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We propose to interpret Mueller's recent work on inclusive cross sections in terms of the
elementary discontinuity equations for multiparticle scattering amplitudes. The paths of con-
tinuations for obtaining these discontinuities are given. We find that, in order to make our
identification meaningful, the emergence of anomalous thresholds is necessary to "shield"
the effects of box-diagram Landau singularities. We also discuss how Mueller's Regge hy-
pothesis can be derived from the multi-Regge model, provided singularities other than nor-
mal thresholds are absent in the asymptotic expansion.

I. INTRODUCTION

Mueller's Regge hypothesis' on inclusive reac-
tions has been recognized as a significant break-
through in the understanding of high-energy par-
ticle physics. It has provided an elegant yet sim-
ple language for describing various theoretical
concepts such as limiting fragmentation, pioniza-
tion, factorization, etc. Perhaps even more im-
portant is its emphasis on the role that unitarity
conditions can play in tying together elastic scat-
tering processes with inelastic ones. It is suggest-
ed in Ref. 1 that unitarity conditions, when used as
discontinuity formulas, relate discontinuities of
elastic multiparticle scattering amplitudes to in-
clusive cross sections which are intrinsically in-
elastic. How these discontinuities should be taken,
however, was not discussed.

We shall discuss in this paper the precise path
of continuation for obtaining this discontinuity and
also show how the emergence of anomalous thresh-
olds is necessary in order to make our identifica-
tion meaningful. With these complications in mind,
we discuss in what sense one can consider Muel-
ler's Regge hypothesis as a consequence of multi-
Regge models. '

For an n-particle inclusive reaction

a+ b —x, + x, + ~ ~ ~ + x„+missing mass,

one can show that the differential cross section is
proportional to the forward limit of a discontinuity
of the (n+2) to (n+2) amplitude describing the pro-
cess

a+ b+x,'+ x,'+ ~ ~ ~ +x„'-a'+ b'+x, + x, + ~ ~ ~ +x„.

(2)

The forward limit corresponds to P, =P, , P, =Pl, ,
P„;= P„., and the discontinuity is taken in the
squared missing-mass variable

M'=- P&+Pa — P.,

Threshold branch points in this crossed-energy
variable can be reached within the physical region
of the process (2}, so that one does not need to
continue each detected particle x; to its antipar-
ticle x, . As one analytically continues the ampli-
tude from one side of the branch cuts in M' to the
opposite side, certain invariants will have to be
held at a definite side of their threshold branch
cuts. This can best be summarized by using
bubble notations. Let a=(a, b), a'=(a', b'}, P'
= (x,', . . . , x„'), tl = (x„x„.. . , x„}; we find that the
n-particle inclusive cross section is given schem-
atically by Fig. l. In Fig. I, the plus (or minus)
sign in a small half bubble indicates that all ener-
gy variables enclosed by it are to be evaluated
above (or below) their cuts. The dashed line indi-
cates that the discontinuity is taken in the variable
(p -p~)'. Other invariants without "+"specifica-
tions are also held fixed; but the discontinuity is
independent of their locations.

Figure 1 is a typical example of multiparticle
discontinuity formulas' proposed by Olive and by
Stapp. These general formulas can be shown to
follow three technical assumptions: (a} normal-
threshold cut structure, (b) extended unitarity,
and (c) cross-discontinuity condition (or indepen-
dence of crossed normal threshold).

Of these three, (a) is an approximation because
Landau singularities other than normal thresholds
are known to move onto the physical sheet. The
correct procedure for handling this problem has
been discussed by Hwa. ' We have found explicitly
that the presence of anomalous thresholds plays a
very important role so as to make Fig. 1 meaning-
ful. Unlike the 2 to 2 amplitude, a box-diagram
double-spectral4 ' curve can move into the physical
region of a multiparticle reaction. We demon-
strate, with the help of perturbation theory, that
the disappearance of the box-diagram singulari-
ties is correlated with the emergence of anoma-
lous thresholds, and, together with our + i & pre-
scriptions for initial and final subenergies, guaran-
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FIG. 1. Path of continuation for obtaining an n-parti-
cle inclusive cross section from an (n +2) to (n +2) scat-

teringg

amplitude.

tees that the discontinuity in Fig. 1 yields a real
cross section, as it should. The presence of these
higher-order Landau singularities, however, re-
quires a further specification on the paths of con-
tinuation in obtaining inclusive cross sections.

