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An attempt to understand the structure of particles by means of statistical mechanics is
presented. This is accomplished by introducing the Gibbs paradox into particle physics.
An interacting-particle model results with level density p(m) in the range determined by
tp(m)]" =Q(e 8 ), P &0, and p(m)~e& ",y&0, as m ~. This result is to be contrasted
to existing free-particle models which give an exponentially increasing mass spectrum.

I. INTRODUCTION

In present theories of interacting fields the
structure of particles does not take a primary
role. It usually arises from these theories by
beginning with point particles, and then the effect
of the interaction gives the particle a structure
through functions like the form factors.

Recently, there has been a great deal of interest
in physical processes at very high energies. In
fact, some rather puzzling experimental results
have given rise to a large number of theoretical
ideas as possible explanations of these high-energy
processes. ' It is clear that at these energies the
fundamental structure of particles becomes a
central issue and is directly linked to these very
energetic processes.

The structure of matter has also great implica-
tions for understanding the early stages of the
universe. Hagedorn, ' for instance, obtains a
highest possible temperature of the universe (T,
= 160 MeV) during the earliest moments of the
"big bang. "

In the present work a statistical mechanics
model for the structure of particles is developed.
It resembles somewhat results obtained by Hage-
dorn in his statistical thermodynamics theory of
strong interactions at high energies. ' These re-
sults of Hagedorn recently have received con-
siderable attention since one can obtain the same
result from dual-resonance models. '

particles in cells, with the pth cell having g(p)
levels, then the total number of ways to obtain the
macrostate with n(p) particles in the pth cell is
given by

The entropy of the system is defined by

S =- k 1nQ{n(p)[. (2)

If one maximizes the entropy for given N and E
[with P -n(p) =N and P -n(p)E(p) =E], one obtains

S=NklnV+ zNklnT+Nkln[(2vmk/h')'"]+ —,'Nk.

(2)
The above expression for S does not satisfy the

third law of thermodynamics (S-0 as T-0) since
it is only valid for higher temperatures (and, also,
finite-mass particles). However, the truly unac-
ceptable feature of this result for S is that the
entropy is not an extensive parameter, that is, if
N- eN and V- aV, with a&0, then S does not be-
come aS at it should. Nevertheless, if N - aN,
with V fixed, then S- aS. This peculiar feature of
(3), strange for ordinary thermodynamic systems,
is what makes it applicable to the constitution of a
particle as a gas of quasiparticles (in equilibrium).
This may be seen by considering the vapor-pres-
sure formula. If A is the heat of evaporation per
particle then

NX/T =NklnV+ 2Nk lnT

II. THE GIBBS PARADOX +Nk in[(2vmk/h')'"]+ 2 Nk. (4)

Let us review the Gibbs paradox in statistical
mechanics and, thus, show why it is relevant to
the structure of a particle.

Classical statistical mechanics is based on the
notion that particles are truly distinguishable.
This basic assumption determines the number of
microstates which correspond to one specific
macrostate (given total energy, total number of
particles, etc. ). For instance, if there exist N

One gets the amazing result, by canceling N on
both sides of (4), that the heat of evaporation per
particle is independent of the number of particles
in the system and depends only on the volume of
the system. In the words of Schrodinger, ' "what
is then determined (given the temperature) is not
the vapor pressure, but the vapor volume, the
absolute volume of the vapor, independent of the
number N of particles it contains. Given this
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"correct" volume any amount of liquid could evap-
orate into it, or vice versa, without disturbing
the equilibrium t" This behavior fits the descrip-
tion of the structure of a particle. First, there
exists a unique volume for which there is an equi-
librium between the liquid and the gas phases.
Secondly, the number of quasiparticles in this
unique volume is arbitrary, that is, the constitu-
ents of the particle may be any number of quasi-
particles. Finally, if the temperature T is bounded

from above by To (the boiling point of hadronic
matter), as seems to be required by the bootstrap
condition of Hagedorn, the volume V cannot be
arbitrarily small, so that a maximum hadronic
temperature seems to imply the absence of point
particles.

The above discussion of the Qibbs paradox makes
it clear that in describing the structure of a par-
ticle by statistical mechanics, one must abandon

the fundamental contribution of Qibbs to statistical
mechanics, that is, one must not divide (1) by¹!
Hence, the paradox which arises in the description
of an ordinary gas ceases to be a paradox when

describing a gas of quasiparticles constituting a
physical particle.

