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We generalize our previous considerations of Coulomb corrections to single-channel pro-
cesses to the two-channel case. Using a potential model, we derive an extremely simple
formula for the corrections which does not necessitate using Coulomb wave functions. This
formula is correct to lowest order in @ but to all orders of the strong scattering. We dis-
cuss the application of our results to recent data on pion-nucleon elastic and charge-exchange
scattering in the vicinity of the N*(1236) resonance. The choice of an appropriate wave equa-
tion and the question of mass-difference corrections are also discussed in an appendix.

I. INTRODUCTION

During the past several years a number of papers
have treated the subject of Coulomb corrections to
strong scattering processes.! The motivation be-
hind many of these was the attempt to determine
the charge radius of the pion by a careful analysis
of pion-helium scattering data.?

One attempt was made to do this calculation in a
completely rigorous, field-theoretic approach,®
but so many approximations are needed that it is
difficult to evaluate the validity of the results. It
may be possible to approach the calculation by
means of the Dashen-Frautschi perturbation theo-
ry,* but a completely rigorous treatment has not
yet been made.® Thus, the results of this approach
are also questionable. Most authors have preferred
to work with a potential-scattering model. Although
it is not clear that such a model adequately approx-
imates quantum field theory, one can at least make
unambiguous calculations within the context of the
model.

In a previous paper® we developed a new techni-
que for doing the potential-scattering calculations.
This led to an-elegant and extremely simple formu-
la for finding the Coulomb-corrected amplitude.
Although this method is completely equivalent to
other techniques which employ the optical model
or Coulomb-wave functions, it is much simpler to
use in actual calculations.

Motivated by the pion-helium data, ‘we restricted
our previous treatment to the case of a single-
chanrel scattering process. Now, however, very
accurate new measurements of the pion-mucleen
eross sections have been 'made.” In‘addition, accu-
rate kaon-nucleon measurements are being planned.
In both cases we must consider the charge-
exchange channel simultaneously with the elastic
channel. In'this paper we extend our previous
treatment to the two-channel case. Results are
presented both for the case where the strong inter-
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action has isospin symmetry and the case where
no symmetry exists.

Two other questions are of some interest and are
discussed in an appendix. The first is whether the
Schrodinger or the Klein-Gordon wave equation is
more relevant for such a calculation. The second
is how one should take into account the fact that
particle masses in the two channels are slightly
different, which is itself an electromagnetic effect.
We compare in detail the Schrddinger and Klein-
Gordon equations to see how the usual Coulomb
forces and the mass difference enter. On the ba-
sis of this comparison, we suggest a possible com-
promise between the two equations which might be
suitable at relativistic energies. To facilitate com-
parisons, in the main sections of the paper we ne-
glect the mass-difference corrections and use a
wave equation which contains the Coulomb potential
in the manner employed by previous authors. How-
ever, in the Appendix we point out how these re-
sults may easily be modified to represent Coulomb
forces as they actually appear in either wave equa-
tion. We do not treat the mass-difference problem
in this paper, but we point out that it can be calcu-
lated using techniques analogous to those used in
-the Coulomb~force problem.

In Sec. II'we present the wave equation to be used
and review-the definition of the S matrix and cross
sections in the many-channel problem. In Sec. III
we review the results of the-single-channel calcu-
lation and the method-employed. Although we pre-
viously found results to higher order, in this paper
we shall restrict our work to the lowest order, «,
Coulomb ‘corrections. Sections IV and V extend
this result to the two-channel problem for a strong
potential with and without isospin symmetry, re-
spectively. In Sec. VI we discuss the application
of our results in general and in'particular refer to
pion-nucleon scattering near the N*(1236) reso-
nance. The Appendix is devoted to a consideration
of which wave equation‘is more appropriate for
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such calculations.

II. WAVE EQUATION, S MATRIX,
AND CROSS SECTIONS

In analogy with other authors, we shall consider

the wave equation
[- 92 B2+ V9 () = - 2BV 3(F), )

where V2, 22, and E are multiples of the unit ma-
trix. V2 is the gradient operator, ? is the square
of the laboratory momentum of the incident parti-
cle, and E is its total relativistic energy in the
laboratory. 175 and V, are matrices (in general,
nondiagonal) which represent the strong and Cou-
lomb forces, respectively. JJ(F) is the wave func-
tion and is a column vector.

