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We discuss the analytic continuation of an azimuthal angular variable in a scattering process
to a channel where it may take on large imaginary values. The asymptotic behavior of the
many-particle amplitude for large values of that variable is shown to be governed by singu-
larities in an analytically continued helicity amplitude. The procedure is analogous to the
usual Regge-Sommerfeld-Watson transformation relating large-coso behavior to singularities
in analytically continued angular momentum amplitudes.

1. INTRODUCTION

We present here a discussion of analytic con-
tinuation in the helicity variable m for scattering
amplitudes. This continuation is in many ways
analogous to the Froissart-Gribov continuation in
angular momentum l. In both cases the original
variable (I or m) as physically defined for a scat-
tering problem is an integer. To define the
Froissart-Gribov partial-wave amplitude for
complex l, it is necessary to know how to con-
tinue analytically in the projection variable z (co-
sine of scattering angle) from the physical region
-1 ~ z ~ 1 to very large values. Similarly, to define
a helicity amplitude for complex m it is necessary
to make a continuation in the relevant projection
angle ~I} from the physical region 0 ~ p &2z to
large values in the complex plane. It is, of course,
just because the definition of analytically continued
helicity or partial-wave amplitudes involves infi-
nite integrations in the projection variables that
singularities in m or l control the asymptotic be-
havior in these same projection variables. Often
these asymptotic limits are physical regions in
some channel, giving a potentially simple descrip-
tion of very high-energy processes.

It is no great surprise that making m continuous
and p infinite in range results in Fourier integrals
rather than Fourier series. What is not quite so
clear is how to carry out a simultaneous continua-
tion in total angular momentum and helicity. The
whole question is discussed here by using space-
time O(2, 1}expansions which are defined by con-
ditions (a) and (b) in Sec. II. The boon of the O(2, 1)
treatment is that the expansion already takes place
in the relevant "crossed" channel where z and P
can physically be at large values in their complex
plane. Thus the simultaneous continuation in l and
m is essentially contained in the O(2, 1) analysis
and there remains only to carry out a careful iden-
tification of crossed-channel quantities and their

analytic continuations.
Simultaneous evaluation of helicity and angular

momentum pole contributions permits a discus-
sion of multiple asymptotic limits that cannot be
deduced from simple multi-Regge theory' alone.
The general technique of complex helicity may
also conceivably be useful in studying infinite he-
licity sums, such as occur in many-body Regge
dynamic s.'

Note added. After the completion of this work
we learned of a similar treatment of complex
helicity by Goddard and White. ' They also dis-
cuss the Sommerfeld-Watson transformation of
the Fourier series as well as the simultaneous
continuation in angular momentum and helicity,
overlapping our Sec. II.

In Sec. II we briefly review O(2, 1) expansions
and identify the helicity variable and its analytic
continuation. In Sec. III we locate those singular-
ities in helicity which are relevant to the calcula-
tion of inclusive processes.

II. ANALYTIC CONTINUATION IN HELICITY

In this section we connect a continuous expan-
sion parameter in space-time O(2, 1}expansions+ '
for scattering amplitudes with the analytic con-
tinuation from integers of a helicity index for a
crossed-channel amplitude. The parameter under
discussion is the eigenvalue p, of the generator of
y boosts K .

We start by reviewing O(2, 1) expansions. We
recall that an arbitrary O(2, 1) transformation g
can be parametrized as follows:

(2.1)

where K„and K„are the generators of y and x
boosts and J, is the generator of z rotations. The
parametrization (2.1}differs from the Euler-type
expression which would have z rotations on each
end. One virtue of (2.1) is that both n and $ have
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an infinite range. When writing scattering ampli-
tudes as functions of n, $, and (, the asymptotic
E limit is governed by ordinary Regge poles,
whereas we shall show that the asymptotic a lim-
it is governed by helicity poles. This gives a
double asymptotic limit. If the z rotation in (2.1)
is replaced by a second y boost, a triple asymp-
totic limit may also be found, ' but it is a straight-
forward generalization of the double limit and we

shall not discuss it here.
We consider scattering processes of the type

(see Fig. 1)