III ~ PARTICLE STRUCTURE

The model one wishes to propose to study the
structure of particles is that suggested in the pre-
ceding section. A physical particle is composed
of a gas cloud (in equilibrium) of all other particles
in interaction. Scattering between physical par-
ticles is described by the gas clouds going away
from equilibrium. In this way, particle physics
is reduced to the study of the statistical mechanics
of localizable equilibrium and nonequilibrium
states. The question, of course, arises as how to
describe this complicated interacting gas of par-
ticles. The notion of quasiparticles will oe used
to describe some of the collective interactions of
the particles in the system. Hopefully, this will
give most of the important features of a particle.

Traditionally, quasiparticles have been used in
many-body theories for systems of infinite extent.
However, one very important feature of the inter-
acting system describing a particle is that it should
be confined (localized in ordinary space). There-
fore, the question arises if the notion of a quasi-
particle is sufficiently general to describe a local-
ized system. The surprising result is that if the
Gibbs paradox is introduced quasiparticles can
describe successfully a localized system.

Consequently, the postulates we make are the
following: First, a physical particle is composed
of an ideal gas of quasiparticles. Second, for
every physical particle with mass m there exists

A. Classical Statistics

Let us consider first the case of strictly clas-
sical statistics. The density of states of the sys-
tem at the energy E is

" '(E) =Z IIII -', (g (p}]"""
y, n, (p}!

E;(p)n (p) -&~~,
!i.!!'

where the subscript i refers to the ith type of
quasiparticle. Note the presence of the N, t. By
considering the Laplace transform of (5), one has

(5)

J e ™~"(E)dE=D 1 —ge '!'"g (p)
0 S

P

(6)

The quantity [1 -g ~e
e

f '!' g;(p}] ' has a simple
pole at a = a, with g -e z!'!&' 'Og;(p) = 1 and 0 & a,

Consequently, for o, sufficiently large
-Ea N-B~E)dE +

0

As 0, decreases, the first pole, ' the farthest to the
right with a0= p, will be approached. Therefore,
the high-energy behavior of the density of states
is given by

~e-e(E) E& le8e- (6)

where z = (2J'+ 1}(2I+1)2&, y = 1 if particle t anti-

a quasiparticle also of mass m. The quasiparticles
have momentum p and energy e(Q) = (P + m')'~.
Third, the quasiparticles are distinguishable.

The last assumption can be made since, in gen-
eral, quasiparticles need not satisfy the same
statistics as the particles. Note also that although
for each type of particle there exists a quasipar-
ticle, the total number of quasiparticles is cer-
tainly not the same as the total number of particles
in the system. In fact, the number of quasiparticles
is not even conserved.

In what follows it will be shown that this model
for the structure of a particle gives the exponen-
tially rising hadron spectrum of Hagedorn with the
added feature that the size of a hadron is deter-
mined. (Recall that in existing works this value is
assumed to be —,'nm„' and forms a separate as-
sumption. ) Therefore, this model has succeeded
in taking part, and hopefully a large part, of the
interaction which gives rise to the localization of
a particle and placed it in the statistics of the
quasiparticles.

This conception of a particle is new. The usual
picture of a particle does not distinguish it from
that of a room full of particles. ' Therefore, con-
finement or localization cannot be obtained. '
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particle, y =0 if particle=antiparticle, is the
multiplicity factor of the lowest mass state. Re-
sult (8) is independent of the level density and

even for a finite number of levels, with

P ~& g(ao (9)

The mathematical step of taking the Laplace
transform has the physical meaning of going from
the microcanonical ensemble to the canonical en-
semble of Qibbs. Hence, the parameter a. denotes
(k T) ' with T the temperature of the system. Re-
sult (9) states that the temperature of the system
is bounded by'

0 &kT &1/P—= kT . (10)

This indeed is a peculiar result from the point of
view of ordinary thermodynamics. One has that
the temperature of this cloud of quasiparticles
cannot attain an arbitrarily large value. This re-
sult already emphasizes the fact that classical
statistics is not applicable to real particles, but
is suitable to the quasiparticles constituting the
physical particle. This conclusion will be rein-
forced when one shows that the "size" of the par-
ticle is determined by the highest temperature
attainable by the system and is of the right order
of magnitude.