Since we shall consider only spherically sym-
metric potentials, we expand H(F) as

3®=3 222 p (coso), @
1

where p labels the element of the vector 3, i.e.,
the scattering channel. In terms of U,, the wave
equation becomes

d?2 W+ s pe saA ISP
[d7';—("’—ZZ]U,+(k2—Vs)U,=2EVCU,. (3)
We define the S matrix in terms of the asympto-

tic behavior of U, (»). If for large »
Uy, (,'.)_.Ame—i(kr-lw/z) -Bye* i(kr-l'lr/z)’ (4)

then the S matrix (for the I/th partial wave) is de-
fined by

By=Y ShprApn- (5)
ﬁ'

With this definition &' is a symmetric, unitary ma-
trix.

In terms of the S matrix, the elastic cross sec-
tion in the pth channel is given by

o,=k—”212(21+1)|s;,-112 (8)

and the partial cross section from channel p to p’
by

m
o,,,,=552(21+1)!s;,,|2.
4

If we define

1

Z (21 +1)(S},7 = 8,p:)P;(coSH), (W)
1

then the differential cross section from channel p

to p’ is given by

do

dQ = IAPP'IZ' (8)

2’

Because §'is a unitary, symmetric matrix, its
most general form in the two-channel case is
2id; i(1-n2 1/2ei(5,+A,')
§i- e (1-mn,2)
il - le2)1/2ei(5,+A,) mezm, ’

(9)

where 7;, §;, and A, are real numbers. If we use

an absorptive potential to represent additional in-
elasticity, then §, and A, acquire positive imaginary
parts.

III. REVIEW OF THE SINGLE-CHANNEL
CALCULATION

Recall that for large » the Coulomb potential is
given by

ve(7) Egkg Velr)=

2E Z,Z,e* _2¢
Ty

_k—' 7 ’ (10)

" where £=2,Z,0E/k. For values of » smaller then

the sum of the charge radii of the colliding parti-
cles, we can expect V, to be modified. In what fol-
lows V. will always represent this modified Cou-
lomb potential, which behaves asymptotically like
Eq. (10).

In the case of pure Coulomb scattering alone when
the only potential acting is that of Eq. (10), the
wave function U, behaves asymptotically like

U,(T)-. eii[kr—lw/2+p(r)]’ (11)

where p(r)=6; — £1In(2k7) and 5 (the pure Coulomb
phase shift) is given by

o =arg[I(1+1+ i£)]. (12)

This should be contrasted with Eq. (4), which holds
for potentials which decrease asymptotically faster
than 1/7. Thus, we must be careful to define the
total phase shift relative to the In(2%#) factor. In
the problem which includes a strong potential plus
the modified Coulomb potential V,, the total phase
shift will be of the form

8, =85 +0; +85° (13)

relative to the In(2k») term. §;is the pure strong
phase shift which would result if we set V, equal to
Zero.

To find an expression for 5;°, iet us assume that
the solution to the strong-scattering problem is
known. The two independent solutions to the wave
equation for strong scattering, i.e., Eq. (3) with
V.=0, we call R,(r), and I,(»). We choose a nor-
malization such that asymptotically

R, ()~ sin(kr — 317 + &%),

14
I, (r)~ —cos(kr — 1 +65). (14)

Note that R, and I, are analogous to the solutions
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of the free wave equation, kvj,(k7) and krn,(kr),
respectively. In terms of R, and /; we define the
Green’s function

G, (7, 7”)=Rz(7'<)[11(7’>)"iRz('V>)] . (15)
The formal solution to our wave equation, Eq. (3),
can be written as

U,(r)=R, () + f G, r, 70 U Y. (16)

Without modification, Eq. (16) is divergent be-
cause of the extra In(2k7) factor in the Coulomb
phase. As a formal artifice, we remove this di-
vergence by replacing the upper limit of the inte-
gration by a cutoff, R,. However, as we shall see,
we shall be able to pass to the limit R -« in our
final answer by removing the 1n(2%2R,) term.

