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We suggest that it is a reasonable approximation to consider the bosons and fermions found
in nature as the normal modes of an underlying field theory which is invariant under gauge
transformations of the second kind. The field theories for the boson and fermion "trajector-
ies" contain an infinite number of fields with bilinear interactions between nearest neighbors
in the index space of the finite-dimensional (2k, 2k) representations of the Lorentz group.
When we turn on the electromagnetic field, we find that the physical particles have form fac-
tors. We discuss the connection between the bare masses of the underlying fields and the
masses and form factors of the physical particles. We show how to choose the bare masses
so that the physical particles lie on asymptotically linearly rising Regge trajectories. We ex-
pand our space to include isospin and trajectory normality, and construct a Lagrangian which
contains both the n and p trajectories. From this Lagrangian, we then find the vector and
axial-vector currents, and show that these currents obey the chiral SU(2) (3 SU(2) algebra.
By postulating that scattering is the absorption and emission of external quanta by the under-
lying fields, and that the external p and ~ mesons couple to the underlying fields via the vector
and axial-vector currents, we are able to give rules for calculating, in the narrow-resonance
approximation (only tree diagrams), any N-point function, where all but two of the external
legs are ~, p, or A& mesons. We also can calculate any particle + current —particle + current
amplitude in that approximation.

I. INTRODUCTION

Recent attempts to understand duality, whether
in terms of finite-energy sum rules, ' or in terms
of Veneziano-type models, ' ' suggest that the gross
features of a scattering amplitude are reproduced
by exchanging an infinite number of narrow reso-
nances lying on Regge trajectories as long as a
large number of satellites is included. Some at-
tempts at understanding vW, and W„ the structure
functions for inelastic electroproduction, suggest
that this approximation is also reasonable for the
off- mass-shell Compton scattering amplitude. "
Given the fact that an infinite number of resonances
can approximate amplitudes reasonably well, one
would like to get some physical intuition as to how
the resonances arise and what the dynamics of
scattering is. In an effort to give a physical pic-
ture of the Veneziano model (and at the same time
"explain" the particle spectrum) several people
have proposed that the physical particles are the
excitations of a quark-antiquark system (or three-
quark system) which is bound by rubber-band
forces." In this picture, the states are the nor-
mal modes of the "rubber band" to first approxima-
tion. Scattering is thought of as the absorption of
an external quantum, the excitation of all the nor-
mal modes, and subsequent emission of quanta

with deexcitation. This picture leads directly to
the Veneziano model. The main problem with the
Veneziano picture has been the absence of good
models for scattering processes such as mN- ~N.
The problems of spin and isospin were overwhelm-
ing, and there were also technical problems such
as ghosts.

In 1966, before "duality" was discovered, Nambu
investigated the question of whether wave equations
exist which describe an infinite number of particles
with reasonable spectra and electromagnetic form
factors. ' He considered fields which were infinite-
sum fields of the type g» $3(~k, —,'k), where (-,'k, 2k)
stands for the (-,'k, —,'k) representation of the Lor-
entz group, i.e. , a symmetric traceless tensor of
A indices. His fields obeyed a first-order wave
equation which implied that the source of the
(-,'k, —,'k) field was the fields (-,'(k+ 1), —,'(k+ 1)) and

(—,'(k —1), —,'(k —1)). Thus with each point in space-
time there was associated a one-dimensional lat-
tice in Lorentz-index space with nearest-neighbor
interactions. Nambu restricted his attention to
wave equations which could be solved by group-
theoretic means. The theories he studied had non-
realistic hydrogenlike spectra (accumulation point)
and hydrogenlike form factors for the particles.
The first-order wave equations also had the prob-
lem of not having a positive definite probability
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density. Nambu's work showed that a rich particle
spectrum, with a particle having intrinsic struc-
ture, could be obtained by an underlying field the-
ory with nearest-neighbor interactions.

Recently Chodos and Haymaker showed that one
could choose non-group-theoretic masses for the
underlying fields which would result in the phys-
ical particles lying on Regge trajectories which
were asymptotically linear. ' In that paper differ-
ence-equation techniques were developed for di-
agonalizing the wave equation of Nambu.

In a recent paper of the authors, " it was shown
that the first-order wave equation had certain
gauge transformation properties. These proper-
ties led us to consider Lagrangian field theories
which were invariant under the same transforma-
tions as the wave equations. The canonical field-
theory aspects of these theories were explored in
that paper. These new Lagrangians lead to second-
order wave equations which admit solutions which
have particles lying on rising Regge trajectories,
as well as having a positive definite probability
density. Even more important, there is a pressing
aesthetic reason to consider these field theories.
We will show in Sec. II that if we ask that a theory
with nonzero bare-mass fields be gauge invariant
of the second kind, we are automatically led to
consider field theories which contain an infinite
number of fields coupled with nearest-neighbor
bilinear interactions. By letting the fields take on
an extra spinor index (Rarita-Schwinger fields),
we are able to consider similar Lagrangians for
fermions as well.

We then go on in Secs. III-V to diagonalize the
second-order wave equations for bosons and show
the connection between the parameters of the
underlying field theory and the masses and form
factors of the physical particles. Specifically we
give one choice of parameters which result in the
physical particle lying on asymptotically linearly
rising Regge trajectories. In the Lagrangian
framework it is easy to introduce electromagnetic
interactions via minimal coupling. We show how
the form factors, diagonal and off-diagonal, de-
pend on the input parameters. The diagonal form
factors are given in terms of a power series in
the (3+ 1)-dimensional Legendre polynomials and
their derivatives.

In order to discuss the physical m and p trajec-
tories, we generalize our fields in Sec. VI to have
two additional indices, i (=1, 2, 3) corresponding to
isospin one and q (=0, 1) corresponding to the
normality of the p, v trajectory P=(-1)"~. With
these additional indices we look at two rotations
in the (i, n) space and determine the vector and
axial-vector current. We show that the vector and
axial-vector currents generate chiral SU(2)CASU(2)

p +g- p +B,
A,

where j „ is either a vector or an axial-vector cur-
rent, A. and B are arbitrary particles on the z or
p trajectories. We also give rules for calculating
the +-point functions when the external particles
are p or p or &, in the tree-diagram narrow-res-
onance appr oximation.

Although we know the vector-and axial-vector-
eurrent matrix elements in principle, in practice
they depend on the coefficients which are used to
expand the underlying fields in terms of physical
particle fields. These coefficients are solutions to
second-order difference equations, and we lack
explicit expressions for them except in particular
cases. In general we shall be forced to resort to
solving for them numerically. Thus we will never
get simple formulas for scattering, like the Vene-
ziano model; we have achieved a certain theoret-
ical simplicity at the expense of rather complicated
expressions for the final amplitudes.

We will devote most of this paper to a discussion
of the boson Lagrangians. A complete discussion
of the fermion field theories will be deferred to a
later paver.

II. GAUGE INVARIANCE OF THE SECOND KIND

AND INFINITE - COMPONENT FIELD THEORY

In this section we show how gauge invariance of
the second kind forces the introduction of an infin-
ite number of fields with bilinear interactions
among them.

Let us start with a massless spin-zero theory.
The Lagrangian for that theory is

g = 28u9 Bug (2.1)

algebra.
Since we are considering the underlying fields

as the funda, mental entities, we picture scattering
as taking place the same way as in Susskind's
rubber-band picture of the Veneziano model'-it is
merely the absorption and emission of external
quanta by the underlying fields, the Regge poles
being the propagated normal-mode excitations.
We obtain the vertices by postulating that the ex-
ternal photon couples to the electromagnetic cur-
rent, the external p couples to the isospin current
and the external pion couples to the divergence of
the axial-vector current of the underlying field
theory.

We then show that we can generate in the narrow-
resonance approximation all the tree diagrams for
the 4-point processes:

u+A-gv+ 8
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We notice that this theory is invariant under the
constant translation q(x)- cp(x)+ o.