The sum g &
in (6) can be approximated by the

integral

—[x'K,(x)j = -x'K, (x) &0,

which proves that the lowest mass" determines P.
We shall adopt the self-consistency condition

(bootstrap condition) of Hagedorn, "which is con-
sistent with our second postulate,

lnp(m)-inn(m) for m - ~,

where p(m) denotes the number of hadron states
in the interval (m, dms. Expression (6) gives rise
to three possible results:

(i) The divergence arises only from the lowest

where V is the volume containing the quasipar-
ticles.

The parameter P in (8) is determined by the
lou est mass m, of the system. The mass m,
gives rise to the first (and only) pole in (6) as
n- P. The value of P is given by

4m V (,), K,(moc'P)
(kc)' '

p

for given values of m, and V. (The function K, is
the modified Bessel function of the second kind
with subscript 2.) Note that

mass state. This leads to p" (m)-m'e 8 for
m-~ with a(-2.

(ii) The divergence is due to both the lowest
mass state and the very heavy-mass states (the
infinite product diverges and all its factors are
finite except the one due to the lowest mass state
which is divergent). Thus, p" (m)-m '"e as
m-~.

(iii) The divergence is due only to the very
heavy-mass states (the infinite product diverges
and all its factors are finite). Hence, p" e(m)
-m '"e~' as m-~.

Of these three possibilities the first two are
preferable since one would expect that an approxi-
mate bootstrapped theory should emerge even if
one has afinite but very large number of particles
in the system. The acceptance of (iii) would imply
that the low-mass states do not enter at all in the
establishment of bootstrap. Therefore, this pos-
sibility must be rejected, or better, it is reduced
to either (i) or (ii). That is, the divergence of the
infinite product, with all its factors finite, requires
the volume of the system to be less than the volume
determined by (12). Thus, what occurs is that the
volume increases so that the lowest mass state
also produces the divergence. Experimentally
p(m) seems to grow exponentially with the mass
m with P

' = 160 MeV. If one takes this experi-
mental value of P and the mass of the pion, m,
= 140 MeV, as the lowest mass of the system then
the "size" of a hadron is determined by (12). One
obtains

V=21.6x10 "cm', (14)

B. Quantum Statistics

In Sec. II arguments were presented in favor of
accepting the Qibbs paradox into particle physics
as a means of describing the structure of particles.
This was done in the context of classical statistics.
One can extend the description to quantum statis-
tics; however, one must multiply the results of the
ordinary quantum statistics by a factor N! This is
so that the quantum results lead to the classical
result in the limit of high temperatures and low
densities.

Consider first the case of "Fermi-Dirac" statis-
tics. The density of states of the system at the
energy E is given by

a result in rather good agreement with the effective
radius of a proton. Note that if one allows for a
zero-mass particle in the theory, the value of V
remains finite. In fact, one obtains for the volume
the value

V=18.4&10 "cm'.
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g;(p) '

' i (-))[ (-) -. (-)1)
P

x 5i Q n, (p)E, (p) -E)l .
&,p

'

8 e(E) gggN )
[ni(P)+g'i(P) 11'

, (P) '[g;(P) -11'

x5~ ~ n, (p)E, (p) E(-.
t

(23)

The sum over ni(p) goes from 0 to gi(p). Note the
presence of the N, t. From (16) one obtains

e- "~ -'(E)dEE ~ F ~D

0

Suppose E, (p) = el, (p), where e is the smallest
unit of energy and l, (p) is a positive integer. Then,

E = eon (P) I;(P)
5, p

Now,

"e 'exp p g, (p) ln [I+ te ei ' p' ] dt .
5 0 P

(17)

~ eon;(p) = eZN, .
5, p

Therefore,

(Er )!- ZN;!-gN;! .
5

(24)

(25)

gg, (p) in[1+ te ( "' ] egg, (p) in[1+ te p ] Consequently,

Therefore,

=(lnt)'as t- ~. (16)
f(E) ~' '(E) =-—(f(E),

where

(26)

J e-E nF-D(E)
0

R OO

e 'exp t g, (p)e 'P' dt
i ~0 P

1

(p) e -e; ( p ) (20)

Therefore,

(E) ~~ (E)=E e, as E-~. (21)

From (17) we have that an exponentially increasing
level density is a possible boostrapped solution,
but by no means the only type of bootstrapped
solution which is allowed, with

p (m)-m'e as m-~ with a ~ ——,
' (22)

so that the equality sign holds in (21). One has
then that the result for fermions can be the same
as that for classical particles except that the
"size" of the particle is not restricted as in the
classical ease.