To lowest order in V,, Eq. (16) yields

Re
U,(r)=R,(*r)+/{J G, (v, v (r" )R, (r")dr'. amn

Using Eq. (16), we now let » become very large.
In terms of our definition, Eq. (4), we find

A =—§1—. e-i%1,
i (18)

R .
B= __];_:+f "'Rlz(,r/)vc(r/)d,r/ eté‘lg’
2t J,
which implies that
$;= ez"af[l -2 ch R,z(r’)vc(r’)dr'] . (19)
o]

To interpret Eq. (19), we rewrite the integration
as

f e [ R0 (r') - (kr’)zjzz(kr’)g,,é,] dr’

of it . (20)

As was shown in a previous paper,® for large R,
and to lowest order in &, the second term in
Eq. (20) behaves like

R,
f ° (kw)zj,z(kw)g dr'~ -5+ £ In(2kR,). (21)
0
Thus, we can identify (to lowest order in £)
== [ TR = o Pier) o, @)
(]

where we have let R,—~« in Eq. (22) because the
integral converges. Note that

S, = £2HB]+87+87%) =i E In(2kRy) (23)
but as is conventional, we shall redefine S, by drop-

ping the over-all infinite phase factor.
Equation (22) is our principal single-channel re-

sult; a simple expression for the Coulomb strong
phase, 6°. In actual data analysis we first find
an approximate 6] by assuming 6{°=0. This allows
us to find R, (») to within corrections of order .
55 can now be found to order a by using Eq. (22)
and the data reanalyzed with 8§° included, which
yields &5 to within order o as desired. To do the
analysis it is usually convenient to write the T
matrix, T=S-1, as

T, =(e2iéf _ 1)+eziﬁf(e2i5‘; -1)
+ezi5fezi5§(eziags -1).

Because the Coulomb phases 6 increase like
£n(2+1) for large I, we must include all terms in
the partial-wave expansion of the first term in 7.
In our normalization

2% 3 (21+1)(e#5F = 1)P(cos6)
1

=_.i_ ei{zé‘-g 1n(sin2 (4 0)1}

2ksin®(30) -
The other terms in T, are easily handled since 6]
and 5° go to zero rapidly as ! increases.

In order to find 6;° we have introduced a cutoff,
R,, into our analysis. It is not obvious that the
limit R,— « can be taken uniformly. However, this
has been discussed in Ref. 6, where it is shown
that this technique can be extended to calculate the
higher-order corrections to §{°. We emphasize
that the result in Eq. (22) is correct to first order
in V, but to all orders in V.

IV. TWO CHANNELS WITH ISOSPIN SYMMETRY

The advantage of having the strong force Vs\(r) be
symmetric under isospin is that we can diagonalize
the matrix 175(7) by a rotation which is independent
of ». For example, in the case of 7-p and charge-
exchange pion-nucleon scattering, we can label the

matrices as
T"p~T1"p T P~ 11°n>
. 24
n~1"p 0= 24
If we assume isospin symmetry of 173 , then we
know it can be written

?s=( SVa+3V  WZ (V- Vl)), (25)
V2 (Va=Vy) 3Va+3V,
‘which is diagonalized by the matrix
_(2)1/2  (Ly\1/2
U= (3) (3) , (26)
@ G
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i.e.,

U — 7TV T _ Vl 0
Vi=Uuv,UT= (0 V3> (27
and in this representation the isospin -3 and -3
states do not mix. Hence, we shall be able to find
a simple expression for the Green’s function neces-
sary for our calculation.

The Coulomb potential V, is in general a diagonal
matrix. For the example just discussed it takes
the form

7.00=("" 0): (29)

with Z,=+1, Z,=-1.

Because it is the most relevant to current experi-
mental data, we shall not work with the completely
general case in this section but shall specialize to
the example just mentioned. Changes necessary for
kaon-nucleon scattering are easily handled.

