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The (1, 8)+(8, 1) Term in» SU(3)XSU(3) Symmetry Breaking
and the Parameter $ of E&, Decay
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An estimate of the magnitud'e'Of the SU(3)&&SU(3) symmetry-breaking term transforming as
(1, 8)+(8, 1) is made. using pole dominance in spectral-function sum rules. It is found that the
corresponding parameter ~ is probably not small as commonly believed, but approximately
-1. The results are applied to K» decay, where the symmetry-breaking scheme discussed
in conjunction with "weak partial conservation of axial-vector-'current" implies large nega.—

tive values of $.

INTRODUCTION

Cur rent-algebra calculations frequently require
a knowledge of commutators between charges and
current divergences. A systematic way to. treat
these so.-called o terms in the framework of the
SU(3)XSU(3) current algebra has- been given by
Gell-Mann, Oakes, and Benner. ' These authors
propose that the Hamiltonian of strong interactions
is approximately invariant under the group. SU'(3)
X SU(3) and that the symmetry is realized through
eight massless pseudoscalar. mesons. The sym-
metry-breaking part:of'the Hamiltonian may be
decomposed into terms that transform according
to ir»reducible representations of SU(3)x SU(3), in.

particular, if exotic a terms are excluded, accord-
ing to (3, 3*)+(3*,3) and (1,8)+(8, 1). The (1,8)+(8, 1)
term has been generally neg1ected due to the fact
that it vanishes in the PCAC (partial1y conserved
axial-vector current) approximation if one applies,
SU(3) symmetry to the single-particle matrix el'e-
ments of g, . The latter assumption appears ques--
tionable since the violation of SU(3) is:.probably. as.
large as the'SU(3)xSU(3) one. Such a conclusion is
substantiated by the mass splitting of the octet of
pseudoscalar mesons, which is of the same order
as the masses themselves. To obtain an estimate
on the size of the symmetry-breaking parameters,
we assume meson-pole dominance for certain ma-
trix"elements but we never refer to SU(3). We ob-
tain the result that the parameter characterizing
.the (1,8)+(8, 1).breaking term is indeed not small
but approximately -1, largely independent, of the
pole-dominance approximation.

SU(3)XSU(3) SYMMETRY BREAKING

We assume the following form for the strong-
interaction Hamiltonian:

H(x) = K,(x) + e,u, (x) + e,u, (x) + 5,g, (x),

where H0 is invariant under SU(3)xSU(3). The eo,

e„.5, are real parameters; u,.(x) and g, (x) are sca-
lar densities of the (3, 3*)+(3*,3) and (1,8)+(8, 1)
representations, respectively. These densities
ui, g; together with the pseud'oscalar counterparts
v, and: A; satisfy the commutation relations

[E,', u»(x)] =if
»» a(x), [E» v»(x)] =if»,avi(x) (2a)

[E5», u»(x)] = -id»»„v, (x), [E 5» v( »)x] =+id;»„u„(x), (2b)

[E,, g»(x)] =if, ,„g„(x), [F;,h, (x)] =if;,P,(x), (2c)

[E';,g;(x)]=if;, @ (x), [ ';E, f(»)x]= f;i, g~(x). (2d)

The vector and axial-vector current divergences
are, then simply given by

D» ——8»»V» (x) = @8f»8&u»»+ 58f»SN:g»

O'; =—S„A,"(x)= sod»»v-», —e,d»»v», + 5,f»»I»„.
(3)

Fo11owing Gatto, ' we: introduce the spectral. rep-
resentations

d4xe"" 0 TV„' x D'„0'0 =q„

S"i dxo'i x il l i8& 68 +& 0+ 58 g~ 0 7 (6)

where ( ), refers to vacuum expectation values.
Similarly for.. the. axial-vector spectral function

S', =- dxo', x

d»»adA»&»')0 5 f» «fi»»&g»)»o ~

If we specialize to the case i = 1, . . ., 7, we have

S..., -=S=-,'(,(,), 5, (g,),),
S', , s

—= S„=—', (v 2 e, + e, )(v 2 (u, ), + (u, )o),

(6)

S4.,5,»», ~ =Sr = 3(W2co —2e, )(v 2 (ua), ——,'(u, )0)

+4 5.&g.)0.

and assume that the commutation relations with the
generators E, and Es», Eqs. (2a)-(2d), have a local
generalization. %'e then obtain the spectral function
sum ru1e:
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Vfe do not consider the case i=8 to avoid the prob-
lem of g, g' mixing. In the following we take 8,
S„and SK to be known quantities; they ean be ap-
proximately determined by using meson-pole dom-
inance. It is therefore possible to use the three
independent equations (7) to determine the param-
eter

8 g8)0
e, (u, )0

characterizing the magnitude of the (1,8)+(8, 1)
symmetry-breaking term as a, function of the
(3, 3*)+(3",3) parameters c0 and e8. The result is

( -0.09 or very large ip i, we have always &o approx-
imately equal to -1. The solution ~=0 is highly
unstable under small variations of e0/88 since it
lies so close to the pole; we believe that this may
be enough reason to reject this solution.

APPLICATION TO E, DECAY

The usefulness of the results of the previous sec-
tion to the determination of current-algebra 0 terms
is not as straightforward as in the case where the

(1,8)+(8, 1) symmetry breaking is absent. As an
illustration we choose the example of E,s decays.
The relevant commutators

—P2S

2S,+(S» —S —S8)XP '

P=—1+V2 e0/»8.