To clarify the meaning of a discontinuity for-
mula, let us briefly review the connection be-
tween inclusive cross sections and physical uni-
tarity equations. For simplicity, we shall re-
strict ourselves to the case of a single-particle
inclusive reaction of the type

a + b - x+ missing mass .

The physical unitarity equation

S„„(+)S„s(+)= S„„(+)S„n(+)= 5„n

(4)

can be converted to a discontinuity equation
through the use of the Hermitian analyticity prop-
erty for the connected part':

S„'n(+) = Ss' (+) = SB,(--) . (6)

l.et the initial state be (abx') and the final state be
(a'b'x); we find that the connected part T» for the
multiparticle process,

a+ b+ x'- a'+ b'+ x, (7)

0
b
x

I0
b'

V+/ x

0
b
X

3 b'

x

satisfies a total discontinuity equation. This equa-
tion, ' in bubble notation, is represented by Fig. 2.
A bubble with a plus sign refers to an amplitude
evaluated in its physical region, and a minus sign
refers to its counterclockwise continuation around
branch points of all variables. The shaded portion
represents an open channel, and an integration

over its phase space is always implied. 6',. and 6'~

are permutations of lines for initial and final par-
ticles.

In the forward limit, i.e., p, = p. .. p, = p, ., p„.
= p„, many of the terms on the right-hand side of
Fig. 2 are of the form of a complex-conjugate
multiplication [using Eq. (6}]. In particular, one
term in the second group (Fig. 3}is simply (up to
a flux factor) the inclusive cross section for the
process (4). Our objective is to isolate this par-
ticular term in the total discontinuity by a special
path of continuation.

In Sec. II, we discuss the question of "deriving"
elementary discontinuity equations, using language
and notation which are both suited for our pur-
poses and easy to comprehend. The problem of
box-diagram singularities is disposed of in Sec.
III. Section IV concerns the derivation of Mueller's
Regge hypothesis.

II. ELEMENTARY DISCONTINUITY FORMULAS

For a given multiparticle scattering process,
invariant variables can be grouped into four gener-
al categories. For the process (7), we have'

(i) momentum-transfer variables: ( p, —p, )',
(p, -p, )', (p. , p.)', etc. ,-

(ii) total energy: s = (p, + p, + p, , )a,

(iii) subenergy variables: s„=(p,+p, )',
Sa'a' = (pa'+pa'} ~ (pa+pe'} ~

(iv) crossed-energy variables: M' = (p, + pa —p, )',
(p, +p, -p, , )', etc.

With the exception of momentum-transfer vari-
ables, singularities in other invariant variables
can always be reached within the physical region.
An elementary discontinuity formula is one which
gives the discontinuity across branch points in
one invariant variable only, without encircling
threshold branch points of other energy invariants.
These formulas have been proposed, and have been
shown to follow from three technical assumptions':
(a) normal-threshold cut structure, (b) extended
unitarity, and (c) cross-discontinuity condition (or
independence of crossed normal thresholds). The
square of the missing mass M'= (p, + p, —p, )' is a
crossed-energy variable for (7), and we shall
demonstrate the derivation of the elementary dis-
continuity formulas in M' utilizing the above as-
sumptions.
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FIG. 2. Bubble notation for the physical unitarity

equation for a three-to-three scattering amplitude. FIG. 3. A single-particle inclusive cross section.
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Extended unitarity allows one to write down uni-
tarity-like equations outside the physical region.
Let us first continue to a region where all vari-
ables except M' are below their lowest thresholds. '
The discontinuity encircling branch points of all
communicating channels in M' is given by Fig.
4(a.). The lack of plus sign designations for s„
and s, ,„ in Fig. 4(a) is a reminder that all other
energy-like invariants are to be held below their
cuts. Because of the normal-threshold cut-struc-
ture assumption, we can first analytically contin-
ue the subenergy s~ (s, , ) above (below) its cuts
and arrive at the following configuration [Fig. 4(b)].
The right-hand side of Fig. 4(b) now looks identi-
cal to Fig. 3, and we are tempted to identify them
immediately. However, before doing so, we have
to continue all other energy invariants back to
their respective physical values. It is conceivable
that this continuation may force a distortion in the
intermediate -state phase -space integrations. This
has been proved not to be the case if we invoke the
cross-discontinuity rule, which asserts that the
discontinuity in one invariant does not contain nor-
mal-threshold singularities in crossed invariants.
An invariant is "crossed" with respect to M' if the
external lines that this invariant is made of are
neither contained in that of M', nor of its comple-
ment. Since all invariants left for further contin-
uations are crossed invariants of M', it follows
that the right-hand side of Fig. 4(b), when con-
sidered as an analytic function, is independent of
normal thresholds of these variables. It is thus
immaterial how we continue them back to their
physical values, as long as the same path is taken
for each term in Fig. 4(b). We note, in particular,
that the total energy s can be evaluated at either
s+ie or s —i~ for both terms on the left, without
affecting the right-hand side. In contrast, the to-
tal discontinuity equation' requires one term with
s+ie and the other with s -ie.