P, +P~- P,'+P), (2.2)

where these four-momenta generally represent
clusters of spinless particles. The momentum
transfer Q=P,' —P, =P, —P,' is assumed to be
spacelike, which makes O(2, 1) the relevant sym-
metry group, since O(2, 1) is the little group of a
spacelike vector. The parameters o. , $, and g
of (2.1) are useful variables for describing the
relation (2.2) in a frame where Q has only a pos-
itive z component if the following conditions are
satisfied:

(a) The two equal O(2, 1) three-vectors P, and

P,' defined by omitting the z component of P, and

P,' are required to be spacelike: P,"= P, '& 0. It
then follows that P,'& 0 and P,"&0.

(b) P ' = P") 0.
The physical meaning of the variables (n, $, P),

in the case of a reaction of the type (2.2) where
the conditions (a) and (b) are fulfilled, can be
briefly described as follows:

(i} In a frame where P, and P,' have only an x
component, n describes the variation of the scat-
tering amplitude when the clusters P, and P,' are
subjected to the & boost e'~~~.

(ii) In a frame where P, and P,' have only a time
component, P describes the variation of the scat-
tering amplitude when the clusters P, and P', are
subjected to a z rotation e '~~~.

(iii) The variable $ relates the frames discussed
in (i) and (ii). In the frame defined in (ii) we let
P, and P, define the x-t plane; then e '' & is the
x boost which eliminates the time component of P, .

We note that if P, and P,' are single-particle clus-
ters, then there is no n dependence. Similarly if

P, and P,' are single-particle clusters, there is
no P dependence. This shows the usefulness of
the parametrization (o., $, g) for the process (2.2)
when conditions (a) and (b) are obeyed. In what

follows we are uninterested in ( dependence so
we shall assume that P, and P', are single-particle
clusters.

We now expand the scattering amplitude A(n, $)
for the process (2.2) in terms of the irreducible
representations of O(2, 1) where we suppress all
but the group variables:

A(, fl=f dg

with

P

(2.3)

a„(l)=—
I do e'" d(sihn$)d'„~(()A(n, $) .

4m&

(2.4}

The above expansion exists provided that A is
square-integrable in the variables n and sinh$.
This expansion is derived, fully discussed, and
generalized to nonintegrable functions in another
paper 'We .only remark here that the O(2, 1}rep-
resentations used in the expansion are the matrix
elements of g(n, $, g) in a mixed basis, consisting
of eigenstates of K, on the left (defined by an eigen-
value p and a two-valued degeneracy index p) and
an eigenstate of d, on the right (which, for the
case of no g dependence, consists only of the zero
eigenvalue of d, ). The mixed basis is important
because it produces the simple z dependence giv-
en by the exponential in (2.3) and this in turn per-
mits the identification of p. with an analytically
continued helicity index.

It is shown in JLY that if a continuation is made
of the amplitude A(n, g} to the crossed channel,
P, +P.'- P', +P, , then the physically allowed values
of e are

0 &ie -- 2m. (2.5)

Po Pb
FIG. 1. Scattering process.

In this channel P =in describes an azimuthal vari-
ation of the clusters P, and P,' with respect to an
axis along the ordinary three-vector part of P, or
P,' in the center-of-mass frame. The projection
f,"dp e' @ of such a. p dependence clearly gives
a helicity amplitude. Our task is to show that the
a„„(l)of (2.4) is related to the analytic continua-
tion of such a helicity amplitude with m =i p, .