(8) [D8, E4;8] = -[(8) &0+ (8i) 88] X 2("4+2"8)
(8)

[D4. 8 E81 =[D8 E4.~8] —-'D4'. ~8

and the axial-vector divergence

-15—
88 &g8'o

CU=
8 &08&0

At first glance this result may not seem too useful;
it just expresses one unknown parameter cu in terms
of another unknown parameter e0/e8. However, if
we make the additional assumption that the physical
world is reasonably close to the situation of mass-
less pions, i.e., p = 1+W2&0/e, is not far from the
SU(2)xSU(2) limit P =0, then it follows that tu = -1.
If SU(2)xSU(2) is realized exactly, ~= -1 indepen-
dent of the way in which 8, goes to zero.

Figure 1 shows ~ as a function P assuming pole
dominance:

~II ~Z +iI & ~K ~K +K
2

with m, = 1080 MeV and E„'=(E» E,)' given-by the
Glashow-Weinberg relation' and E»/E„= 1.28. The
results are not sensitive to the exact values of 8„
SK, and 8 as long as 8 is relatively small, which

we expect from the approximate validity of the
SU(3) mass formula. It is obvious from the figure
that except for the small range of values -0.11&13

(10)

are no longer px oportional to each other. Since we

are ultimately interested in vacuum-single-particle
matrix elements, we need an expression for

&Oil, —212, iZ-).

For this purpose we take the vacuum expectation
value of Eq. (2d).and saturate with single-particle
intermediate states to obtain

E,(oia, „iz-) =&3(g,), .
Combining this result with Eq. (7), we can relate
the current-algebra 0 term to the matrix element
of the axial-vector divergence

&o I[D„,.„E;]iz-&

-2 P —
& I'K 1+a

(12)

That is, in addition to the usual result, we get a
term proportional to the parameter ~ characteriz-
ing the (1,8)+(8, 1) symmetry violation. To discuss
the E,e form factors we employ Brandt and Prepar-
ata's "weak" version of PCAC4 [without adopting
their additional assumption of a symmetx'y-breaking
scheme SU(3)xSU(3) SU(3) SU(2)]. These authors
argue that the amplitude

M(q', p2)=,(m, ' —q')2 2 1

-.5
i

0

P=i+v 2 eoi8e

x dxe"" 0 TD~5 xD~ &, 0 ~p

(13)
FIG. 1. The (1,8}+(8,I} symmetry-breaking parame-
ter N as a fllDctlon of P = 1+W2 co/Eg for E~ =0,28 Eg. has a smooth extrapolation fx'om the soft-pion point
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to the mass shell (rather than the vector-current
amplitude itself). From Eq. (13) one derives the
low-energy theorem:

M(O, m~') =m~'(f, (0,m~')+ f (O, m~')j

1
«&(~,)(0 [A,'(x), D, ;,(0)]~K,) .

(14)
This gives, using Eq. (12) and the pole-dominance
approximation, the result

t f,(0, m~') + f (0,m')]

~ W

n~~~izizzzzzzzzumzzuuz

I I I

-.5 -.4 -.3-.2 -.1 0 .1 .2 .3 .4 .5

2 2
—p 3F~ mE 1+(u

(15)
Referring to Fig. 1 we note that the second term in
the bracket is generally )0 (except in the immediate
vicinity of the pole), i.e. , the (1,8)+(8, 1) sym-
metry-breaking term reduces the right-hand side
of Eq. (15) to the extent of even making it negative.
Smoothness and the Ademollo-Gatto theorem in
connection with Eq. (15) then imply that the decay
parameter $ =f /f, is large and negative. Fig-
ure 2 shows $ as a function P for two different val-
ues of the z-decay constant F„=0.28 F„and F„
=0.5F, together with the experimental result of the
X, group' ( = -0.58+0.13. Owing to the prevailing
uncertainty in the experimental value of $ and in
F„'it is difficult to make quantitative predictions.

The inclusion of the (1,8)+(8, 1) term into the
SU(3)xSU(3)-breaking part of the Hamiltonian there-
fore constitutes a simple mechanism to remove the
discrepancies between theory and experiment in
K» decay data. This mechanism does not require
a large SU(2)xSU(2) symmetry breaking. It lends
new support to the idea expressed in Ref. 1 that

SU(3)xSU(3)- SU(2)xSU(2) -SU(2)

may be the symmetry-breaking patterns realized
in nature.

Added note. It is interesting to compare our re-
sult for ( with the perturbation-theoretical argu-
ments of Dashen and Weinstein. ' The additional
term in Eq. (15) is easily seen to be of order SU(3)
times SU(2)xSU(2) breaking; therefore, the general

FIG. 2. ( =f /f+ as a function of P =1+v 2 E'p/c8 for
F„=0.5 F~ (solid line) and F =0.28F „(dot-dash line).
The shaded area represents the experimental result of
the X2 group.

theorem of Ref. 6 is satisfied. We have constructed
a possible mechanism that allows us to obtain a
value of $ large enough to explain the data without
formally violating the theorem. Compared to the
model of Brandt and Preparata' our approach has
the advantage that we introduce consistently a com-
paratively large SU(3) breaking. Their assumption
on the breaking of SU(3) is rather unorthodox, as
pointed out by Weinstein'; it ought to be much smal-
ler than the SU(2)xSU(2) breaking while SU(3) is
badly violated at the same time by renormalization
constants of the "fields" N~ and u, .

To give a numerical example-: for S=O, we obtain
&o=-1, P=-0.37, and $= -0.58.

After this manuscript was submitted for publica-
tion the author became aware of a paper by
Arnowitt, Friedman, and Nath' in which it was also
proposed that an (8, 1)+(1,8) symmetry-breaking
term may explain large negative values of $.
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