By the usual arguments of Gell-Mann and Levy"
this tells us that there is a conserved current

when g- e-" "'g. If we now require that the free
Lagrangian for the field A~ or q~ be gauge-invari-
ant of the second kind we are led to introduce the
term

(2.2)
Zf„, =--,'(8"A' —8'A")(B„A„—B,A ) . (2.8)

such that B„j"=0, i.e. , y =0. Corresponding to
this conservation law, there is also a charge which
is the generator of the transformation:

Q= j d x= ~pdx=

such that

e'o" (p(x)e 'o" =(p(x)+ n. (2.2a)

(p(x) —y(x)+ o. (x) .

Under this transformation we find

62 = B„yB"o. (x) .

(2.3)

(2.3a)

Let us now introduce a vector field y„(x) which in-
teracts with y such that g,„,= rye B„qy)', i.e. , we
consider

Z=-.'(B„y+ mcp„)( By+ m(p").

If we make the simultaneous transformations

(2 4)

This invariance under a constant transformation
is referred to as gauge invariance of the first kind.

Suppose we ask what field or fields must we in-
troduce so that g is invariant under the nonconstant
transformation

In the case of @ED this requirement is the same as
saying that 4" is massless since ypg'g~g„ is not
gauge-invariant. Thus gauge invariance of the sec-
ond kind for the above fermion Lagrangian "re-
quires*' the introduction of a zero-mass particle,
the photon.

Suppose, however, we add the kinetic term

——,'(8"y'- 8'rp")(8„(p„s,-y„)

to our boson Lagrangian. Then we have

2 = ~(B„y+ my„)(B"cp+ my")
——,'(8~(p'- 8"(pt')(8„(p, —8,(p„) .

(2.8a,)

(2.9)

But this is the Stueckelberg formalism for describ-
ing a particle of mass m and spin one, and nothing
else. ' '" To see this one lets ypgA„= ypgy„+B„y.
Then

2'= ——,'(8"A"- 8"A")(B„A„-B,A„}+—,'m'A„A" .

This is the ordinary Lagrangian for a field of spin
one and mass nz. We notice that the gauge invari-
ance in this theory is "spurious". That is, we can
introduce a new field A~ which expresses the full
content of the "gauge-invariant" theory, but whose
Lagrangian admits no gauge group.

Let us instead choose for the kinetic term
y(x)-(p(x)+ n(x),

(2.3 ')
'. (8"q'+ —8'(p")(B„rp,+ B,y„), (2.10)

q" (x) —(p" (x) ——8"o. (x),
m

then we find Z- g. We see this Lagrangian
[Eq. (2.4)] introduces the bilinear interaction
mb„yy" as a consequence of the gauge invariance
of the quantity 6"=-e~y+ ~@I'.

This discussion is very similar to the treatment
of gauge invariance of the second kind in quantum
electrodynamics (QED)." There one starts with the
fermion Lagrangian,

or, so that we have an irreducible representation
of the Lorentz group,

(B~t'p +8 g"— g~ 8 (p )

x (B„y,+ B„y„—,'g„,B-~(p ) .

(2.11)

Then this new piece is not gauge-invariant under

1
(p" (x)- (p" (x) ——8"o. (x)

m
Z=P(iy 8 —m)g, (2.5) since

which is invariant under p-e '"'g and p-ge' ',
with o constant. If we now let o =o(x), we obtain

62 = eP y"$8„o.'(x) . (2.6)

Thus to obtain gauge invariance of the second kind,
one introduces the field A" (x), with interaction

e$ y" $A„(x}

such that

(2.12)

and we have to introduce a new field y„, with bi-
linear coupIing Z, =y„,5(",8 y' (where 6(", is the
projection operator onto the space of traceless
symmetric tensors). This makes the second term
gauge-invariant of the second kind. That is, we
have for the second term

A" —A" —8"o (x) (2.7) z(8~ pp+B~g ~
—zg~~Byg + m~p~p) (2.13)
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which is invariant under

cp" (x) —y" (x) ——&"u (x),
P12

y""(x)-rp"'(x)+ 6(; s's n(x).
mlm2

(2.14)

Again, if we introduce the kinetic term for yj" in
a gauge-invariant way, we can remove the gauge
invariance by a redefinition of the fields. The only

way to obtain a theory which is gauge-invariant of
the second kind where the gauge fields have mass
is to continually introduce the symmetric deriva-
tive kinetic term. Thus we are led to consider
theories with an infinite number of gauge fields
(I()»' ' '~k, which are symmetric and traceless and

are the (-,'k, —,'k) representations of the Lorentz
group. The full action can be expressed as follows:

A=1

(2.15)

Here q, is (-1)'" and is necessary to make the mass-term contribution to T" have the correct sign, and

6»:::+ is the projection operator for making tensors symmetric and traceless (the unit operator in the
I

(-', k, —,'k) representation of the Lorentz group). A preliminary study of this field theory was given in an

earlier paper. ' Clearly this Lagrangian is invariant under the gauge transformations of the second kind,

(2.16)

provided yk+ nk+, yk, 1
=

The presence of gauge invariance leads (as we shall see) to the absence of spin-zero states. This is fine
if we are looking at the p Regge trajectory. In order to include the possibility of z mesons we must relax
our stringent requirement that the Lagrangian be invariant under arbitrary gauge transformations. We look
instead at Lagrangians invariant under restricted gauge transformations, or gauge transformations in which
the gauge function A(x) obeys the Klein-Gordon equation. This allows us to add a third term in defining
Q 1' ' '

Vk

Specifically we consider Lagrangians of the form

A=o

This Lagrangian is invariant under the infinite set of gauge transformations

provided

( '+ m, ')V&(x)=0, 8, V' ' '" (x) =0

and

m, ' (k —j+1)(k+j+2)
2 (,)2 Pa Yg+i+os Y~a+'Y~-i = 0.

k+ L

(2.17)

(2.18)

III. BOSON FIELD THEORIES

In this section we will discuss in detail the physical attributes of the normal modes of the two boson La-
grangian field theories, i.e., the masses and electromagnetic form factors of the physical particles. The
problem of finding the masses of the normal modes is equivalent to solving a second-order difference
equation with the boundary condition that the physical states are normalizable. This boundary condition
leads to an eigenvalue problem which we can solve explicitly for particular choices of the input parameters
zk and pk. For arbitrary choices of nk and pk we can discuss the asymptotic behavior of the leading
Regge trajectory for large j. The method of finding the eigenvalues is an extension of the techniques of
Ref. 9. The canonical field-theory aspects of these boson Lagrangians have already been discussed in
Ref. 10.

The Lagrangian, Eq. (2.17), leads to the following first-order field equations:

k+1 ) ~ k+ ~k-1~k-1~Vi. . . k 8 lQ 2 k = 'g Q Q 1 k
k

&v ~ ~ ~ v
= "v ~ ~ ~ vr' "

p 0' p,
~ ~

p
+ +k V' v ~ ~ ~ v + Pk ~ A1 k 1 k 1 Q A 1 k

'
vk
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which we write in shorthand as

s G"'+ (qk, /0„, )pk, 5BGk '-= (qk/q„, )nk G

Gk gg~k-1+ ~ qk+ p g, ~k+1

This gives the following second-order equation for yk:1, k
P + &»'0 + P~-i &» 9 — &~ PQ+ 1 }t'+ 1

(3.2)

k+2 1k Ok ~k-1 lk- 1
Pk+1 0 +k Pk +k+1 9 k+1+ ™k ] k-1 k-1 'A 1

9k+1 9k+1 1k+1 Ok+ 1

(3.3)

These equations also describe the totally gauge-invariant Lagrangian [Eq. (2.15)] when we set pk =0. Here
we see that the fields Gk obey first-order wave equations with nearest-neighbor coupling in the Lorentz-
index lattice, whereas when p wO q has both nearest and next-nearest interactions. We also see that for
the mass of the bare field (when the couplings are assumed to vanish) to be real, &tk/&I„, = —1. If we look
at how o.k' enters T", we see in fact that we need»k = (- 1)"'.