Since results are always quoted for the isospin-3
and -3 phase shifts, it is more convenient to work
directly in the representation, where V' is diago-
nal. Thus, when we transform the whole equation
with U, V, becomes [from Eq. (28)]

%Vc —213_\/-2— Vc
-5V2V, iy,

17;‘=UI7¢UT=( (29)

We now proceed to find the Green’s function for the
strong-scattering problem. Since f’: is diagonal,
the strong equation is completely diagonal. Thus,
the strong Green’s function takes the simple form

GV (r, r") 0

0 G(IS) (1’, ,},-I) ’ (30)

él (7’ 7') =
where G(,")(r, 7') is defined in analogy to G, (r,7’) of
Eq. (15), i.e., in terms of R and I¥, which be-
have asymptotically like

R (r)~ sin(ky —317 +5§1), (31)

I (r)~ —cos(kr =517+ 55V),
The solution to the full wave equation is now writ-
ten °

040r) = 0% + fo &, v oMY O (32)

In order to find §’,‘, we choose both

A RM(r) 0
U? (7") = 0 and R(,S)(’V) . (33)

Thus, we find two pairs of vectors: A®, B and
A® B®  These are sufficient to determine S} com-
pletely by using Eq. (5). If we define

Ci;= ch R(zi)(r')jo)(r’)vc(r')dV', (34)
0
we find, after some straightforward algebra,
S¥ =(1 -+iCl,)exp(2i55Y),
Sts=S4 =32 iCisexpli(ai® +67)], (35)
Sk = (1= FiCl,)exp(2i67).

In order to remove the infinite phases from the
S matrix, it is more convenient to transform back
to the charge channels by §; = US*U". In this rep-
resentation we expect the infinite phases to be dis-
tributed in §; as follows:

'e-zig In(zkRe)  ,=i In(2kRc)
S;~\ -i€ 1nzery) 1 ' (36)

e

We remove these using the same trick employed in
Sec. Il by defining the finite quantities

-3 [ w{[R‘,” (N 0,r) = Gor L) ?f} ar,
== [ {00000 - wrrLie 2 o

dig= f w{R&”(r)R‘f” ) (r) (37)

eos(57= 519kl 2 Lo
Finally, we can write the S matrix as
Sto = e S expl2i(6} +d1,)] 4+ exp[2i(65 +di,)]
~ v idiyexpli(5® +5;®)]},
Sty =+ exp[2i(6;¥ +d,)] +Zexp[ 2:(5;® +d,)]
+5 id}sexpli(6{® +85)], (38)
Sho=e' 3= VT exp[2i(6; +d.,)]
++V2 exp[2i(5;® +db,)]
—-2 V2 id gexpli(5;® +55)]}.

Note that in this representation not all correc-
tions appear as corrections to the phases directly.
This is because we have not written §, in its canoni-
cal form, Eq. (9). If we rewrite S, in the form of
Eq. (9), it is easily seen that corrections are pre-
sent not only for the phases 6 and A, but also for
the elasticity factor n. This change in 7 appears
as the di; terms in Eq. (38).

V. TWO CHANNELS WITH NO STRONG-FORCE
SYMMETRY

The basic difficulty in treating the Coulomb cor-
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rections in the situation where the strong force
satisfies no symmetry is that the strong Green’s
function is difficult to find. Its form is rather com-
plicated, which makes the details of the derivation
complicated. Thus, in this section we shall merely
quote results rather than attempt to present the der-
ivation. It should be noted, however, that the meth-
od is basically straightforward and follows exactly
the principles discussed in Sec. IV.

We begin with a general strong-force matrix V
but quote results for the case when V has the form

(V. 0
V.=
c\o o

as in Sec. IV. With the Coulomb forces turned off,
we define the strong S matrix as

(39)

n i i(1 _nlz)l/zei(6,+Al)
S, = i1 - nlz)l/zei(6,+A,) mezm,
o & i1 - (L =12 2)1/2 8, + &)
= s L ’
i1 =)' sy o2k :
™
(40)

where 5; andA, are complex quantities.

There are four independent solutions to the strong-
scattering problem, and we shall need the two regu-
lar solutions which behave asymptotically as

sin(kr - 3I7 +5;)

R,(r)~
: (1 /)] 2)1/2 ex(kr-%hHA ) ’
2,
(41)
(1-n2)" pilr=dir+ )
ﬁ’t(’r)" an

sin(kr - 3im +A;)

That solutions with these asymptotic forms exist
follows directly from Eqs. (40) and (5) by making
two independent choices of the components of 4,.

