give eo and e, as functions of ruo, &o„
and the coupling constants n, P, y, and 5. Once the
values of these parameters are determined Eq. (4}
wiQ be used to determine the values of cop and w8

in the symmetry limit &0 = e8 =0.
In the tadpole approximation the mass matrix is

in close agreement with the Gell-Mann-Oakes-
Renner' value a = -0.88. Equation (7) also gives
the prediction m, =1.02 + 0.05 BeV.

Before turning to further analysis of the spin-
zero mass spectrum, it is interesting to consider
how the baryon octet can be included in the model.
These considerations shall give additional support
to the value of 5 determined above.

Since the baryon mass term in a Lagrangian is
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not chiral-invariant, the stipulation that (1) speci-
fies the symmetry-violating interaction implies
that in the tadpole approximation all the baryon
mass arises through the chiral-invariant Yukawa
coupling of the baryon octet to the (3, 3*)+(3",3)
spin-zero fields. If the baryon-meson Yukawa
coupling constant is GB, then after applying the
translation (4) to the Lagrangian one finds that the
average baryon mass M~ is proportional to Ggcop
and that the scale of the mass splitting relative to
Ma is set by the ratio &u, /&u, .

An exact formulation of the baryonic Lagrangian
is complicated by the fact that the baryon octet be-
longs to a mixture of chiral representations. "
However, a quark model with

L, = q'tfq —G, (qk, qu, + qh. ,y, qv,). (13)

can be used to estimate the value of b which pro-
duces the observed baryon mass splittings. The
quark mass matrix M, is given by

M, =G, v;&& (14)

so that the nonstrange- to strange-quark mass
ratio is

M~/Mq= (1+b) /(1 —2b) .

lf one assumes that the octet baryons are built of
three nonrelativistic quarks, then the observed
splitting gives M~/M&= 0.62, implying b= -0.17 in
agreement with (11).

B. Spin - Zero Mass Spectrum

With 5 given by (11) one can see from Eqs. (A3)-
(A7) that the squares of the pseudoscalar masses
p, ,', p.~', p. „', and p.„' depend on the three addi-
tional parameters, n+ 2tl(vo'+ u, '), y&uo', and 5mo.
Although a number of alternatives are available
for evaluating these parameters from the experi-
mental data, here the procedure has been adopted
which is simplest from the computational point of
view. The known values of p. ,', p, ~', and p, ~'+ p. „'
have been used to fix the parameters and the re-
sulting predictions for p,„'—lL(. „', and the scalar
masses m, and m„are given in Table I for values

of b in the range (11).
For b = -0.16, m „'—m „' is predicted to within

2% of the observed value, while the predicted
values m„=1020 MeV and m, .=960 MeV are in
rough agreement with the existing evidence for
these scalar resonances.

For values of b in the range (10) the y —q mass
difference is predicted to be on the order of 10
MeV greater than the observed mass difference.
This discrepancy could be removed by including
in the symmetry-breaking interaction L' a term
which is bilinear in the (3, 3*)+(3*,3) spin-zero
fields.

The masses of the two I =0 scalar mesons, m
and m. .. depend on knowledge of the additional
parameter z. Since the masses of the o and g' are
not accurately known, it is not possible to make an
accurate determination of n. In Table II, the
values for m, and m, . are listed for a=+0.05, 0,
-0.05 BeV' with g =-0.16. The value o. =0 leads
to the plausible results m, = 680 MeV and m, .
=1170 MeV"

Finally, it should be noted that Levy in the first
extension of the o model to SU(3) x SU(3) (Ref. 1)
and many other authors' have found similar fits
to the spin-zero mass spectrum. The procedure
followed by many of these authors is to use the four
known pseudoscalar masses to determine the
coupling constants and the value of 5. This ap-
proach gives b =-0.21 (for example, see Car-
ruthers and Haymaker, Ref. 2) which leads to
less satisfactory agreement with the measured
value of f~/f, f'(0) and the observed baryon mass
splitting although it avoids the small discrepancy
in the X —q mass difference found here. None of
the discussion in Secs. III and IV, however, would
be significantly affected by such a change in the
value of b.