We now assume that there exists an infinite number of free fields, labeled by an index N=0, 1, 2, . . . of
definite spin j and mass ppzN, . which correspond to the normal modes of the underlying set of coupled fields.
These fields

therefore satisfy the equations

(3.4)( '+ m„,')rp"=0 and a "~v&„„.. .„(x)=0

as well as being symmetric and traceless in the indices (», , p,.l. In terms of creation and destruction
operators, we can expand y as

3
pk' ( )

—Q [e 'k *&„.. .„(p,s)a(p, j, s, N)+e' 'e„*.. .„(p, s)b (p, j, s, N)],
v'(2mp 2p, (N)

(3.5)

where

[a(p, j, s, N), a (p',j ', s', N'}]=2&t&,5'(p —p')5, , 5„5„„ (3.6)

(and similarly for b and b'} and where the e„.. . (p, s) are the polarization vectors for a spin-j particle,
as given for example by Scadron. "

We now decompose our canonical gauge fields q and G in terms of the normal modes q:

9&kl & k —~ p o(&& J& 5k/ Ilk Sv jy g. . . Qvk V&vg' v ~

kN=p j~k
(3.7)

and

Gky' ' 'kk g ~ f(N&&6kg' ' 'kks
N=p j&k

(3.8}

The requirement that the y„diagonalize the field equations [i.e. , that the Eqs. (3.1) hold separately for
each component q&'„] leads to the following relations between the m~, , a,"', bk"', and the parameters of the
underlying field theory nk and pk:

mk,
' (0+ j+2)(k —j+ I) &„,&

(~+ I}2 (3.9a)

mk, (k —j+ 1)(k+ j+ 2)
k k-1 k k 2 (&t+ 1)2 Pk 0+I (3.9b)

When/@0, (3.8)isa second-order homogeneous difference equation for the b~"'I and (3.9) is a second-order
inhomogeneous difference equation for p'k"". For p=0, we have two first-order difference equations which
are easily solved.
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(3.10a)

The boundary conditions on the difference equation can be expressed as an eigenvalue problem for the

gpss„, , the allowed masses of the physical particles. These boundary conditions are

a' "=b' '=0 for g& jk

and

[v '(x), (p'(y)], , = i-5'(x y-),
0 0

(3.10b)

[0 „'~ "'(x), &p» . . .„(y)]= »5~g-P"„&.. . t' (x —y),

where v' is the canonical momentum conjugate to y», as derived from the Lagrangian (2.19):

lk )f~' ' '
Pk ~0 'fk 2f k 2 fly

'
[lk ~ ~Xk go Xg

(3.10c)

(3.11)

and I' is the projection operator
3

p'~:::') (x- ) =~ , [ "'" 'e * . . . (p, s)e"' ' "~ (p, s) —e" '* "'e . . . (p, s)e*"~' ' ' "' (P, s)] .
S

(3.12)

[Q, y(~)] = —eW(&) [Q, j' (x)] = ej' (x) . (3.13)

Here Q is the electromagnetic charge operator Jj'(x)d'x determined from the original Lagrangian, Eq.
(2.17), by the principle of minimal coupling. This implies, for normalizable states ~Nj), that

(3.14)

When we first expand Q in terms of the gauge fields y and G, and then expand the y and G in terms of phys-
ical-state operators, we shall obtain a normalization sum over the ak"' 's and b„~' 's. We get

{—1)'"" (j!)' (k+j+2)!(k j+1—)!„«,! !„,.!
2» j+& (2j-~1)t [(k~1)I]& L»+&» + »»»+& j N&

as we shall show below. (Here we have assumed all the a's and 5's real for simplicity. )
We shall also find that the expression b„",' a»!"' +!l» b»!"' a»!+,' contains a factor of (-I)' which cancels the

(-1)' that appears explicitly in (3.13). Thus we avoid one of the problems that plagued the first-order La-
grangian of Nambu, which had the structure

(3.15)

g=(tj(a„L, ['+m)P

and which predicted that the matrix elements (pj iJ'~pj) were proportional to (-1)'. We have instead a.

second-order Lagrangian, and the problem seems to disappear.
We now proceed explicitly to make our fields charged. In addition to allowing us to calculate (3.14), this

will also enable us to show that the physical states have intrinsic form factors. We shall give expressions
for the form factors and the transition matrix elements of j„(x)as a series in k involving the a»e'!, 5P',
and the (3+1)-dimensional Legendre polynomials in y—:P P'/~P ~jp'j, ip ~

=m and [P'~ =I'.
To introduce charge one must double the space by introducing two Hermitian fields qkI and cpk, or what

is more commonly done, one introduces the non-Hermitian fields yk and yk which are eigenstates of the
charge operator Q. In terms of the complex fields yk and ykt we can write the Lagrangian as

Z=» Q [)»G (5&y», +uy+J»»B »y», , )+q»(58(p», +n»'p» +j»s ' p»+, )G ] —Q q»G "G».
k=0 k=o

We notice that this Lagrangian is invariant under the constant phase transformation

(3.16)

Equations (3.10a) are the "initial" conditions for k =j. Equation (3.10b), when expanded using (3.7) and (3.8),
gives us a sum over N and j for fixed 0; thus it is not a boundary condition on a single one of the difference
equations (3.9), but is rather a completeness sum over all the solutions. In Eq. (3.10c), if we knew the in-

verse of the expansions (3.7) and (3.8), we would indeed have a sum over k for fixed N and j, which would

provide bounds of the growth of a„"~ and b„"' for large A.

To avoid this rather cumbersome program, we make use of the fact that for charged bosons (3.10) leads
to

Gk e Gk

q7VGTeG
(3.17)
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Thus by the argument of Gell-Mann and Levy, there is a conserved current

j „= „such that B„j"=0M
P ggP~

and Q = Jjkd'x is the generator of the above phase transformation. That is,

(3.18)

[Q, ~ 1
= -~ and [Q, ~'] = V

'. (3.19)

This shows that q destroys charge and y creates charge. Letting o. =u(x) and using Eq. (3.16}, we obtain

j"(x}=—p))k(G""""& ".. +&k9""'"~'G„" .k-&o'., " .kG"'""k"-Pk&."," .kv" "'"k"].
k=o 1 k

(3.20)

One can easily verify that this current is conserved and that Q satisfies Eqs. (3.19) by using Eq. (3.11).
We should like to have an expression for all diagonal and transition matrix elements between physical

states a (Nj sP)IO}, which we designate by INj sP). Using equations (3.20), (3.5), (3.6), (3.7), and (3.8),
we obtain

(N'l''p's'lj" (x)INjps) = e" '*(f)1

(2w )'

bop
' ' ' PkP [(bk(N')')a(NJ) +p ak(N'J')b(Nf))ek~ ~ ~ ~ vJ (p s )e (p s)

k=f

&& p») '
z ~+. .pl vk+ qp . . .p + (ak(N'f ')b(&J) +p bk(E'J')a(EJ ))

Wf+ f. Pk k+1 k k k+ 1

x e "& )(p, s)ek . . . ,(p S )P ")+i P"k+&p ~ ~ p ]

(3.21)

We show in Appendix A that

1 't 'Il
f p s lj"( }I jps&=(2„),e'" " (- )'~' '

((2 „),(2, „),), )k

m Ik- f ' ~k-f))» &k &, )kk (m'(b +*,ka k+)ikakb )[k(k+1-j')!(k-j}!(k+j+1)!(k+j'+2)!J'
k=f

X [f)(t (k+ O ~ t(k+ O)(L, -&(p&)) L, )tD(ik tk)( Z (p))]
k

—m(a„'*b„+, +p b ak+k, )[k(k-j')!(k+j '+1)!(k-j +1)!(k+j +2)!]'k

x [D(tk tk)(L 1(pl))L flD(t(k+O, i(k+1))(f (p))] ]
Here b'=b ",etc. The form factors are thus given by

(Njp s Ij (x)Imps) =
1 i . (-1)'( !)'