Next consider the case of "Bose-Einstein"
statistics. The density of states is given by

e 'ex gg;(p)In[1+ te i'(P) ]
P

for all values of the volume V and a &0. Conse-
quently, there exist no critical volume for the par-
ticle and the volume can be arbitrarily large. If
the cloud of quasiparticles consists of "fermions"
only, then the "size" of the particle can be arbi-
trarily large.

The integral in {17)is bounded by

f(E) g~+ [n;(p)+g, (p) -11'
-

i n(p)'(g (p)-I).'

&~ Z, (p)E.(p) -E
I .

'(
{27)

)) i. p

The equality sign does not appear in the left-hand
side of inequality (26) since it would lead to the
result of Hagedorn, p(m)- e ajm'", which contra-
dicts the result derived below. [See (29).] Now

lime „[uF (E)e a]=~, for P ~0; that is, uP e(E)
grows faste~ than exponentially. Since, for one
type of particle, with Qpn(p)=N,

i}f(E)=-+IIN' (-), (-), , 5l Z
(P) g(P} 11

)
{28}

so that

I m(E)e- dz

QgN ["(P)+g(P) -11' —,( )e( )

n(p)'[ g(p) -I]!

(
))[n(p) +g(p) -1]! (p)s(p)

p .(p)=. n(P)![g(» -11'
(29)

The last equality follows since the terms in the
series do not approach zero as n(p)- ~. [In fact,
they approach infinity. ] Hence, from (26) and the
above, one has that

[(d' (E)]-' = o(e-")
(30)

B-Eg) ~ eE 1nEf (E) as E
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Let us find an upper bound to the growth of &ue-e(E). Now

J e e f(E)dE= exp -gg;(p) in[1 -e e~'~'"]
0 $, p

( 2 21!2
=exp - p e(m)dm —, d'pin[1-e "~~ ' ] (3&)

From (30) and the self-consistency condition (13),
one has that pe e(m) grows faster than exponential-
ly; therefore, J"e e™f(E)dE=~,that is, f(E) also
grows faster than exponentially as E-~. There
exist then two possibilities,

[f(E)] 1 o{e EItle-) (32a)

or

f(E) =o(ee "e) (but still [f(E}] '=o(e ee)).

If (32a) is true, then from (26)

[~'-'(E)] -'= [f(E)l -'

(32b)

=0(e 8'"~) as Z- (33)

which violates the inequality (26).
Therefore, (32b) is the correct case, and one

has from (30)

[~' (E}]-'=o(e- ')

(34)

~&-E(E) ( yE 1nS

which gives for the mass spectrum

the system. However, for a gas of real hadrons
(finite total energy} thermodynamically stable
states may exist. One must distinguish between
what happens inside a real particle and what can
occur inside a room full of hadrons. These two
eases are quite distinct. The temperature associ-
ated with a physical particle is determined by the
asymptotic behavior of p(m). In a. room full of
hadrons with finite total energy not all hadrons can
exist (the massive ones cannot be present by ener-
gy conservation), therefore, a thermodynamic sys-
tem may exist and a different temperature will
emerge.

IV. INTERACTING - PARTICLE MODEL

In Sec. III the quantum statistics of noninteracting
quasiparticles (with strange statistics) was devel-
oped. In what follows it will be shown that this
peculiar system is identical to an interacting gas
of real particles. Consequently, our model for
the structure of particles is not a free-particle
model as is the case in other works. "

Consider first the case of fermion quasiparticles.
The distribution function is easily obtained from
the canonical form (17) and is

and

[p' (m)] -'= o(e-'™}
n, (p}= —— ln

1 8

a aE,.(p)
e &u (E)dE . (36)

v 0

p (m) 4e& '" as m-

Result (35) is rather different from previously
derived results''~' where the density of hadrons
grows exponentially with their mass. " Our result
for the classical case is as in previous work, that
is, there exists a highest possible temperature, a
sort of boiling point of hadronic matter, so that as
more energy is added to the system, particle crea-
tion of massive particles prevents the temperature
from increasing beyond this highest possible tem-
perature. The bounds on result (35) imply, if one
can still use the language of ordinary thermo-
dynamics since the canonical ensemble does not
exist, that as more energy is added to the system,
the creation of the massive particles has the effect
of cooling the system so that in the limit of in-
finite energy the matter cools to absolute zero. "
Therefore, the creation of massive particles is
partly done at the expense of the kinetic motion of

On substituting {17)in (36) one gets

( ) ( )
- dt Lr(t;u)-t3n p=g p &»&&& &e

OO -j.
d~ ega(t; a) -t j

0

-g;(p),
where

(37)

Y(t; a)=gg, (p)l [n1+te '~~~ ] . (38)
P

The upper bound in (37) is as it should be for real
fermions enclosed in a box.