We shall refer to the upper and lower components
of R, and W, by the superscripts (1) and (2), respec-
tively. In terms of these wave functions we define
the following finite quantities:

af= [ [[R“’(r)] 0r) = Ger iy ()] 2 ]dr,

¥ = fo " WO ()] 30,(r)ar, (42)

B = f "’[R&” @)W D o Yoyr)

(1 - ,’hz)xlz

o (fr P (kr)]? %,5] ar

These quantities satisfy the following identities
among themselves:

Im(a})=Im(af),

Re(8,)= (1—"—)1—;— Im(aF), (43)
1/2
Im(B,) = ' Z;I) Re(af +a)).

We can now specify how the S matrix is modified
by the Coulomb interaction. Equation (40) is modi-
fied as follows:

R.
7, becomes 7, e?™1),
8, becomes 5, — Re(aF) +5¢, (44)
A, becomes A; —Re(a

Although these results are for the simplified Cou-
lomb force in Eq. (39), more complicated situations
can be handled by making symmetric replacements
in Eq. (44). For example, if V, takes the form

. [0 0
V.=
“\o v,

then the lower components of R, and VV, are rele-
vant. Addition of the results from Eq. (39) and Eq.
(45) then provide us with the most general possible
case. Two things should be noted. First, we can
add such results because we are working to lowest
order in @, and second, Z, and Z, may be differ-
ent in Egs. (39) and (45).

Equations (42) and (44) allow us to find the Cou-
lomb corrections to strong scattering without iso-
spin symmetry. However, in actual practice the
wave functions R, and W, may be difficult to calcu-
late. In most physical situations the strong force
is approximately symmetric. If we can treat the
symmetry violation in Vs as a perturbation, then
the results of Sec. IV can be used. That is, we
can find the correchons due to V using the sym-
metric part of V as a perturbation. Since V isa
short-range force, ordinary first-order perturba-
tion theory can be applied to its symmetry-breaking
part. Because we are working only to lowest order,
the resulting phase-shift correction can simply be
added to the result calculated by using Sec. IV.

(45)

VI. CONCLUSION

The main results of the paper are Eq. (22) for
single-channel scattering and Eq. (37) for the two-
channel case with isospin symmetry. To use these
equations in actual data analysis, one must choose
a form for the strong potential (adjusted to give the
correct strong phase shifts) and specify the form
of the Coulomb potential inside the charge distribu-
tion. For example, one might decide to use a
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square well of radius R for both the strong-force
and the charge distribution. , The depth of the well
is adjusted (for each partial wave) to reproduce the
strong phases, and the Coulomb potential takes the
form

V.(r)=2¢/7, =R
=(&/R)(3-7%/R?), v <R. (46)

The procedure to be used in fitting was discussed
at the end of Sec. III. Possible modifications of
Eqs. (22) and (37) to the case where relativistic
effects are important are discussed in detail in
the Appendix.

Although Egs. (22) and (37) are unambiguous and
simple to apply, one can certainly question their
relevance to relativistic strong scattering proces-
ses. Two questions present themselves immediate-
ly. The first is whether calculations are sensitive
to the choice of a form for the strong potential and
the inner Coulomb potential. The second is whether
the equations represent correctly the most impor-
tant Coulomb effects in energy regions of experi-
mental interest.

Actual numerical evaluation of these equations
seems to indicate that they are rather insensitive
to the form of the strong and inner Coulomb poten-
tials. Results obtained by using a square well,
Gaussian well, and exponential well are almost
identical.® Typically, differences of the order of
10% are found in the Coulomb strong phases, &;°.
This is well within limits dictated by experimental
accuracy. Thus, we can conclude that the first
question does not inhibit applications of our results.

No definite conclusion can be reached on the se-
cond question. However, applications to actual data
have been very encouraging. Inclusion of these Cou-
lomb corrections definitely improves fits to pion-
helium data.® More recently, Bugg ef al.” have ap-
plied our Egs. (22) and (37) in analyzing their very
accurate pion-nucleon cross-section data. This
data is a measurement of the total and charge-
exchange cross sections in the neighborhood of the
N *(1236) resonance. The data cover the energy
range from 70 to 290 MeV. with an accuracy of +3%.
Before Coulomb corrections are applied (6° includ-
ed but not 6°°) they find

M(N*) -M(N***)=1.3+0.8 MeV,
T(N*) = I(N***)=5+4 MeV.
Including 6°° from Eqs. (22) and (37), these results

Vlz sz
—_——tmytm +U. U,
2 X 9 . 2 11 12

U _ v12 sz
2 2mg  2my,

become
M(N*®) =M (N***)=2.9 MeV,
T(N*®) = I(N***)=1.9 MeV,

with similar errors. These corrected results are
in good agreement with our expectation that I'(N *0)
=I(N***) and with the theoretical prediction by
Socolow!® that M(N*®) = M(N***)=2.4 MeV.