III. SU(3) x SU (3) LIMIT

Equations (Al) and (A2) resulting from the equi-
librium conditions (5) can be used to study how
the meson Lagrangian realizes full SU(3) x SU(3)
symmetry in the limit fp Es 0 For g =-0.16
the analysis of Sec. II gives

TABLE I. For values of b in the range (11), the known values of p, , and j(Lz have been used
to obtain predictions for a, fz/J„f+(0), and m, . Using p& +pz as additional input, one obtains
predictions for )Lt -p, z and m~ .

f~If.f '(0) mK (Beg) J(f,„—p, „(Beg ) m+ (B V)

Experi ment
Theory -0.14

-0.16
-0 ~ 18

-0.908
-0.911
—0.914

1.28 + 0.04
1.24
1.29
1.33

1.1 (? )

1.08
1.02
0.97

0.616
0.636
0.630
0.625

0.96-1.00 (? )
1.00
0.96
0.94
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TABLE EI. With b =-0.16 the predicted values of the
two I=0 scalar resonances are listed for different values
of a. The cr has been observed with a mass around 700
MeV and a width greater than 100 Me V.

e (GeV2) m „{MeV) m„l {MeV)

0.05
0.00

-0.05

635
680
715

1150
1170
1190

a + 2Pu&o'(I + 2b') = 0.240 BeV3,

2y, ' = 0.495 BeV',

(—')'~'b~ =-0.256 BeV'.

(16)

Since the value of n cannot be accurately deter-
mined without more precise knowledge of the I =0
scalar masses, its value will be assumed to lie in

the range

0.05 ~ -0.05 BeV'. (17)

If coQ and co,
' are u sed to de s ignate the va lu e of

(0~ go~0) and (0~ p, ~0},respectively, in the limit
6 p E'8 0 and y and b, are def in ed by

X
= ~o~~o ~

b~ = Q)o/v 2 (do,
(18)

then Eqs. (Al) and (A2) yield several solutions for
X and b, . However, the requirement that the
symmetry limit should correspond to a physically
acceptable solution with a non-negative mass spec-
trum serves to eliminate some of the possibilities.

In Appendix B, the equations determining the
solutions for X and b, are recorded along with ex-
pressions for the masses in each different case.
The results can be summarized as follows:

(i) b, =0, y c0. y is determined by Eq. (B2).
For ~ ~ a, =0.047 BeV' the mass spectrum is non-
negative for the larger of the two roots of (B2).
The vacuum is SU(3)-symmetric, and there is an

octet of pseudoscalar Goldstone bosons. For e
& a, the roots of (B2) are complex.

(ii) b, =-1, A@0. y is determined by Eq. (B4).
The vacuum is SU(2) x SU(2)-symmetric and the
mass spectrum breaks up into SU(2) x SU(2) multi-
plets. %ith y&0 at least one of the multiplets p. ,',
m ', or m~.', p,

' has a negative mass.
(iii) b, =2, y w0. y is determined by Eq. (B6).

For cy & 0 there is no acceptable limit, but for
o ~0 there is an octet of massless mesons and
a non-negative mass spectrum for the negative
value of y.

(iv) y and b, are determined by the pair of Eq.
(B8). For y&0, this solution can be rejected
since it gives jL(., '&0.

(v) &uo =0, uo'+0. The value of ru,
' is determined

by Eq. (B10). These equations are consistent for
a = 5.2 BeV' which is well outside the range (17).
Moreover, ]L(,

' and m, ' are negative for y&0.
(vi) no=a&,'=0. This is the normal realization of

symmetry with degenerate SU(3) x SU(3) multiplets.
For a ~ 0 it possesses a non-negative mass spec-
trum.

The conclusion is that for @&0 there is an ac-
ceptable solution for b, =0 and another for b, = 2.
Both of these are characterized by an SU(3)-sym-
metric vacuum and an octet of massless mesons,
although the SU(3) group is different in each case.
For a~ 0 there is normal solution, and for e, & n
~ 0 there is also a Goldstone solution with b, =0.
Since for a given value of n the requirement of a
non-negative mass spectrum does not lead to a,

unique solution, it is necessary to use equations
(Al) and (A2) to learn which of the possibilities
corresponds to the symmetry limit which is
reached from the physical values of ep and e,.