(2w}' (2j ~1)!
m2(k-f)

x gqk . .+, (k —j)!(k+ j +1)![(k+1 j)(k+j +2—)]' 'Re(b,*„a„+0ka,*„b,)
k=f

&&[/)(&&k+» '*(k+»)(L, -~(p~))f. &D(» "){f,(p))

D &k tk (f.-~(p~))L, &g)(&(k+» ~ t(k+»)(L, (p))]

(3.22)

(3.23)

For j =0 we can express this very simply. Using the fact that

~k= 5!'.::"'p" ""kp-'„" p»= lpl'lp'I', f'k()),

where
p'p p()

lpl lp I

~ (k+1)sinh()

(3.24)
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and that

1 8
Pk Pk*V1 ~ *vk 1*
1Ik-iP ~ p p p" p

&&&p'" [& I' 'I &'I' 'I'&(y)+P" I!p I' 'I!j1'I'[kI'.(y) yJ-",(y)]), (3.25)

we find

(Nj =0&'li "(x)INj =0!b&= 2„,(P"+p'")e'"' "*

m" k2 [(k+1)p,(y)~ p„„'(y)(1—y)]Re(b„*+," a," +I3~ a~~+™, b~" ).

(3.27)

to obtain

2

(NjPsj~'(x)(!NjPs)= e' ~ ~*(-1)~
(2v)' (2j + 1)!

2{k-g)
(3.26)

(3.26)

Thus we obtain an expression for the form factor as a power series in the (3+1}-dimensional Legendre
polynomials. To obtain the charge, we set }1 =0 in Eq. (3.23) and use

-g[(k + 1 —j)(k +j + 2)]' 'b, ,tb„~

I~~+»».~, =2[(k+1 j)(k+—j+2)]'kb&&,5

Thus the normalization condition on the a, ~' is

k=f

as we recorded above in Eq. (3.15).

(3.28a)

IV. FULLY GAUGE - INVARIANT THEORY sections, we introduce the expansions

We turn now to a more detailed examination of
theories governed by the Lagrangian defined in
(2.15): and

N. i —k

Z(~y) ~&(k- j) -(~)
k (4.5)

~ - Zqkl~ (5 PA-1+ k9 k) - .~ ~k]
k=1

(4 1) ~(N&) ~~(k-~) -(N)
k %j (4.6)

cp, -qr, +y,bs„s,,A(x)

provided

(4.2)

As mentioned in Sec. II, this type of theory is in-
variant under the gauge transformation

where the y(.") are the normal modes of the field
theory By dem. anding that Eqs. (4.3) and (4.4) hold
for each normal mode separately, we obtain the
difference equations

yk, +ekyk =0. (4.2a}
g(~z) (~~)+ (~&)

k k 1 k k (4.7)

and

&k = &~9 k-1. ++k9'k (4 3)

The equations of motion that follow from (4.1)
are m„, (k —j+ 1}(k+j+ 2)

2 (k~ 1)2 k+1 k k

(4.8)

~ '&k+i =&k&kGk (4.4)
In these equations, the boundary conditions

With g1, = 1}1,/1!g~1 = -1.
Following the general philosophy of the preceding

(jo) ~(~s) 0k (4 9)

are to be understood Solving (4.8.) first, we have
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k I 2
~t Q ) f Q+j+ $ t

(4.10)

in the theory.
Case 2. j odd, gpss~' w0. In this case one can

readily verify that the solutions are

[Note that g', -,'. u, is defined to be (I/(z, .)QI,a,
= 1.] The solution to (4.7) is then

b", = arbitrary constant,

b(i) —a(i) —b /~j+& j
(4.16)

'""=(-1)' ' nl=0 +j+l
r-1

b(Ni )+ ( I )rb(Ni)j j+r L j+p
r= p=O

We now define

(2j+ 1)!
X TT (a.

y! (r+ 2 j+ 1)! p&

(4.1 1)

and b'k'=a', "=0, otherwise. The mass eigenvalue
condition is

m,
' = n,.'( j+ I ) . (4.17)

Thus there is one particle with each odd-integer
value of spin, i.e., a single trajectory with odd

signature. From (4.16), however, we learn that
the expression for the form factor of a spin- j par-
ticle has only one term [only k = j contributes in

Eq. (3.23)]. In fact at zero momentum transfer we

get

and rewrite (4.11) as

k-j ]a(Ni ) —
( )I&-i rv b(Ni )f(i ) ( m 2)

LL j k 4'j i
l=o Qj+l

(4.12)

(4.13)

A. Uncoupled Theory

We can simultaneously destroy the gauge invari-
ance and the nearest-neighbor coupling of the the-
ory by choosing some of the +k=0. To be specific,
let us consider the situation:

(yk+0, g odd,

Q(. k=0, A even.
(4.14)

There are then three distinct possibilities:
Case 1. j even, m~' w0. Then from (4.7) we

immediately have b(~')= o., a,. ')=0 (since o., = 0) so
that

b j =a+ =0 for allk k (4.15)

With the help of these formal solutions to the equa-
tions of motion, we shall now explore the proper-
ties of various systems determined by specific
choices of the input parameters ak. In particular,
we shall discuss the following four cases:

A. An uncoupled theory (with alternate a~'s =0)
which possesses a single trajectory and point form
factors;

B. A coupled theory (i.e., no a, =0) in which (),
behaves like the 1/k for large k, which possesses
a leading trajectory and an infinite family of satel-
lites, and which has structured form factors;

C. As we increase the o., to behave like I/Wk,
we shall find that there are only a finite number of
bound states;

D. Finally, if we take all the +k =const, the
bound-state spectrum disappears entirely.

(a~if&d iv)) '2u& (u =o )'-'
, , )b), i'b'(P —P') (4.18)(j()

so that the choice ~(b, i' =2'm, . '/(j.!)' properly nor-
malizes the electromagnetic current. This is a
noninteracting theory; there is no gauge invari-
ance, there is no coupling between nearest neigh-

bors, and the form factors have no structure.
Case 3. We mention before proceeding to the

next choice of o,k's that in addition to the massive
solutions we have found, there exist an infinity of
massless solutions for each spin. Putting m„' =0
in (4.8), we see that b',"' =0 for k odd and b,~'

= arbitrary for k even.
If j is even, we learn in addition from (4.7) that

0)but then all

other's„"'are

unconstrained
for even k. The a'k~' are given by

aj Aj+~l j~2 q

aj„=b, +2,

aj+2 A j+36j+4

aj+3 = bj+4, etc.

The case j odd, gyes„'=0 is similar.

(4.19)

B. Coupled Theory with an Infinite

Number of Bound States

We shall now examine a particular theory with
all the nk nonzero. This has the effect of restor-
ing gauge invariance, and of coupling each field to
both of its nearest neighbors. We see immediately
that all massless solutions have disappeared, since
from (4.8) and (4.7) the only solution for m„' =0 is
a, ' =b',~'=0 for all k. We shall also see below
that the form factors have acquired structure.

To be specific, we choose

That is, there are no massive even-spin particles u, = a/(k+ 1) . (4.20)
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(,),) ~, (2 j+ 1)!f»™N ~z r((r+2j+1)(

with

(4.21)

We insert this choice into our general formulas
(4.10), (4.12), and (4.13). We have, in (4.12),

Then

(2j+1)! " z" (r+j+ p)!

(j+ p)! „r!(r+ 2 j+ 1)!
(4.29)

For j+ 1&)31 the series (4.29) can be represented
as a polynomial times an exponential, i.e.,

z =-2a'/m„'. (4.22)

We also define, at this point, the limit function

f(I) (z) (P-(1()) (,z)ex

where (P ' (z) is the polynomial

(4.30)

f(J ) (z ) Iim f(J) (m 2 )

In our case, we have

(2 j+ 1)l
(r+ 2 j+ 1)! r!