We have completed the demonstration where the
inclusive cross section for the process (4) can be

X

-Q I

b'

(a)

0 X

b + "t. Q'

(b)
n&

FIG. 4. (a) Extended unitarity, with M2 above its
normal thresholds. (b) Elementary discontinuity formula,
before continuing those variables which are "crossed"
with respect to M2 back to their physical values.

identified with the forward limit of a certain dis-
continuity of T33 The generalization to an n-par-
ticle inclusive cross section is then straightfor-
ward, and one arrives at the result depicted in

Fig. 1.
It is conceptually more appealing to write the

discontinuity equation, Fig. 4(b), as a sum of sim-
pler elementary discontinuities. It is important
to note that the real axis of M' is divided into sec-
tors by the n-particle thresholds. Within each
sector, we have a corresponding discontinuity for-
mula like Fig. 4(b). The analytic continuation of

one discontinuity formula passing the next normal
threshold in M' will not lead to the corresponding
one for the next sector. This indicates that the in-
clusive cross section is only a piecewise analytic
function of M'. A similar phenomenon also occurs
for two-particle total cross sections. One can
show that the difference between the appropriate
discontinuity is one sector of M' and that continued
from immediately below, i.e. , the discontinuity of

T33 across only this n-particle-threshold branch
point, can be calculated in terms of the values of

T,„on both sides of this cut. This is the so-called
"basic" discontinuity formula. Once this is done,
it follows that the discontinuity, Fig. 4(b), can be
written as a sum of such basic discontinuities
across each open channel in M'. As we continue
to higher values of M', a new term will be added
whenever a new threshold opens. However, each
one of these basic discontinuities is not to be iden-
tified with a term in the sum g„, on the right-hand
side of Fig. 4(b) except in the case of single- or
two-particle states.

III. BOX-DIAGRAM SINGULARITIES AND

ANOMALOUS THRESHOLDS

The existence of Landau singularities other than
normal-threshold branch points has long been rec-
ognized as a major obstacle' for a complete speci-
fication of discontinuity formulas of multiparticle
scattering amplitudes. The justification for ne-
glecting them in the discussion of Sec. II is par-
tially justified by the notion that S-matrix-theory
singularity structure is "built up"' from the nor-
mal thresholds. Since Landau singularities do
exist, it might happen that the path of continuation
which we need is, in fact, impossible. Short of
this disaster, one may still wonder if the existence
of simple Landau curves, such as "box-diagram"
Landau curves, may spoil the "reality" condition
of our discontinuity. Since these box-diagram Lan-
dau curves can be brought into the physical region,
they are not allowed to be singular there if our
basic premise is correct.

This unwarranted concern can be put to rest by
using the Steinman relations, which assert that
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double discontinuities in two crossed variables
vanish in the physical region. ' These relations
hold not only at the thresholds but also at all phys-
ical points, including the box-diagram Landau
curves. However, the presence of these higher-
order Landau singularities does require a further
specification of the paths of continuation for ob-
taining inclusive cross sections. The "correct"
specification is the one which preserves the un-
distorted contours for the intermediate-state
phase-space integrations in Figs. 2 and 4(b). This
kind of analysis has been performed by Hwa' in
the case of five-point amplitudes; and his tech-
nique can be readily applied to our case. In order
to gain further insight, we have carried out a
study in the Q' theory to see how the "disappear-
ance" of box-diagram singularities actually takes
place.

The simplest diagram which may possibly cause
us trouble is shown in Fig. 5{a). Removing the
pole factors for initial and final subenergies, we
are left with a four-point box diagram, whose
momenta are labeled in Fig. 5(b). For the sake of
simplicity, we shall restrict ourselves to a case
of degenerate masses:

cussed in the past for cases where not both s„and
s, , are large. ' " The case of interest to us re-
quires both squared "external" masses s~ and s, ,
to be above their normal thresholds; and we can
reach this configuration by a continuation from the
standard small-mass limit.