Although there are an infinite number of paths
between the physical point and the symmetry point
in the E'p 68 plane, the simplifying assumption will
be made that the interaction (1) is turned off by
keeping a =-0.91 and letting ep approach zero. One
can study how X and b, vary as op is decreased to
zero by eliminating eo and e, from (Al) and (A2).
The resulting equation is

Ax +aX+C =0 (19)
with

A =2P(uo'(I +2b, ')(b, —a)

+ 2@~o' [3b,(1 —b, + b,') ——', a(1 + 6b, ' —2b,')],
B= -(—', )

'
b&uo(1 + b, ) [b, + a(1 —b,)],

C =a(b, —a).
One finds from (19) and (20) that if n ~ a„ then

the Lagrangian traces a path from the physical
point y = 1, b, = -0.16 to the symmetry point with

b, =0 and y determined by the larger root of (B2).
If a& o.„then the path moves from the physical
point to the normal solution y =0, b, = a.

The final conclusion then is that for a o 0.047
BeV', the Lagrangian determined in Sec. II chooses
the normal symmetry limit with degenerate SU(3)
x SU(3) multiplets and that for n = 0.047 BeV' sym-
metry is realized with an octet of Goldstone bosons.

Although the experimental data for m „slightly
favor a value for + corresponding to the Goldstone
limit, because of the broadness of this resonance
the normal realization of chiral symmetry cannot
be excluded. The present considerations indicate
that the commonly held belief that the pseudoscalar
mesons are Goldstone bosons is only an assump-
tion and not a conclusion that can be deduced from
the observed mass spectrum. In Sec. IV it will be
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shown that the question of how SU(3) x SU(3) is rea-
lized can be decided on the basis of 0-commutator
matrix elements which can be calculated from
meson-nucleon scattering data.

Before proceeding to this subject, a few observa-
tions will be noted concerning the size of different
parameters which characterize the 0 model. From
the experimental value f,=95 MeV, one finds that
~, =139 MeV. Equations (16) then indicate that the
two dimensionless coupling constants are I3= 6 and

y =13. The trilinear coupling constant 6 is about
-2.3 BeV. In the SU(3) x SU(3) limit the meson
spectrum is characterized by a small constant with
the dimension of mass. For the normal realiza-
tion of symmetry this constant is the degenerate
mass of the spin-zero mesons and is on the order
of 200-300 MeV. In the case of the Goldstone re-
alization, the characteristic constant is coo Its
magnitude is set by the ratio 5/y and it is calcula-
ted to be about 100 MeV.

IV. NUCLEON 0 COMMUTATORS

From m-N and K-N scattering data one can de-
rive estimates for the 0-commutator matrix ele-
ments. These are defined by

and (21)

where H' is the interaction which violates SU(3)
x SU(3) symmetry invariance. If H' is determined
by the interaction (1), then these double commu-
tators are given by the matrix elements

v 2 go+as v 2uo+us

and

2v 2&o —cs 2v 2uo —u,

(22)

In order to derive a theoretical prediction for the
0 terms it is necessary to make estimates of the
matrix elements e 0(N l uo [ N }and e,(N l u, l

N }.
From the model of the baryon mass outlined in
Sec. II, it follows that the observed octet splitting
of the baryons is due to the term e, p., in (1) and
hence one has

-e,(Nl I, l N) = -2QQ MeV. (23)

To determine the contribution of the singlet term
c,po of (1) to the average baryon mass Ms, one
must know the value of the baryon mass in the
SU(3) x SU(3) limit. In this limit Ms is proportional
to G~coo. If symmetry is realized in the normal
manner, then &~ =0 and the baryon mass vanishes
while for the Goldstone realization (do' can be deter-

mined from (B2) to be 0.64&go (for a =0).
Taking 1150 MeV as the average mass of the

physical baryons then gives

e,(N-lu, lN}=1150 MeV (24a)

if symmetry is realized in the normal way, and

eo(N-l uol N} = 400 MeV (24b)

if symmetry is realized with Goldstone bosons.
With a = -0.91 one then has the predictions

cr „=75 MeV,

0~„=1065 MeV,

for the normal realization, and

v, „=30MeV,

clyde)

~ 345 MeV

(25a)

(25b)