'„, ' I„.„(2Hz),

(4.23)

(4.24)

(4.24a) (P ' (z) = (z+ 2p- 2)
1

2p —2
(4.32)

»&; s&(, )
. (2'&&(x&,-.)(&)'

' '(, & 8.
)

(4.31)

Thus we have, for example,

where I is the modified Bessel function.
Unlike Case A, there is now an intimate connec-

tion between the allowed mass spectrum and the
structure of the form factor. Specifically, if we
calculate the form factor of a given state at zero
momentum transfer, we find

and

(P (()-2, () ) z )
1

(2p —3)(2P —4)

x [z + 2(2P —3)z+ (2P —3)(2P —4)]

(4.33)
(N js I J.IN js)

=(2 „(j')'2, , Ih(,""I'Qf"(m~, ').

(4.25)

If
I N js) is a true bound state, i.e., if its norm is

finite, then the sum on the right-hand side of (4.25)
must converge. But g», . f(» ' can converge only if

f( )( ) f(')( ) 0

i.e., we are looking for zeros of f(')(z). Using the
asymptotic form of the Bessel function, we con-
clude from (4.24a) that the criterion for bound
states is and

Q
m (jmax) (4.34)

In general, 6'" is a polynomial of degree p- j-1
and therefore we expect p- j—1 bound states for
spin j. From (4.32) and (4.33) we learn that there
is one bound state at

z =-2(p- 1)

for spin j,„=p- 2, and two bound states at

z = -(2p- 3)' '[(2p- 3)' '+ 1]
for spin j,„-l. Using the definition of z, (4.22),
we have

z = —[N+j + —,']2»vr', N an integer,

for (N+ j) large. From (4.22) this is

m„'=, (N+j+2] ',8~'

(4.27)

(4.27a)

2+ 1
~ (2m»x )

(2p 3)1/2 (2p 3)1/2+1

Notice that

m, '( j~»„-1)& m'(j ~») & m '( jm, „-1)

i.e., the mass spectrum falls quadratically.
Notice that since we now have an infinite number

of nonzero a, 's and 5,'s, the form factor at arbi-
trary momentum transfer I,, as calculated from
(3.23), is an infinite series in (. Thus we have
nontrivial vertex structure as a consequence of the
infinite coupling of the theory.

so that, on the leading trajectory, the higher spin
has the greater mass.

It is of course impossible in a theory with a fin-
ite number of bound states to ask for the asymp-
totic behavior of the trajectory. However, from
(4.34), we see that

CXm'(j. ,„)= .
21T)a x

C. Theory with a Finite Number of Zeros

Let us choose

(2» = a(!'2+ P+ I)'i'/(l2+ 1) . (4.28)

so that, as we increase j,„, the leading mass goes
to zero as 1/j

Finally, we remark that the existence of a struc-
tured form factor is independent of the existence
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of an infinite number of bound states. As we can
see from (3.23), all that is required is that there
be an infinite number of a,"' and b„"' for fixed
(Nj), which is true in our case even though the
number of bound states over which (Nj ) can range
is finite.

uk=a for all k.
We have in (4.12)

(4.36)

D. Theory with Constant Input Masses

Having treated cases where o, , -1/k and a, -l/vk,
we now examine the situation

therefore the coupling between the fields) the num-
ber of bound states decreased. We went from an
infinite number of bound states for n~-1/k, to a
finite number for o.~ -1/vk, to none at all for o ~

-const. The implication seems clear that as the
a's increase, the bound states fall victim to an

encroaching continuum. It will be of considerable
interest to see in which cases such a continuum
exists; the completeness relation, derived from
the commutation relations (3.9), will be important
in deciding this question. If the continuum is pres-
ent, one wi1.1 want to know whether it contains a
resonance structure reminiscent of the bound
states that have disappeared.

and the limit function

f '!(z)=
2 F~(j + 1,j+ 1; 2 j+ 2; z) . (4.38)

(4.39)

This is only true, however, inside the radius of
convergence of the series (4.37), which is ~z ~=1.
For ~z ~&1 the limit function does not exist. The
criterion for a bound state is that f'!(z) in (4.38)
be zero. We now show, however, that there are
no zeros of (4.38) for —1 & z &1.

The demonstration is a simple consequence of
an integral representation for the hypergeometric
function, namely,

V. THEORY WITH P 40

We turn now to the more general theory with

G =68+„+A g +P 8 cp

This implies the equations of motion

gk, & G,+g,P„,&~Gk q=nkgkG

(5.1)

(5.2)

We see that, contrary to the case discussed in
Sec. IV, the equations for G and cp are each sec-
ond-order in the index k From Eqs. (3.7) and
(3.8} we obtain

—mz, ' (k —j+ 1}(k+j+ 2)
~~+~ 2 (k + 1)2 &+~

(~~) (~~)
Ok +k k 9k-1Pk 1~k 1

Clearly for —1 & z &1, the integrs. nd in (4.39) is
positive, and hence f!'~(z) &0; i.e. , there are no
zeros in that range.

E. General Comments

and

—mz, ' (k —j+ 1)(k+j+ 2)
k 2 (k+ 1)2 &+i

(5.3)

In this section we have gathered some data on
the nature of particular bound-state spectra. What
further conclusions can we draw?

First, let us remark that although we have un-
earthed several different kinds of spectra, the
most popular kind of Regge trajectory, namely,
an infinitely rising one, is not allowed. Recall
that bound states for spin j are located at the
zeros of a certain function f"(z) which is ex-
pressed as a power series about the origin in z.
Since z is proportional to 1/m', in order for us to
have an infinitely rising sequence of masses, we
must have a sequence of points z, —0 with f"(z,.)
=0, i =1, 2, . . . . But a function which is analytic
in a neighborhood of the origin and which vanishes
on a sequence of points that accumulate at the
origin, must vanish identically. Hence such tra-
jectories cannot occur.

However, we also discovered above that as we
increased the strength of the input masses (and

~(xy) (~j) (xg)
k k k k-I '

(5.4)

As we showed in Ref. 10, (5.3) is equivalent to the
difference equation derived from

furthermore, from the results of Ref. 9, we expect
the choice

Pk-i -yk
u~ n, , 2(k+ a)(k+ b)(k+ c)

to lead to asymptotically linear trajectories. Fi-
nally, we can solve the equations exactly for a par-
ticular j if we let a=j+1, b=ot —j, and c=e —j —1
for some parameter n,

Ps i -yk
(5 5)a, n, , 2(k+j + 1)(k —j+ o.}(k-j+a —1)

We shall concentrate from here on on this particu-
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lar case. The solution to (5.3) with the choice (5.5)
is given in detail in Appendix B. Here we shall use
only the ground-state solution

with

(-n -j+ a) )((j)" '

&n i=O
(5.16)

(k()' 1 k-1
k(oj) y ( ' TI a )(j)(k-j)!(k+j+ I)! I (k-j+a) )Vko

and cl a constant . The boundary conditi on

with the ground-state mass given by

m'=4a/y

(5.6)

(5.7)

In (5.6), )((j) is a normalizing constant. As we
show in the Appendix, the excited states are poly-
nomials in k times the ground-state solution (5.6),
and the higher masses for spin j are given by

m = 4(a +N)/y, N= 1, 2, . . . (5.8)

~, ) y
' (k!)'