The box-diagram Landau curves can be labeled
by I', L,', and N,',„.They correspond to the
solutions where the Feynman parameters n,. satis-
fy n, 0&i, n, =0, and n;= a,.„=0. In a typical
configuration shown in Fig. 6, N', 4 and N, 4 corre-
spond to the M'-channel normal threshold and anti-
threshold, respectively. L,', L,' are triangle sin-
gularities which may move onto the physical sheet
to become anomalous thresholds. Similar inter-
pretations for N]3 Lg L3 apply to the s channel.
We note that F, the leading Landau curve, has
several branches. The branch F~, in the upper
right corner, is the famous Mandelstam double-
spectral curve. Figure 6 corresponds to our case
of mass degeneracy {8); and the locations of vari-
ous curves can best be described in terms of the
angle variables:

tB I + m I —(If; —q )

:—m 2 2 2 2 ~ 2 — 2
3 2 m4 ) pf j+] j ~ j J ) (9)

2= 2 2 2 2 2m„'=m„=s~= s... . m„=m„=m„=m„=m„ We find that for L,'=L,' and L,'=L,',

Using a standard Feynman parametrization, the
possible singular surfaces of this four-point am-
plitude are given by the solutions of the Landau
equations. ' The restrictions of these Landau
curves on the Re(s) x Re(M') plane have been dis-
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FIG. 5. (a) The simplest possible diagram containing

M2-s double-spectral singularity. (b) The relevant four-
point box-diagram and its momenta labeling.

FlG. 6. Re(s) x Re(M ) plane singularity structure of
a box diagram. It corresponds to a normal situation
where the external masses are comparable to the
internal masses. Singularities on the physical sheet
are the normal thresholds N&& and N2+4, and the Mandel-
stam double-spectral curve I'&~. Masses are degener-
ate as given by (8). Both s and M2 are + ie above their
branch points.
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0&8i i+ i& 7, 0 8i-l, i+8i, i+l m~ S =1~ 2~ 3~ 4

where subscripts are defined as modulus 4, only
those solid curves in Fig. 6 are singular on the
physical sheet, e.g. , the Mandelstam spectral
curve I'~. The above conditions are usually sat-
isfied if external and internal masses are com-

y24 yf3 -COS(812 + 823) i

for N,'„
y,4= +1;

for N,'„
7»=+1 i

and for I',

(y„—1}(y„—1)= [cos(8„+8„)+ 1] [cos(8„,-8„)+ 1],
(Io)

(y„+1)(y 4+1) = [cos(8»+8~) —1][cos(8» -8») —1],

where y» and y,4 are directly related to s and M'.
For this reason, it is sometimes simpler to con-
sider plots such as Fig. 6 as Re(y»}x Re(y„) plots.
In writing (10), we have also used the degeneracy
conditions 8» =8„and 8„=8„.

When external masses satisfy a set of inequali-
ties

parable. However, we are interested in the limit
where s~, s, „~(m, +m, )', which by (9} is charac-
terized by

(12)8», 8,4=m+iX. , A. real.

We shall do so by first increasing these angles
along the real axis, and then move them up or
down the line (12}.

Before we can reach (12}, we will have to first
cross the point 8»+823 823+834 m, beyond which
inequalities (11) are violated. At this point, we
find that both sets of Landau curves L,' = L4 and

Ll L3 have moved up to their normal thresholds
at y» =1 and y24= 1. The leading Landau curves
have also become degenerate, such that portions
of the curves I' coincide with y»= 1 and y,4=1.
This is illustrated in Fig. 7. As we further in-
crease s~ and s, , , two interesting phenomena
occur. First, L,' =L,+ and Ll L,' have moved up
to the physical sheet. Second, the branch I'~ has
circled around these anomalous thresholds and re-
turned to the upper right-hand corner. In so doing,
it is no longer singular in the physical region; and
a, part of I' in the central region has, instead, be-
come singular. This is indicated in Fig. 8. If we
continue to increase s„,s, , passing their thresh-
olds at (m, +m, )', we find that Landau curves L,',
L2, L3, and L4 have gone complex. The direction of
their movements depends on the ie prescription
given to the subenergies s~ and s, , With our
choice, Fig. 1, we find that, on the physical sheet
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FIG. 7. Re(s) x Re(M ) plane singularity structure of a
box diagram, at the point of passing the stability con-
ditions, e.g. , 0&2+023 =&, as we increase s, &

and s,.& .
Mass degeneracies are maintained throughout. Note in
particular the shape of I'~z and the position of L2=L4
and L& =L3.
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FIG. 9. After Eq. (12), L+2 and L4+ have moved to
complex-conjugate positions in the complex M2 plane.
Cuts are drawn according to the prescription of Ref. 3.
Discontinuity is taken between plus and minus; and I ~z
is located at a point reached by circling L2.