In conclusion it seems that our results predict
Coulomb corrections which are in good agreement
with experimental data. It is hoped that experi~-
mentalists will find our results of interest for fur-
ther data analysis. Certainly the simplicity of Eqs.
(22) and (37) recommends their application.
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APPENDIX: COMPARISON OF COULOMB
EFFECTS IN THE SCHRODINGER AND
KLEIN-GORDON EQUATIONS

Both the Schrédinger and the Klein-Gordon equa-
tions have serious difficulties associated with
them in a calculation such as ours. The Schro-
dinger equation can be used to describe the motion
of the beam and the target simultaneously but
gives the nonrelativistic form to the Born approxi-
mation to pure Coulomb scattering. On the other
hand, the Klein-Gordon equation correctly repro-
duces the full relativistic Coulomb Born approxi-
mation, but it cannot be formulated in other than
the static approximation for the target motion. It
would presumably be better to work with the Bethe-
Salpeter equation, but this presents technical diffi-
culties which have not been overcome.

Let us compare the two equations. in the case
when we have a strong potential which is isospin
invariant and a Coulomb potential. The Schré-
dinger equation is

¢12 lplz
- ,_?. (A1)

s tmgtmy+Up P34 P34
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where we have explicitly kept the mass contributions to the total energy because they are necessary to con-
serve energy when the masses of the two channels are different. Introducing relative coordinates (we as-
sume that U is a function of x, -~ x,) and assuming that the center of mass is at rest, this becomes

2

lplz
= E N (AZ)
Y34

where W,, and (g, are the reduced masses of the two channels. We now define k,,% and k,,° as

- +my+my+ Uy, Uy,
204
2
U,, ———+ma+m,+ U,
3 4 22
2pqy
k.2 ky?
E=m,+m+=2=m+m + .
204, 21gq

(A3)

Now one can easily see that Eq. (A1) is not in general Galilean-invariant unless certain conditions are

satisfied.

We are interested in the case where m, —m g3 and m, —m , are small. If we refer to this order of magni-
tude as Am, then one can show that Galilean invariance is maintained if we drop terms in our equation
which are of order (Am)?/m and (A wm/m)(k%/m) but keeps terms of order m, k%/m, and Am.'! Expanding

Eqgs. (A2) and (A3) to this order, we secure

2

_2_ll-+ml+m2+Uu Uy,
VZ
U,, —2—[1'+m3+m4+U22
and
k122_ k342
E=m1+m2+—zz—m3+m4+—2—u—, (A5)
where =3(ly, +gy). Thus, in matrix notation,
(-2 =B =-2u09 - 2009, (A6)

where f]; and ﬁc are the strong and Coulomb po-
tentials, respectively, and B2 is determined by
Eq. (A5).

The Klein-Gordon equation is

(= V2 +72)p = (W = V. (A7)
Since this equation is a static approximation, the
target is assumed to be very massive and at rest,

i.e., my=my>>m, or m,. The diagonal matrix,
m, refers to the masses m, and m,, and we define

(W2 0)=kz+frf (A8)
0 w?

so that K is the diagonal matrix of the laboratory
momenta of particles 1 and 3. Thus

W =VP=K2+ i = 2WV, + V2= 2WV, +V,V, +V,V, .
We have neglected V,2 which is of order o®. In
actual calculations, V, is chosen at each energy to
fit the strong phase shifts. Without loss then, we

define an effective strong potential

Ve=V,-V2/2W. (A9)

The Klein-Gordon equation becomes

d)lz

=E (A4)

lp34

(-V2—K2)p==2WV,0 -[(W2=2WV )27,
+V, (W2 = 2wV ) 2] .
(A10)

Note that since Vs is isospin symmetric, so is VE.
Therefore, the square-root matrix in Eq. (A10) is
well defined.