2 (k —j)!(k+j+1)! I'(k —j+a) g p,

(5.10)
We now seek a solution to (5.4) in the form

a '=Qdj
k k k

We let

p

(j) (j}

and rewrite (5»4) as

-m' (k -j + I)(k+ j+ 2) -
d ( j)

pk 2 (k I,k nk+1(ek+1+ ek+ dk-1}
/2+ l)

(5.11)

(5.12)

+ ak ()k(ck+ dk 1) + nk-ldk-1 bk
(j)

(5.13)

Ey virtue of (5.9}, the terms proportional to d»,
vanish, so that (5.13) becomes

m' (k -j+ 1)(k+j+ 2) (, )' 2 (k+1)' k+1 k-l k k

Inserting the known values of bk and ak, Eqs. (5»6)
and (5.10), respectively, we find after some
algebra that

(k -j -1}! a""g„(k-j-I)!
k k +C

k= j+1,j+2, ..., (5.15)

Given the solution (5.6}of (5.3), we proceed to solve
the inhomogeneous equation (5.4) for ak by first
solving the homogeneous problem

-m' (k —j+1)(k+j+2)
)k 2 (k+I)k k+1 k k k 1

(5.9)

and then using ak to reduce the order of (5.4).
Equation (5.9) is essentially the same as (5.3) [re-
call that ))k in (5.3) is given by (const) x (- 1)'],
with solution

derived directly from (5.13), determines c, =0.
[We note that we have not determined ej, but that

ej is not needed, since its coefficient vanishes in
(5.13) with k =j.]

Now that we have e„we put

k

d,"'= P „)~ d'. "
n= j+1

(5.1'I)

Except for the value of d,'."(which does not seem
to be determined at this level by the theory), we
now have all the information we need to calculate
the form factor of the 1V=O, spin-j state; in fact,
we merely have to insert Eqs. (5.6), (5.10), (5.11),
and (5.15)-(5.17) into (3.23). Of course a sum such
as (3.23) now represents can at best be done nu-
merically on a computer. However, we make the
following remarks:

(i) In principle, we can evaluate the form fac-
tor at zero momentum transfer [Eq. (3.28)] in
order to determine the constant )((j) in (5.6).

(ii) We notice that the mass spectrum is deter-
mined by the combination of parameters (5.5).
However, the expression for the form factor, through
the g„ in (5.16), also depends independently on the
combination (g", ,'P)). Thus in the theory with

P 10 we have, to some extent, the opportunity of
choosing the form factor independently of the mass
spectrum.

VI. CURRENT ALGEBRA AND INTERACTIONS

In the previous sections we have tried to suggest
that the physical particles are well approximated
by the normal modes of an underlying field theory
which has bilinear interactions given by the prin-
ciple of gauge invariance of the second kind. We
have seen that if we assume the electromagnetic
field interacts locally with the underlying field,
the matrix elements of the electromagnetic current
of the field theory between physical states give us
nontrivial form factors for the physical particles.

Since we are considering the underlying fields
as fundamental, we picture scattering in an iden-
tical way to Susskind's rubber-band interpretation'
of the Veneziano model -it is merely the absorp-
tion and emission of quanta by the underlying field.
Compton scattering is thought of as a photon being
absorbed, exciting the normal modes, and then
being reemitted, with subsequent deexcitation. The
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vertex is well known, since the photon couples to
the electromagnetic current which is derived from
minimal interaction.

For strong interactions we will use the Yang-
Mills idea that the external quanta which are vector
mesons and axial-vector mesons couple to the
chiral SU(2) SU(2) currents, and that the external
quanta which are pseudoscalar mesons couple to
the divergence of the axial-vector current. The
vector and axial-vector currents are generated in
the usual way from the underlying Lagrangian
field theory. These ideas allow us to calculate all
4-point processes of the form

j"+A- j'+B,
X+A- Y+B,

where A and B are arbitrary particles on the
SU(2)3 SU(2) trajectories (v-A. , or p); X, Y stand

for A„w or p; and j„is any component of the vector
or axial-vector current.

A. Electromagnetic Interactions

The principle of minimal coupling tells us that
we find the coupling of the photons to the underlying
fields by replacing B„by 8„-ieA„'"', the current is
then given by

6g
~ e. m. e gA ex t

Aside from seagull terms, this is the same current
we looked at in Sec. HI. The effective Hamiltonian
1S

(6.1)

and the amplitude for Compton scattering (elastic
or quasielastic) is given by

i' e "(k, X)e'*(k'x') f', , ,(„„,,),„,(y(k'X')Nj''s'p'~y(kA)Ãj sp),„= 5z, + — ', J( d'xd'ye '~"" ' '(N'j 's'p'~T(j'„'"'(x)j ™'(y))jiVj sp),

(6.2)

with j„given essentially by (3.20) and (3.22). Equation (6.2) leads to the two diagrams of Fig. 1. Since, in
principle, we know j "(x) for arbitrary k' and k", we can determine the structure functions for inelastic
electron scattering by calculating

W&, =
2 P Q (Nj sP

~ j (0) g'j ' s 'Ps. ) (Nj''s 'Ps
~j,(0)

~ Nj sP) (2v)'5~(P+ q -P„).
S

(6.3)

The diagonal and transition matrix elements of
j„are given by Eq. (3.21). However, this calcula-
tion involves knowledge of the a„"' and bk"~, for
which we have explicit expressions only in partic-
ular cases. We hope to calculate these matrix
elements by numerical methods in the near future.
We point out that Domokos et al. ' claim that one
can get a reasonable fit to W, and vW, by using an
infinite number of poles in the s channel lying on
rising trajectories and putting in appropriate
widths and form factors. We feel that if we put in
widths by hand and use an appropriate fermion
Lagrangian, we should be able to reproduce their
successes. We will defer discussion of fermion
Compton scattering to a subsequent paper on fer-
mions.

B. The Lagrangian for the 7t-Ay

and p Trajectories and Chiral SU(2) (3 SU(2)

Before we can consider interactions we have to
generalize our Lagrangian to describe the physical
I= I trajectories for the m-A, and p systems. We
add two indices to the underlying fields, an isospin
a (a= 1, 2, 3) and a normality index g(@=0, 1). The
parity of a particle on a trajectory is (-1)"".

g q, G.'„(~av,",+ a,"(p,"+&,"s v",,",) 2g,G.'„G„'"
k, a, 1)

(6.4)

(k) E' (k )

(k) c (k)

N
II ~ /I gg

j s

jSP

FIG. 1. Cornpton scattering with the exchange
of a Regge trajectory.

Thus @=0, 1 for the p and m-A, trajectories, re-
spectively. The quantum number is additive, and
is conserved (mod 2) at any vertex. The vector
and axial-vector currents have g= 0, 1, respective-
ly.

With these extra degrees of freedom we can con-
struct a Lagrangian that describes the entire
(7T A

1 p) system of trajectories
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ga- 0'a+ &abc AbV'c r

0'a- Va+ ~abcAb&9'c .

Here e is the exchange operator in g space,
0 1

I)I) 1 0

(6.5a)

(6.5b)

and it plays a role similar to y, in a fermion the-
ory.

The transformation (6.5a) is an invariance of
the Lagrangian and leads to a conserved vector
current:

If we want the p to be described by the gauge-in-
variant theory, we set pk"='=0.

Using the methods of Gell-Mann and Levy, "we
consider the following transformations on the fields
(p

0 ~

(6.ls)
a k

The notation t" means that the nk and pk in 6, are
for the trajectory of opposite g; for example, for
g =0, G contains the fields corresponding to the p
trajectory, but the e's and P's corresponding to
the n trajectory. Clearly if the o.'s and P's are the
same for both trajectories the current will be con-
served. But the p and 7| trajectories are not de-
generate in nature, so this possibility is not at-
tractive. It might be possible to make (6.1S)
vanish by assuming a p trajectory with Pk=0, and
then suitably relating the rest of the parameters
o.,(p, v) and P, (m). This possibility ha, s not yet been
checked; it will be interesting to see if it leads to
a reasonable relationship between the m-A, and p
trajectories.

Z 9a ~abc(Gyp pa-z P+aGs

~ Vu=o.