Result (37) is rather interesting since it is a
specific case of a general integral representation
already derived by the author" and applies for a
system of interacting (real) fermions in equilib-
rium. Thus, the ideal gas of fermion quasiparticles
is equivalent to an interacting gas of real fermions.
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A similar integral representation can be de-
rived for the boson quasiparticles but it is lengthy
and, thus, will be omitted.

For a system composed both of boson and fermion
quasipartic les

e &u(E) dE = e uP (E)dE
0 +P

One has for the density of states in this case

(E) g IIII&; j(g;(P)1"""
P

x5 n, (p)E, (p) -E & N, Q; -Q,

(41)

Hence,

[p(m)] '=o(e '
)

4 0
e co (E)dE . (39)

(40)

where Q,. denotes the charge of the ith type of
quasiparticle and Q the charge of the particle under
consideration. Since Q can be either positive or
negative,

l e
c dQ e "&uc(E)dE

~ 00 0

p(m) ~ e™In~ as m —~.
The results due to Hagedorn and the multipar-

ticle Veneziano model are in agreement. (See,
however, Huang and Weinberg in Ref. 14.) Both
have the feature of being free real-particle models,
in contradiction to our model describing interacting
real particles. One may wonder as to the specific
form of this interaction. This, unfortunately, can-
not be determined. The choice which gives our
specific results was based on the extension of the
Gibbs paradox to quantum statistical mechanics.

Finally, with the many attempts of unitarizing
the Veneziano model, one wonders if the result
p(m)- e would survive such unitarization at-
tempts.

V. CHARGED QUASIPARTICLE GAS

In the preceding sections the structure of par-
ticles was developed along the lines of a gas of
quasiparticles. In the composition of the particle
all that was considered was energy conservation.
Of course one must put further constraints to take
into account the quantities, other than mass, which
describe a particle, e.g. , charge, spin, isotopic
spin, strangeness, etc. In order to show how this
can be done let us consider the case of the charge
of the particles. This will be done for the simpler
case of the (strictly) classical statistics.

e o) 'Bg g;(p)e )' & 1 for all i.
P

(44)

That is, (42) is analytic in the strip —l &ReP & l,
with l&0, and represents a two-sided Laplace inte-
gral whose inverse is

e cv &(E)dE
0

e "dP II2vi J a ); 1 -e oi~Q g,. (p)e )(~ ~ '

(45)

where -l& c& l.
In the integral (45) the qua, siparticles with zero

charge (Q,. =0) do not contribute to the integral.
This gives

1
-Q& Bg g ( ) E, (j5-) a

(42)
with the requirement that

e-o&sPg y)e-z;(P)a ~1 (43)

Note that (43) demands the charge of a quasiparticle
to be finite, that is IQ, I

& ~.
The right-hand side of (42) is an analytic function

of P for

f oo C+$ 'o

e (E)dE= II e "dP II
g $)e-&;(P)~ 2&i J, )», 1 e-e(()p g (p)e-&;(p)~

'
p p

(46)

where the integral contains nonzero-charge quasi-
particles. From (46) one may again conclude that
the "volume" of the particle is determined by the
lowest mass state, the photon, and one gets re-
sult (15). [For the case where there is no electro-
magnetic interaction the "volume" is given by (14).]

One can derive a rather interesting result from
(46). Suppose the mass of a particle and the mass

of its corresponding antiparticle are equal. There-
fore,

1
a(p) =

&-o&sp g ( )& s;(p)a-
p

X (47)
1 e QI()g + g)& sI(p)a

where the first term refers to the particle and the



2438 MOORAD A LE XANIAN

second to the antiparticle. Since Q,. = -Q-, we have result follows from (49):

~(P) =a(-P) lf mi =my.