of the M' complex plane, L,' has moved to the low-
er half plane, and L4 has moved to a conjugate
position in the upper half-plane. These conjugate
movements of anomalous thresholds L,' and L,',
which depend crucially on our +ie prescriptions,
is important in insuring the reality of the discon-
tinuity in M'.

The sheet structure in the M' plane, with s held
above its anomalous and normal thresholds
reached by +i~ prescriptions, is illustrated in
Fig. 9. In the case we are interested in, the physi-
cal region in bounded by M' = 4m, ' from below and
M'= (v s~ -m, }' from above. This is because M'
is a crossed-energy variable. With the cuts drawn
according to the prescription given by Hwa, ' we
find that the required path of continuation is simply
from plus to minus, as in Fig. 9. The double-spec-
tral curve I'~ is singular in the limit by circling
around L,', but not in the region where the desired
discontinuity is taken.

The above analysis serves as a prototype for
handling general diagrams of the "box" type. In
general, we have to consider the case where y23
= y4, is less than -1. In that case, anomalous
thresholds may lie on the real axis, and the modi-
fication for the path of continuation has been given
by Hwa. We shall not repeat it here. It suffices to
say that higher-order Landau singularities can
cause great difficulties in practice, but not in
principle. Our analysis indicates that an inclusive
cross section can always be identified as a forward
elementary discontinuity with a special path of con-
tinuation.

The conclusions of this section are also expected
to hold true from a purely S-matrix viewpoint.
This is because the graph analysis is actually of
more general validity, and is not restricted to per-
turbation theories only. Guided by the notion that
the S-matrix singularity is built up from the nor-
mal thresholds, one can presumably rephrase our
discussions here using only the language of a uni-

tary analytic S-matrix theory.

IV. RELATION BETWEEN THE MULTI-REGGE

HYPOTHESIS AND THE LIMITING DISTRIBUTIONS

In view of the complications discussed in Sec.
III, one would naturally wonder whether treating
inclusive cross sections as discontinuities of elas-
tic multiparticle amplitudes actually provides any
practical advantage over the conventional approach-
es. It can be argued that better physical insights
can probably be gained by the latter methods
where one directly works with approximations for
production amplitudes. The chief advantage of
the present approach lies in its ability to formu-
late the concept of limiting distributions (or Muel-
ler's Regge hypothesis} in general terms, without
having to commit oneself to a specific dynamic ap-
proximation from the outset. " Furthermore, it
suggests that the hypothesis of limiting distribu-
tion is probably not independent of the multi-Regge
hypothe sis. '

The connection between these two hypotheses can-
not be established immediately since the original
Bali-Chew-Pignotti multi-Regge hypothesis' lacks
specific assumptions about the analyticity struc-
ture of multiparticle amplitudes. However, it is
generally accepted that Regge-pole dominance is
tantamount to the assumption that only ladder
graphs are important at high energies. We shall
adopt this point of view and shall, therefore, inter-
pret the analyticity structure of a multi-Regge ex-
pansion to be that of a properly symmetrized lad-
der sum. More generally, we can also adopt the
dual-resonance model as a starting point. "" In
either case, we are confronted with approximations
of multiparticle scattering amplitudes, which con-
tain only normal thresholds and poles. These ap-
proximated amplitudes not only possess the de-
sired multi-Regge behavior, but also satisfy the
analyticity postulate necessary for our discussions
in Sec. II. Therefore, in the asymptotic region of
interests, we do not have to concern ourselves
with the complications of higher-order Landau
singularities, and the method outlined in Sec. II
can be used as a constructive procedure for ob-
taining inclusive cross sections. Mueller's Regge
hypothesis will then emerge as a consequence of
the multi-Regge behavior of the elastic multipar-
ticle amplitudes. In the case of the dual-reso-
nance model, this result has been demonstrated
in Ref. 12. Since the analysis there depends only
on the analyticity and multi-Regge properties of
the dual-resonance amplitudes, the result is then
of general validity. "

To elaborate this further, we note that under our
approximation, a multiparticle amplitude is given
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by a sum of terms, each having the analyticity
structure of a B„ function for a given permutation
of external lines. Each term contains normal
thresholds only in Mandelstam invariants made
out of lines that are neighboring each other. "
Since there are more Mandelstam invariants than
there are independent variables, care must be
taken in obtaining discontinuities. The correct
procedure is to treat all Mandelstam invariants
as "independent" as far as the specification of
singularities is concerned. Any constraints among
them should be enforced only after the discontinu-
ity is taken.