Using Eq. (3.11) we see that

VR(x) —Q ~Qbc~k @c'g

kI)

From the commutation relations

(6.6)

(6.7)

C. Rules for Constructing Scattering Amplitudes

Using the ideas of Yang and Mills, "we assume
that an external p meson couples to the underlying
field theory in the same manner as the electro-
magnetic field; however, instead of the gauge-in-
variant derivative being

e~ ext

we now use

(6.8)

we easily verify

[V;(x), V', (y) J
= ie"'V', (x) 6'(x -y). (6.9)

58uA,

Ig 74' (Gt& "E
&& p& &

+ tip Gy E&g&p~&).
k, T/q'

As in Ref. 10, we expect Schwinger terms in the
[V„V,. J commutation relations.

The transformation (6.5b) leads to an axial-
vector current

(6.14)g -i eg t pu"',

where t is a vector in isospin space. This is just
the statement that the p couples universally to the
isospin current, an idea espoused especially by
Schwinger and Sakurai. " Thus when an external
p meson is absorbed or emitted by the underlying
fields, the effective vertex is

p,"'"'(x)V '„(x), (6.15)

where V"„ is given by Eq. (6.6) .
We next examine the coupling of an external

pion. If we look at the s-channel p pole in 7[-p
scattering, we have that the ordinary field-theory
vertex is given by

(6.10)
abc

cpm & Pal'beau%'c . (6.16)

We find

a ~ abc k cAo ~ E 7bR~ qq'Qk
k Itf)'

(6.11)

Using (6.8), we verify that these currents obey the
chiral SU(2) SU(2) algebra. That is, we have

[A;(x),A', (y)]„, , =is'~V;(x'&6'(x -y),

[V,'(x), A', (y) J, , =is~'A', ( )6'(xx-y).
(6.12)

The axial-vector current is not a Priori conserved.
In fact

In our picture of scattering this s-channel pole can
be produced in several ways. We look at Figs.
2(al) and 2(b5). In Fig. 2(a1), the underlying field
is in a normal mode with g = 1, it absorbs a p me-
son (g=0), then all the normal modes of q=1
propagate, and then a p is emitted with a return to
the original state. In Fig. 2(b5), the underlying
field is in the p normal mode, absorbs a v with
excitation of the g= 1 modes, and then emits a m

and returns to its initial state.
In Eq. (6.16), we consider the s-channel pole

term in two ways: Either as
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p (p2) p(p4) m' (pj) m(pq)

(a)) ( b5)

a (p&) ( p4)

(o 2)

p(p4)

:.;;:X.le%.3

7r (p~) '

(a3) (b7)

p (p2)

p (p4)

(a4)

FIG. 2. Diagrams contributing to n p scattering. Two particles (dashed line for the pion, wavy line for the p) are
considered to be external quanta, while the other two are projected out from the appropriate currents. The external

p couples to the vector current at vertices denoted by blank circles, while dark circles indicate vertices at which the
pion couples to the divergence of the axial-vector current. The shaded line denotes a propagating sum of normal modes;
the value of p is explicitly given for each diagram.

(6.16a)

or as

f~jf9 extA" A jf= ~ Pptl c ' (6.16b)

Clearly (6.6) is the generalization of (6.16a), and

(6.10) is the generalization of (6.16b).
Therefore, in what follows, we assume that an

external pion couples to the axial-vector current
with the effective vertex

f2A", ,„,A„. (6.18)

Now that we have the vertices for external n, p,
and A, mesons we can write down rules for arbi-

(6.17)

Similarly we expect an external A, (if it really lies
on the m trajectory) to couple directly to the axial-
vector current with the effective vertex

trary n-point functions with m, A„p plus any two
excited-state particles as the external particles.
The "Feynman rules" are that in a given channel
for the scattering process, we let any external
particle be the underlying field, let it absorb and
emit quanta consistent with the channel looked at
and with conservation of q at the vertices. Then,
we sum over the possible ways of having each ex-
ternal particle as the underlying field, careful not
to count any diagram twice if the two diagrams are
alike according to the Feynman prescription. For
example, consider the process

This is a simple process since there are no res-
onances in the u channel. We start off with the
w'(P, ) as the underlying field. We get the four dia-
grams of Fig. 2(a). Next we let p (p, ) be the under-
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lying field, to obtain the diagrams of Fig. 2(b).
The other possible choices for the underlying field
lead to one more diagram shown in Fig. 2(c). We
see that we have four diagra. ms corresponding to
the v' trajectory in the s channel [Figs. 2(a.l),
2(a2), 2(b5), and 2(b6)]. The four other diagrams
correspond to the p' trajectory in the t channel.
Clearly the t-channel process n'+ v —p'+ p has

exactly the same generalized Feynman diagrams,
so that crossing is ensured. In order to calculate
these "Feynman diagrams" we use the effective
vertices Eqs. (6.15) and (6.17). The result is
similar to that of Compton scattering (where, how-

ever, there is no t-channel exchange allowed).
For example, the amplitude T (where S= 1+ iT)
for Fig. 2(al) is given by

Z
2

e"(x)e'*(y) d'xd ye '~2* ~4' (N=Oj =Op =lp~(1+i2)~T(V ' (x), V, (y)) ~001p, (1+i2)). (6.19}

This calculation ean be done using Eqs. (5.6), (3.21), and (3.5), knowing that the y„propagate as free
fields. The only thing that prevents this calculation at this time is the lack of explicit expressions for
the a,""and the need to put in the widths of the resonances by hand. To calculate the other diagrams, we

need to know the matrix elements of the axial-vector current. From Eq. (6.10) it is clear that one can ob-
tain the matrix element of the axial-vector current from that of the vector current by a simple substitution
rule in Eq. (3.22). That is,

t 'ti' '
(N'j'P's')'l!AI', )(x)l)NjPsq

(2 )' (2 +1) r (2 j+1)

x Qq), (mz, . ) ' (mz, )
'2 '+' [(b~+'~az+P~a&+~b&)m~ ) &

k=j

"[(~+1-i')'(1 + i'+ 2}']"[D """"'"(f '(p')) i"'D'" *"(L(p)}]

& [() )j!(&+j + 1)!]' ' —(a~
'

b~+, + p» b t' a +),) m „,„[(k—j')!(k+ j'+ 1)!]' '

x [D(lk, ik)(f 1(P)}1vD(l!&+» -'!&+&))(L,(P))], , [(P —j+ 1)!(k+j+ 2}!]' '}, (6.20)

where a'=a~ ' " and g'=b" ' '} . By normalizing
the amplitude for pp- pp at the s-channel p pole,
and t -channel p pole, we can determine f, and g
in terms of g „, and g . Once this is done, all
processes of the form (v, p)+A- (v, p)+ B are
completely specified. It is easy to see that our
prescription for calculating the 4-point function
leads to all the tree graphs for the 5-point func-
tion. However, when we get to the 6-point func-
tion, we seem not to have the three-Regge vertex,
because of our ansatz of the continuity of propaga-
tion of the underlying field. Knowing what this
vertex is is equivalent to knowing how to excite
the fields with an external quantum of any spin.
At present we can only guess, for example, that
the spin-2 external field couples to the stress
tensor, etc. If we can better understand what the
triple Regge vertex means in this language, then
we will in principle be able to calculate all the
tree graphs for n-point functions in the narrow-
re sonance approximation.