V. SUMMARY

In the tree approximation the linear o model with
a (3, 3*)+(3*,3) symmetry-breaking interaction
gives a reasonable picture of the hadrons. If the
parameters a and b are determined from the mea-
sured values of p, ', p»', and f»/f„f'(0), good
predictions result for the baryon mass splitting
and the z meson mass. Using p.„'+p. „' as addi-
tional input gives good predictions for p.„'—p, „'
and for the scalar w' mass. If one is willing to
ignore the unknown effect of all the higher-order
terms, these results are fairly impressive.

for the Goldstone realization. The prediction for
0,„is sensitive to the quantity 1+a so that the
25% difference between the results quoted here
and those of Ref. (I) is due to the use of the Gell-
Mann-Oakes-Renner value a = -0.88 in the latter
case. In addition, uncertainties in the estimates
(23) and (24) can introduce uncertainties in the
predictions for (T,„and 0~~. Qualitatively, how-
ever, it is clear that if symmetry is realized in
the normal way, then the 0 commutator matrix ele-
ments are expected to be two or three times larger
than if symmetry is achieved with an octet of
Goldstone mesons.

The situation concerning the determination of
(T,„and O~„ from scattering data is unclear at the
present time. ' von Hippel and Kim have used
K Nscatte-ring data to calculate -e,(NluolN}=215
MeV (implying o,„=20 MeV) and their result,
therefore, favors the Goldstone solution. Using a
different calculational method Cheng and Dashen
have analyzed w-N data and found cr „„=100 MeV
which favors the normal realization of symmetry.
A calculation by Hohler et al. using w-N data gives
v„„=40 MeV while Ericson and Rho found e „=34
MeV using m-nuclear scattering data.
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Turning to the question of how the cr-model
Lagrangian realizes SU(3)x SU(3), it was found
that either a normal realization or a Goldstone
realization with an octet of massless pseudoscalar
mesons is compatible with present knowledge of
the spin-zero mass spectrum. The choice between
these two possibilities was found to depend primar-
ily on more accurate knowledge of the I=0 scalar-
meson masses. This information will be extremely
difficult to obtain because of the very large widths
of these resonances.

Many authors have favored the Goldstone realiza-
tion on the basis of a more intuitive evaluation of
the hadronic mass spectrum. Since the results of
this study show that the presence of a small posi-
tive bare-mass term has little effect on the hadron
masses, but can make the Lagrangian choose the
normal realization of chiral symmetry, the issue
cannot be resolved solely on the basis of the ob-
served masses.

In Sec, IV, it was shown that the nucleon cr com-
mutators provide a more clear-cut and less mod-
el-dependent method of deciding between these
two possiblilities. The normal solution predicts
matrix elements two or three times larger than
one would expect if the Goldstone solution prevails.

m, ' = a+2P(do'(I+2b )

+ 2y(oo (1 + b) —(o) ? 6(oo(1 —2b), (AB}

m, ' = n + 2P(oo'(I + 2b')

+2y(oo (1 —b+b ) —(3) 6 (d(o1+b), (A9)

m o' = n + 2 P(do'(1 + 6b') + 2y (oo'(I —26 + 36')

-(-')"6(d.(I + 2b), (Alo)

mo' = a +2P(do'(3+26')

+2y(oo (1 +2b ) +2(~o) ? 6(oo, (Al 1)

m»'=v 2[4P(do b+2y (oo'(2 b—b') —o6(oob]. (A12)

APPENDIX B

The solutions of (Al) and (A2} are discussed in
the SU(3)xSU(3} limit co=a, =0. For each of the
different solutions for y and b, the resulting mass
spectrum is determined from (A3)-(A12). In
the cases where the I =0 masses can be diagonal-
ized in terms of rational expressions, these mass-
es are determined from the equations
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(, '=(l 0'+ l .'~[(P.' —((.')'+4u ']'?'"/2,
(Bl)

m, '=(mo'+m, '+[(m, ' —m, ' '}4+m»']' ']/2.

APPENDIX A

Equations (5) have the explicit form

Otherwise the nondiagonal matrix elements are
re corded.