The crossed-discontinuity property guarantees
that we need only to worry about those invariants
which are not "crossed" with respect to M'. In the
case of T„, they include s~, s;.—, , t —, t;„,
and t;.„., of which only s,~ and s;.;, are energy-
like in the physical limit of interests. Squared
momentum-transfer variables, t's, are either fi-
nite or approaching -~. Following the procedure
outlined in Sec. II, we first obtain the discontinu-
ity in M' by keeping all other invariants at -~ or
finite negative values. After this is done, we need
only to continue s~ and s;; to +~ along the infi-
nite contours in the upper and lower complex
planes, respectively, as given by Fig. 1. Other
invariants which are crossed with respect to M'
can be continued back to their respective physical
values by arbitrary paths, since the discontinuity

is free of normal thresholds in these variables.
For general n-particle inclusive cross sections,
a similar procedure ean also be applied. " In
those cases, it becomes crucial that nonlinear
constraints among Mandelstam variables should
not be enforced until after the discontinuity in 3f'
is taken.

We have discussed in this paper the precise path
of continuation for obtaining the inclusive cross
sections as discontinuities of elastic multiparticle
amplitudes. In particular, the role of anomalous
thresholds and the complication of higher-order
Landau singularities are studied. We have also
pointed out that, with a suitable analyticity assump-
tion, the hypothesis of multi-Regge behavior will
lead naturally to the concept of limiting distribu-
tions. This not only provides conceptual unity
among various theoretical concepts, but also gives
us some practical methods for relating parameters
of inclusive processes to that of exclusive pro-
cesses."
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For high-energy production processes, the factorization properties of inelastic effects on
the elastic amplitude are studied, first by the eikonal approximation method in a perturba-
tive approach (without assuming the momentum of a produced particle is small), and second
by functional methods for many- but soft-particle production. The latter corresponds to the
situation in the Bloch-Nordsieck model.

1. INTRODUCTION

Many authors' 4 have derived relativistic gen-
eralizations of the eikonal approximation' to de-
scribe high-energy elastic scattering. Physically,
the approximation is based on the observation that
at high energies, scattering is most likely to occur
near the forward direction via virtual particles,
each of which carries a small momentum. For the
sake of definiteness we shall discuss the case of
quantum electrodynamics, although our results
are applicable to any theory with Yukawa coupling.
As shown in Refs. 1 and 3, the most important
diagrams in this approximation are the generalized
ladder diagrams —those in which a number of
photons are emitted by one charged pa, rticle and
are absorbed by another, in any order. We neglect
diagrams in which a photon is emitted and sub-
sequently reabsorbed by the same electron and
diagrams with closed fermion loops. These au-
thors' ' found an explicit expression for the sum
of all such diagrams in the approximation that the
momentum carried by any of the virtual photons is
small compared to that carried by the scattered
electrons.

Our aim in this work is to extend this approxima-

tion to describe production processes. In Sec. II,
we calculate the amplitude for production of a sin-
gle photon, using the perturbation-theory approach
of Levy and Sucher. ' Qur main result is that the
amplitude factors in a very simple way. More
specifically, the amplitude for production of a
photon of momentum k in the collision of two elec-
trons having initial momenta p„p, and final
momenta P„p„respectively, is given by

M=e'u(p, ) g(k) ~ ~
y" +y" e'(k) u(p, )

1 ™
x u(p, )y„u(p, )M„(p, + k, p„p„p,}

+ (terms interchanging p, —p„p, —p, ),

(1.1)
where the elastic scattering amplitude is just

u(p, )y" u(p, )u(p )y„u(p )M„(p„p;p„p, ).
This corresponds to a result of Cheng and Wu'
that, in their language, a produced particle cannot
come out of a black dot in an impact diagram.

In Sec. III, we extend the discussion to the pro-
duction of many photons, with the further re-
striction that all the produced photons should also
be soft. The combinatorial problems of summing