VII. CONCLUSIONS

In this paper we have shown how one uses gauge
invariance of the second kind to generate Lagran-
gians that describe particles which lie on Regge

trajectories and have internal structure. Assum-
ing that the underlying fields are basic, we have
given a prescription for calculating the n-point
functions in the tree-diagram approximation. We
also show that the vector and axial-vector currents
satisfy the chiral SU(2)@SU(2) algebra. The diffi-
culty in this approach is that although the theory is
relatively simple in terms of the fundamental
fields, the interesting quantities, such as the cur-
rents, have very complicated matrix elements be-
tween physical states. Thus we are forced to rely
on a computer to obtain solutions. We hope that
in the near future these calculations ean be done
so that we can directly compare this theory with

experiment.
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APPENDIX A

We wish to show how (3.21}can be simplified to
be given just in terms of a sum over two neighbor-
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ing representations of the Lorentz group. For the
case j=0, this reduces to the usual addition theo-
rem for (3+ 1) spherical harmonics. In Ref. 10,
we showed how to go from the "kjo" basis for the

(-,'k, —,'k) fields to the more standard representation
in terms of symmetric traceless tensors of rank

L(p)(m, {})=(p„p).
We can use the relations

(A7)

where D'" ") is the (~kj, —,
' j) representation of the

homogeneous Lorentz group, and L(p} is the stan-
dard boost:

V»",,(~) = Z T» "„„,.4 k,.(x)

where

(Al)
and

QL„'Q '=-L„

QD(L(P)) Q '=D(L '(P)),

(A8a}

(A8b)
(A2)„, ,.—[L„,' ' ' L„, ]o,k, .

The L„are a 4-vector set of matrices in k jo
space, chosen so that

where

Q =(-1)'5kk 5,, 5„, (ASc)

[L„,L „]=iM„,,
where ~„, are the generators of the Lorentz
group. Explicitly,

(A3)
to derive

2j/
e„*.. . „(p, s) =, D'. . .'(L '(p)) [L» L„],. . .

ks' s,k-1 j s k 5j)j 5s)s

(L }k-s . , k . =-ak" ~11' 22 12 12
where

(A4a.)

(A4b)
from (A6). This leads to the normalization

,*.. . „(p, s)~» ' '
& (p, s) = (-1}'

Using the fact that

(A9)

(Alo)

a", =-,'[(k j)(k+j+-1)]' '. (A4c)

The other L's can be calculated from L' since
2'(- 1)"

5)ss. . .
kk (k))2 [L„~L)s ]O,ksa[L" L' ]kjo,0 s

~ /

[L, M ]=iL

In analogy with (Al) we have

(A5)

we find, for j, m&0,

(Al 1)

(A6)

' ' sm(p' sk )p (p s') — '1 ' D(im, s m) (L-1(pit)}

)&[L ~ ~ ~ L ] [LsLPk s. . .Lsssk] -D(t) 2)(L(p)}~m+1 k j2 2kj3 3 kj303,jj404 j4s4 js

and

(A12a)

2k I)k+s'+m
Sk S)s gS (-p~ S &) gsS' ' s„.(p S) — ' 2 ' D()m, Im) (L-S(pk))

}'m

L""-'L"] [L, L ] D"""'(L(p))it!j2 cJ2 kj3 33 v, vk kj3o3, jj4a4 j4o4, js

(A12b)

All but one L" in (3.21) are multiplied by the appropriate p or p'. We can move the D's through the p L's
using

and

D(A ')L'D(A) =A'„L" (A13)

p„A"„=m5'„ if A =L(p).

Therefore,

P„L"D(L(P)) =D(L(P)) (mL )

(A14)

(A15a)
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and

(A15b)

APPENDIX B

D(L '(P'))P„'L"=(m'L )D(L '(P')) .
Using (A4), (A12), and (A15) we can now convert

(3.21) into (3.22), the desired result.

We assume that f has the expansion

where

(Bv)

(B8)

We use techniques developed in Ref. 9 to solve
(5.3). Our first step is to let

t (Nj)

i=0
and

a[n], =![n], , (B9a)

Here a is an arbitrary parameter. Since [n], obeys

and consider (5.3} for large k. We get

1 2 Y5"' 5' 2k
(B2)

(B9b)n[n], = [n]„,—(X —l —1)[n], ,

we can replace the difference equation (B6) by an
equivalent differential equation in a variable z,
whose solution will be

The boundary condition that we impose is that 5,
shall have the best possible large-k behavior.
From (B2) we see that the solutions for large k
are

f(r) = Q c,r'. (Blo)

The coefficients c, in (B10) will be the same as
those in (B7), provided we set

and

(B3a.)

(B3b)

d

dr '

dn- r - X+1+r-
dr

(B1 la)

(B1 lb)

Thus our boundary condition is that 5„shall have
the asymptotic behavior (B3b).

Next we define a variable f„, with n =—k —j, as

in (B6), as dictated by (B9). Making these replace-
ments, we find

zf "+(1+u —a ——,'y m' —z)f ' + (-,'ym' —u) f= 0 .
(B12}

[(n+ j)!]'
n!(n+ 2 j+ 1)! 2 I'(n+ u)

(B4) Here z = —,
'
y m' —r and f ' = d f/d z.

The condition that f be a polynomial of degree N

f„„=n+n f„„—nf„ (B5)

Notice that the coefficient of f„ in (B4) already has
the asymptotic behavior (B3b), so that f„can at
most be a polynomial in n. Putting (B4) in (5.3),
we find that f„obeys

1s

-'~m'-~=X X=o 1 2 (B13)

which gives us the mass spectrum (5.8). Equation
(B12) is then the associated Laguerre equation,
with solution

or, introducing gf=g „ f (r) L(- Iv- x) (z) (B14)

(,'ym')n. 'f+ [-,'ym' ——n —a]a f+[,'ym' —u]f=0 —.

(B6)

By expanding (B14), we can obtain the coefficients
c, in (B7), and hence, via (B4) and (Bl) we can ob-
tain the values of 5'„~') for the excited states.
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A formal study of quark models with interactions due to scalar, pseudoscalar, or vector
fields is presented. It is shown that all the results which have been derived in quark-parton
models in which the details of the nucleon's constitution are not specified can be obtained
formally using naive canonical manipulations of operators. In the case that there is no vector
field some new results are obtained which would provide an experimental Ineasurement of the
proportion of scalar or pseudoscalar gluons in the nucleon.

I. INTRODUCTION

Some time ago we studied generalized quark-
parton models and abstracted those results which
might be true more generally. ' In fact, we showed'
that the most easily tested consequences of the
model could all be derived formally in the gluon
model using the Bjorken limit with naive canoni-
cal values for the equal-time commutators. In
this paper we show that all the old results of gen-
eralized parton models can be formally derived in
renormalizable quark models. We also present
some new results which depend essentially on the
assumption that none of the partons travel back-
wards in the infinite-momentum frame; it turns
out that these results can be rederived formally
if the interaction between the quarks is due to a
scalar or pseudoscalar field but not if it is due to
a vector field (the conventional gluon model). ' '

In perturbation theory the formal arguments
used in this paper are invalid'6 and scale invari-
ance is broken by logarithmic terms. Although
they are not excluded by the data we shall assume
that such terms are absent and that, therefore,
arguments based on perturbation theory may be
irrelevant. In this sense perhaps "Nature reads
books on free field theory. "'

We will not dwell on the experimental implica-
tions of the results, which have been reviewed
elsewhere. ' After completing this work we re-
ceived an elegant preprint from Gross and Trei-
man, ' who have independently rederived the "old"
parton results in the gluon model. " They have

actually gone further and derived the explicit form
of the light- cone commutator s in the presence of
a vector interaction. This has also been done in-
dependently by Cornwall and Sackiw in a recent
paper. "

II. FORMAL DERIVATION OF ALL "OLD"
PARTON-MODEL RESULTS

Inelastic electron and neutrino scattering pro-
cesses in which only the final lepton is observed
are described by the tensors

d'x ; 'wt. =p, '."'&Pl[~tb), ~,",(o)] I»

qlj v q, v ~W

pp d X jq
(l)w'„=g e" "&P

~
[~'„(x),z', (0)]~P)

q„q, W (q„P, + q, P„)W,""
2M'

i(q„P, —q, P„)W,'"
2&2

where v=q P, J& is the electromagnetic current,
J„' [J„=(J„') ] is the current which couples to the
neutrino (antineutrino) current, Q indicates an
average over the spin states of the target, and
the states are normalized to 2E per unit volume.
We assume the conventional Cabibbo current and