In order to compare Egs. (A10) and (A6) we must
take the static approximation, m,=m,>>m, and
m,, in Eq. (A6) and redefine the energy with re-
spect to the new level, m,=m,. It then becomes

(" ez - Esz){l} == 2“.5[75{[) - zu\sﬁci ’
where
kg2 kg2

m,+-—2—“—=m3+ﬁ— (A11)
S S
and

ps=z(my +ms).

For comparison we neglect WVE with respect to
W? in Eq. (A10), which then becomes

(-V2=R®)p==2WV,0 - 2WV,0. (A12)

Recalling that we are to neglect terms of order
(k? /m)(Am/m), we note that for nonrelativistic en-
ergies K?=F%, Therefore, Eqs. (A11) and (A12)
differ only in the fact that u in Eq. (A11) becomes
W in Eq. (A12). This is exactly what distinguishes
the Coulomb Born approximation in the two equa-
tions; Eq. (A12) agrees with the field-theory result.
In our calculations of Secs. II-V we have used
Eq. (A12) with m,=m, in order to facilitate com-
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parison with other authors who have made this
choice.! However, we may ask whether a compari-
son of Eqs. (A11) and (A12) does not suggest an-
other approximation. Certainly for nonrelativistic
momenta, we should prefer the Schrédinger equa-
tion, Eq. (A6), because it takes into account the
recoil of the target. Unfortunately, for larger k?

it does not adequately represent the relativistic de-
pendence of the Coulomb Born term. By comparing
Eqs. (Al1) and (A12) we saw that this could be
traced to the factor 2u in Eq. (A6). This suggests
that changing this factor to a more suitable relativ-
istic form might be a sensible way to extend the
nonstatic Schrddinger equation to the relativistic
domain. If E; is the total energy of the ith particle
in the center-of-mass system, e.g., E,®=k .2+ M2,
it is easy to see that we can implement the above
idea by replacing, in Eq. (A6), 2y by the matrix

2(E E; +k,,°%) 0
(B, +E,) (A13)
0 2(E;E  +Rg4?)
(Es+E,)

This yields the correct form for the Coulomb Born
term in the center-of-mass system and makes Eq.
(A6) reduce to the Klein-Gordon result, Eq. (A12),
in the static limit, E,=E,>> E, and E,.

This new equation also has one other interesting

property. In Eq. (A6) the mass differences enter
only through the definition of B2, However, our re-
placement of 2y by the matrix in Eq. (A13) intro-
duces new effects. If Vs =E,+E,=E,+E, is the
total energy, then

2(E,E; +ky5°) _ S my® = my?

(E,+E,) Vs

and
2(BgE, +kyy®) _ s =my® —m
(E3 +E,) Vs )

We can write the matrix, Eq. (A13), as

D 0 A 0
+ b
0 D 0 -A
where

D= E[S - %(mlz +ml+mg®+ml),

1
A=gr= (mg® = mP+ms2—-mp?).

Since A is of order @, we can neglect Affc and our
new equation becomes

(- 62 _Ez)zﬁ:—ﬁﬁsa)_&ﬁs{/; —DAﬁcz’i)) (A14)
in an obvious matrix notation. The term &0517)
also contributes to the mass-breaking effect.

Although we do not explicitly treat mass differ-

ences in this paper, the other consequences of Eq.
(A14) are easily incorporated into our results of
Secs. II-V. To do this we merely interpret & as the
center-of-mass momentum and replace £ by

Z\Z,a, 1
F o oare s zlm+myt vmg +m )]

instead of the definition given after Eq. (10). We
note finally that such a change will not affect the
data analysis referred to in Sec. VI because the
laboratory and center-of-mass momenta differ by
only 15% in that energy region.

Using Eq. (A14) it appears that we may be able
to take into account all possible Coulomb effects in
strong scattering except for the intrinsic breaking
of isospin invariance of the strong potential. That
one expects such effects is clear from studying
vertex corrections in field theory, but we do not
know how to measure this breaking either in terms
of U, or AM in our potential model. We must,
therefore, either hope that these effects are small
or content ourselves with introducing them phen-
omenologically into Eq. (A14).
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