We begin by noting that the o. dependence of
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A(o, f) is simply Fourier-decomposed by (2.3) and

(2.4). That is, (2.3) can obviously be rewritten

A(a, g) =
J~ d p. e '" A„((), (2.6) C

where

(2 7)

(2.8)

A comparison of (2.3) and (2.4) with (2.6)-(2.8)
shows that

'""d$ 2)+1Qd'„* ($)d'„($') = 5(sinh) —sinh$'),

1
A =—

J dPe ' ~A(P), (2.9}

with

A(y) = Q A.e'". (2.10)

It is useful to define the complex variable z =e'~
and then to rewrite (2.9} and (2.10) as

and

A =2,,A(z)
1 dz

2' c1

A(z) = P(A„z +A . , z- -')
m=0

=A, (z) +A, (z) .

(2.11)

(2.12}

The contour C, is the unit circle and (2.12) is the
Laurent expansion. We assume that A(z) is an
analytic function of z free of singularities and
single valued in some annular region that includes
the unit circle, i.e. , in a neighborhood of the phys-
ical region (see Fig. 2). The expansion (2.12) con-
verges in such an annular region up to the point
where singularities are reached.

To proceed further we wish to continue z out of
the annulus to the region where p =in and —~ &a
& ~, where identification with the O(2, 1}expan-

which is indePendent of p, . These equations show

that the functional dependence of A„(g) on the vari-
able p, has nothing to do with the dependence of

p
on p. , a fact which is perfectly clear from

(2.8) but not so obvious from (2.7).
We now wish to verify that A „($) is the analytic

continuation of a helieity amplitude for the crossed
reaction P, +P,'- P,'+P, . As mentioned earlier
~II) =in becomes, for this crossed process, an azi-
muthal angle for clusters P, and P,'. A helicity
amplitude can then be defined in this crossed chan-
nel by

FIG. 2. Projection contours.

sion can be made. This is just the region 0 &z
&+~. In order to effect this continuation in z,
we must also continue the amplitude A away from
the integers to complex m. To see how this is
done we treat in (2.12) only the first sum, A, (z),
which is analytic at z =o. The second sum ean be
treated by transforming a new variable z' =1/z.
In general, the singularity structures of the two
functions A, (z) and A, (z'} are similar, although
not identical. In the forward direction, with final
cluster = initial cluster, inversion invariance
makes the transformation z- 1/z a symmetry of
the amplitude, and the two functions are identical
to within a constant.

We now distort the contour C, in (2.11) to C„
extending it to infinity (as shown in Fig. 3) in such
a way that all points of the contour have ~z ~

& 1.
If there are singularities exactly on the real axis,
they may be displaced slightly above or below the
real axis and then allowed to approach the real
axis after the expansion is performed. The direc-
tion of displacement is determined by whether we
wish to calculate the continued function above or
below the real axis.

The contour C, can be used to define A when

m is not an integer provided Rem is sufficiently
large and A, (z) is power bounded as z-~. De-
termination of A for low values of Rem can be
made by means of analytic continuation. In par-
ticular, if ~A, (z) (

&
~
z ~" as

( z ( —,then A „ is
analytic for Rem & Rex. A contour integral can
now be written for Ay'.

Ca

FIG. 3. Distortion of original contour in Fig. 2.
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I 2 3
Cp

FIG. 4. Contour for helicity sum.

z A

-m-Z -kA(m+ X) (1nlz) &(~+0
m (2.14)

where 0«8«2v and ln~ z
~

& 0. This assumes a
zero phase for z on the upper lip of the infinite
contour in Fig. 3. The behavior (2.14) establishes
the convergence of (2.13) and validates the drop-
ping of the semicircular contour in Fig. 5.

The new m contour in Fig. 5 thus leads to the
formula

A, (z) =-—. (2.13)
2i c sinwm

where C„encloses the poles of 1/sinvm along the
real axis as shown in Fig. 4, detouring, if neces-
sary, any singularities in A along the real axis.