Therefore,

(48)

r e ~~(E)dE = e cu (E)dE,
~ 00 0

(5o)

C+5 oo 1
&(q)= e dt)pl o. ~ ( ),i )

BQ

C i p

=S(-Q) .
(49)

Consequently, if the temperature n is the same for
the system with charge Q or -Q then the following

I

or, what is the same, the "volume" of a positively
charged particle is the same as the negatively
charged particle (even in the absence of electro-
magnetic interactions).

Finally, let us see if one can study the question
of whether a charged particle is larger or smaller
than its neutral component. The integral

c+i 1 1
e "dP = — e'"dy TT27t's, , ", 1. — &i~ -g;(p)e ~i@) 2v „,. 1 '~ ~ -g. p)e ~i( (51)

since the integral is independent of c, and c has been set equal to zero. The product in the integrand is an
even function of y if the masses of the particles and their antiparticles are equal. Thus,

C+5 oo 1 1 1

2@i,;„,1-e o~ Q g, (p)e-e~~~&" 2v „1-e'o~'Q-g;(p)e-si~&~e8odp g ., = — dycosyqII

1 1
dy

2v~ „1-e'o~'g„-g, (p)e-&;&)5~

Therefore,

C+ 4i 1

2mi, ;„.1-e " o~Q g(p)e-- e, ~&~~
i

(52)

e ~~(E)dE ~ e w~, (E)dE,
0 0

(53)

or, what is the same, the "volume" of the zero-charge component is less than or equal to that of the
charged component, that is, Vz, ~ V. (This result holds even in the absence of electromagnetic interac-
tions. )

VI. CONCLUSION

The fundamental idea presented in this work is
the use of the Gibbs paradox in quantum statistical
mechanics as a means of generating the strange
statistics needed to describe the cloud of particles
composing a real particle. The mathematical
statement of this idea is carried through and leads
to results quite different from presently considered
free-particle models. One finds that the hadronic
level density is not exponentially increasing as in
free-particle models. Instead, it grows faster
than exponentially, but less than or equal to
e~'" . This difference in result is shown to be a
consequence of the interacting-particle nature of
the present model.

The level density found from the Veneziano
model (without satellites) is exponentially increas-
ing with mass. It is then interesting to see what
level density will be found in a unitarized Vene-
ziano model. Although this question remains un-

answered now, one may guess that the exponential-
ly increasing result will not survive correct
unitarization attempts. Presently the most ap-
pealing unitarization of the four-particle Veneziano
amplitude is that due to Martin. " By smearing
the Veneziano amplitude, Martin obtains at high
energies a behavior peculiar not to Regge poles,
but to Regge cuts in the J plane. (Also, of course,
the Regge trajectories are no longer straight lines. )
At high energies the amplitude contains some
power of lns in the denominator. It is interesting
that the present model gives rise also to a loga-
rithmic function in the level density. Unfortunately,
from a possible nonlinear behavior of Regge tra-
jectories one cannot conclude anything definite
about the level density.

In closing it should also be noted that our pres-
ent model establishes a relationship between the
"size" of a particle and the hadron spectrum. If
the "size" of a particle is fixed, as in the classical-
statistics case, then the hadron spectrum rises
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exponentially. If, however, the "size" of the par-
ticle is not fixed, as it happens in the quantum-
statistics case, then the hadron spectrum rises
faster than exponentially. Note also that even in
the case of classical statistics one must assume
that the volume is fixed, that is, the volume can-
not be arbitrary, otherwise the geometric sum (6)
would diverge and v" e(F) would grow faster than

exponentially. It would be interesting to relate
these conclusions to the Froissart bound, the
Pomeranchuk theorem, or the "shrinkage of the
diffraction peak. "

A final comment concerning the distinguishability
of the quasiparticles constituting a physical par-
ticle seems to be appropriate. It is known that the

tree-graph approximation is all that survives of
the S matrix in quantum field theory in the classical
limit, h-0." The tree diagrams represent a semi-
classical approximation to the S matrix which is an
analog in quantum field theory of the WKB approxi-
mation to the Schrodinger equation. " This result
may be an indication that in the tree-graph approxi-
mation particles may behave in a many-body sys-
tem as distinguishable particles. Since virtual
particles satisfy the same statistics as physical
particles, one has that the quasiparticles consid-
ered in the text may, in the "tree" approximation,
be the virtual particles constituting a physical par-
ticle. This connection is presently being investi-
gated.
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