(i) 6, =0, Xc0. X is determined by

co = n (do + 2 p(oo (1 + 2b ) + o y (do (1 + 6b —2b )

+ (-')'"6(d '(1 —b') (Al)

so = n(o, +2P(oo (o (1+o2b )+2y(oo (o,(1 —b+b )

-(o)"6(do(o, (1 + 6) . (A2)

The pseudoscalar masses have the form

a(2+p y+)3~o' X+(-')'" 6(ooX=0.

The masses are then given by

m .' =m '=m '=-'y(d 'X' —2(-')' '6(o

(B2)

((,' = n + 2P(do'(1+ 2b'}

+ —y(o '(1+b) +(—,) 6(o (1 —2b), (A3)

((o' = a+2p(oo'(1+2b'}

+ oy(oo (1+2b ) —2(o) 6(oo,

=W2[ o y(do (2b —b )+ o6(dob] .

The scalar masses have the form

(A6)

(A7)

= n + 2p(oo (1 + 2b )

+ o y(do'(1 — +67 )b(+) o' ?(6(d1o+ b), (A4)

i(,' = a+2p(o, '(1+2b')

+ oy(oo (1 —2b+3b )+(o) 6(oo(1+2b), (A5)

Po =-3(~s) 6(doX ~

m, ' = -2a -(-,')'?'6(d, X.

n+(6P+6y)(oo X =0

and the mass spectrum is

(B4)

Since 5coo& 0, y & 0, and P& 0, the scalar octet
masses and p, o' are non-negative if y ~0. mo ~ 0
for the larger of the two roots of (B2}.

The solutions to (B2}are complex if a& n, =0.047
BeV'. Therefore, for a ~ a, the larger of the two
roots of (B2) is the only acceptable solution.

(ii) b, =-l, Xw0, X is determined by
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u. ' =m ' = 3(3)'"6~.X —6r~.'X'

Z/2 2 2m, .' = p,' = -3(-.,)'"5~.X —6r~0 X

2 0

m, .' = 4y too'X'(2b, —b,'),
p = 2y~o X [(1—b ) +2b~ )],
m. ' = 8P~.'X'b, '+ ~ r ~'X'( 4b-. + 8b.')

(B9)

m, .' = p, »' = m ' = 12yv, 'X' + 6(—', )' '6+OX,

p,' = 9(-', )'~'5(o, ,

m+ = —2A.2

(B7)

For a ~ 0 the negative solution of (B6) gives an
allowable spectrum. The vacuum is symmetric
under the SU(3) group generated by Q, », Q&„„
and Q, [called "chimeral" SU(3) by Mathur et aL
in Ref. 4] and there is an octet of massless bosons.

(iv) x and b, are determined by

-'y ~,'x'(I —2b.)-(-')'"b~,x = o,
(B8)

o +[2P(1+2b, ) + zy(2 —2b +5b )]&@0 X =0 ~

The mass spectrum is

m, =-2o. .2

SU(2)x SU(2) is an exact symmetry of the vacuum
and the mass spectrum breaks up into SU(2) x SU(2)
multiplets. Since y&0 at least one of the pairs
p, ,', m ' or m, .', p.,' has a negative mass.

(iii) b, = 2, X w 0. X is determined by

o + (18P + 6y)(u, 'X' —3(-', )'~'6(o,X
= 0 (B6)

and the mass spectrum is

m.' = 4P~.'X'+ 3 r ~.'X'(3 —2b, + b.'),
m ~' = v 2 [4Pu, 'X'b, +f y &u,'X'(5 b, + b,') ] .

~ + (4P+Vy) ~.'y' = o,
4 2y2 ~ (~2)1/26 0

The mass spectrum is

(Bio)

=-6r ~.Y,2= 2 2

2 A 2 2m, =-4yuo y
2 (8p 18

)
2 2

m ' = --,' W2 (2y(u, 'y') .

(B11)

Equations (B10) are consistent only for a= 5.2
BeV'. p,

' and m, ' are negative for y & 0.
(vi) &u', = &u,

'= 0. All the masses assume the value
a. This is the normal realization of symmetry
with an SU(3) xSU(3)-symmetric vacuum.

This solution can be ruled out since p, ,' is negative
for y&0.

(v) X = 0, A)8 a0. If y is defined by y = &o,'/D2 v„
then y is determined by the equations
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