To make the identification of A with A„, we
shall first assume that Rex& 0. Now A is ana-
lytic for Rem ~ 0 and the contour C in Fig. 4 can
be distorted to the imaginary axis as shown in

Fig. 5. The right-hand semicircular contour in

Fig. 5 gives a vanishing contribution and can thus
be dropped, leaving only the integral along the

imaginary axis. This step is justified by examin-
ing A in the limit

~

m
~

—~ in the right-half plane.
This behavior for a point z on the contour C, (Fig.
3) is seen to be roughly

FIG. 6. Flattening of contour C& in Fig. 3
to give Fourier result.

imam

A, (z)=- —. . z A. .
2s &,„sznmm

(2.15)

Pince A, (z) is analytic at z = 0, the contour C, can
be flattened to the real axis as shown in Fig. 6 to
give contour C,. The following formula for A.

then results:

1 ~ dz.„,A, (z)
2'w2 jg z"3

( )( -37li(m+0 1)8 (2.16)

1""dz
„A,(z)e ' sinvm.

PJp z
(2.17)

Using (2.15) and (2.17) and the substitution m =i p,

and p ia, we=obtain (with some reshuffling of
constant factors) exactly (2.6) and (2.8) with, of
course, the $ variable suppressed.

We have thus identified A in (2.8) with the ana-
lytic continuation of the helicity amplitude A
from the crossed channel. If Rex&0, the a ex-
pansion (2.6)-(2.8) is no longer valid and the for-
malism involving the helicity shows readily how
it is to be generalized, still using the analytic
continuation of A . The first step is to distort
the C to C' as shown in Fig. 7 with a vertical
piece at Rex+a. The right-hand semicircular con-
tour vanishes just as before. We can no longer

p I 2

Rex+ q

t 6 i 2

FIG. 5. Distortion of contour C~ in Fig. 4. FIG. 7. Distortion of C contour when Rex& 0.
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collapse the z contour in Fig. 3 to the real axis
since there would be convergence difficulties at
z =0 for the first few terms in the z expansion for
A, . This gives simply the expansion valid for
Rex& 0:

1" i ff m

A(z)=- —.'

dm . z A
2i J g sing

Cm

A =2 . t, ,A(z).
1 5 dz

27Tg Jg z
2

(2.18)

(2.19)

If desired, one can substitute m =ip, , Q =in, to
get the generalized O(2, 1) expansion in terms of
the O(2, 1) variables.

The contribution of a helicity singularity in A.

can easily be evaluated by distorting the C' con-
tour in (2.18). Such singularities have a real part
which is less than Rex. A helicity pole in m at y,
for example, gives an asymptotic term in z of
the form

A, (z) ~ z"= e

The limit (2.20) has been shown to give an asymp-
totic formula for single-particle inclusive reac-
tions where P, =P', and P, =P,'. P, and P,' are two-
particle clusters consisting of an imaginary and
an outgoing particle. The controlling Regge sin-
gularity is related to a triple Regge vertex shown
in Fig. 8, which can also be studied with the tech-
niques of Misheloff and Landshoff and Zakrzewski. '

To obtain a double asymptotic limit coming from
a helicity pole y in m and an angular momentum
pole L in I we examine (2.7). In order to fully
treat the question we must also generalize the ex-
pansion in l such that the t' contour can be moved
to the right. This is done in a separate paper. '
The basic asymptotics can still be read off from
(2.8) and (2.8). If a„(l) has a simultaneous pole
at I= L and p. = -iy, the double limit is

A(a, $) ~ e «Qd, « ~(g) —e «(sinh$)
-oo., )p) ~ Do P

(2.20)

III. LOCATION OF HELICITY SINGULARITIES

In order to identify helicity singularities, we
must construct a two-body amplitude with two out
of four squared masses negative. We do this in
the simplest possible way by considering the three-
body amplitude, A, which describes the process
shown in Fig. 9. The P, cluster of Fig. 1 now con-
sists of an incoming P„and an outgoing P„, with

P. - Pai —Pa2 ~ (3.1)

the mass Q'& 0 being the sixth of them, in addition
to the usual five invariants associated with any
2- 3 body process. We may specify these six vari-
ables in the reference frame (i} of Sec. II as q2(0,
Pa & Oy Pa & 0, and, for example& Paler Paly) and

P,'„. These six variables and the O(2, 1}variables
n and $ constitute the eight necessary to describe
the 3- 3 amplitude.

Helicity poles (or other singularities) govern the
large-n behavior of the amplitude with all cluster
variables and $ fixed; simultaneous helicity and
angular momentum poles govern large e and (,
with cluster variables fixed. We relate these
asymptotic variables to conventional invariants
by noting that, for large negative n,

s =(P, +P„)' ~ C,e cosh),

s' =(P', +P,', )' ~ C,e 'coshE,

(3.3)

(3.4)

where C, and C, are fixed, in general different,
combinations of cluster variables. The invariant
mass squared to the three-body system,

M' = (P, +P., - P.,)' =(P, + P.)'= (P', +P.')',
is independent of n, and is a linear function of

The P,' cluster of Fig. 1 consists of an outgoing P,',
and an incoming P,'„with

(3.2)

In terms of our O(2, 1) parametrization, there
are six variables associated with the left-hand
cluster in Fig. 9, that is, with the process

Pap
Pb

I
Pai

—s' Pb'

Par
Pai

' Pb

Pai

Pbs~
FIG. 8. Triple Regge vertex. FIG. 9. Amplitude used to locate helicity singularites.
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sinh( with cluster-variable coefficients.
Our task is thus to identify the behavior of the

3- 3 amplitude A at fixed M', fixed cluster vari-
ables, and large values of s and s'.

The three-body amplitude itself has a most com-
plicated singularity structure. However, a spe-
cial object of some importance is the discontinuity
with respect to the variable M' of the amplitude,
disc 2A. As shown by Mueller, ' this may be rep-
resented by the unitarity diagram of Fig. 10,
which in the forward direction (P„=P,'„P„=P,'„
P, =P', ) becomes proportional to the inclusive
cross section for the process a, +5 —a, +anything.
For general momenta, the asymptotic behavior of
the discontinuity is governed by the leading Regge
pole y(t) in the amplitude

Qy + b —a, + a state of mass M (3.5)

and the leading Regge pole y'(f) in the complex-
conjugated amplitude

a,'+b'- a,'+the same state of mass M; (3.6)

the first of these is associated with the lower half
of the diagram in Fig. 10, the second with the up-
per half. The product is then summed over all
states of mass M that are compatible with the
quantum numbers of a„a„and b. The leading
term is thus

disc„2A ~ s&"'(s')~ " 'F(M', cluster variables)
S, .S ~ co

(3.7)

or, in terms of the O(2, 1) variable o,
disc 2A ~ Fe " ~ ' ' ~[1+O(e')+ ].

(3.8)

I
poi

Pb

Ppp

pg

IIII l m M
z

Pq) pg

FIG. 10. Unitarity diagram for M discontinuity.

We see from (3.8) that the leading helicity pole'
in disc, A is at m =y(t) +y'(t'), and that there are
integrally spaced subsidiary poles from y(t) +y'(t')
to -~. This set of helicity poles is associated
with the function A, (z) of Eq. (2.12). The function
A, will evidently have an equivalent set, going
from y(f) —y'(-t') to +~ with integer spacing.
When t and t' are continued to timelike values for
which y(t) and y'(t') take on integral values (asso-
ciated with particles lying on the trajectories), the
residues will vanish for ~m

~

&y(t)+y'(t'). This is
evidently required on physical grounds; mathe-
matically, it emerges from our analysis by noting
that for integral y and y' the asymptotic expansion
(3.8) of the function P„(z)P .(z') produces a poly-
nomial in z and z' with powers ranging from
z,~z, , ~ to zero. Here z, and z', . are, respectively,
linear functions of s and s' associated with the
crossed-channel analysis of the processes (3.5)
and (3.6).
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