
PHYSICA L RE VIE W D VOLUME 4, NUMBER 8 15 OC TOBER 1971
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Three-body decays 1-2~3+4 are considered using a frame of reference analogous to the
c.m. system for scattering. The physical decay region is mapped onto an O(4) sphere, so
that the decay amplitude f(a, 0) is a function on this sphere (depending only on two of the three
angles n, 0, and Q). The amplitude is then expanded in terms of the basis functions of O(4)
and we obtain two-variable expansions, in which all the dependence on the kinematic para-
meters is explicitly displayed in special functions. These expansions make it possible to
treat decays and scattering on the same footing, in that they are intimately related to O(3, 1)
expansions of scattering amplitudes, considered previously. Some analyticity properties are
built in, so that each partial wave has the correct behavior at the threshold (m3+ m4) and
pseudothreshold (ml -m2)2. The expansions make it possible to perform a kinematically
{or group-theoretically) motivated harmonic analysis of Dalitz-plot distributions for K —37(

and p —3~ decays (the results will be presented separately).

I. INTRODUCTION

The purpose of this paper is to suggest a new

method of treating general decay processes of the
type

1- 2+3+4

by making use of certain two-variable expansions,
based on the representation theory of the group
O(4). The method is an extension of one developed
in a series of previous articles mainly for two-
body scattering. ' ' The aim of the method, both
for scattering and decays, is to present a reaction
theory in terms of explicit two-variable (or, more
generally, multivariable) expansions of the corre-
sponding amplitudes. All the dependence on the
kinematic parameters (energies, angles, momen-
tum transfers, etc. ) is displayed explicitly in
known functions, whereas all the dynamics are
transferred to the expansion coefficients. The me-
thod can thus be considered to be a generalization
of standard par tial -wave analy s is, wher e the de-
pendence on one variable only, the scattering an-
gle, is explicit. Since this program is quite gen-
eral, it must be based only on very general and
well -established principles of scattering theory,
like Lorentz invariance, analyticity, crossing,
unitarity, etc.

The method used to generate two-variable expan-
sions for two-body scattering of spinless particles
was the following. The scattering amplitude f(s, t)
is considered as a function M(p„p„p„p,) of all

four particle momenta, subject to the restrictions
imposed by the conservation laws, mass-shell con-
ditions, and Lorentz invariance. It is then possible
to choose a convenient frame of reference by fixing
the momenta of three of the particles, after which
the amplitude can be considered to be a function of
the one remaining four-momentum only. In the
case of zero-spin particles, only two of the three
independent coordinates of the chosen momentum

p are essential, so the scattering amplitude is a
function of two variables only, as it should be.
However, these variables are now interpreted as
coordinates of the momentum P; thus the amplitude
f(s, t) is a function of a point on the hyperboloid
P'= m' (the ma. ss shell). If the coordinates are
chosen correctly, then the point P runs over the
entire upper sheet of the hyperboloid P'= m', as
the Mandelstam variables s and I, run through the
physical region of a given channel. Given a func-
tion f(P) of a point on a homogeneous manifold, it
is a simple matter to expand it in terms of the cor-
responding spherical functions, i.e. , in terms of
the basis functions of the irreducible representa-
tions of the group of motions of the manifold. In
our ease the group of motions is the homogeneous
Lorentz group O(3, 1) and the described method
provides the required two-variable expansions.

When actually deriving the expansions we encoun-
ter the following ambiguities: (1) We ean choose
an arbitrary ("convenient") frame of reference.
(2) We must choose coordinates on the hyperbol-
oid. (3) We must choose a specific basis for the
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group representations. These three choices are
interrelated and the solution of the problem be-
comes essentially unique if we add some physical
requirements. Thus, if we wish to make full use
of Lorentz invariance by incorporating all the
single-variable expansions appearing in the litera-
ture as "little-group expansions, '" "we are led
to three quite definite two-variable expansions,
corresponding to the reduction of O(3, 1) to differ-
ent subgroups G in the reduction chain O(3, 1)D G

DO(2). If we wish to incorporate the O(3) little-
group expansion of standard partial-wave analysis,
we choose O(3) to play the role both of the subgroup
G in the reduction (which determines the choice of
a basis and the choice of coordinates on the hyper-
boloid' ' ' '), and of the little-group of a timelike
vector, namely, the total energy-momentum P, +P„
the standardization of which [P, +P, =(v s, 0, 0, 0)]
determines the center -of -mass system. Similarly,
the O(2, 1) expansion of Regge-pole theory is ob-
tained by identifying the subgroup G with O(2, 1)
and letting this O(2, 1) also figure as the little
group of a spacelike vector —the momentum trans-
fer, the standardization of which [P,-P, =(0, 0, 0,
v-t)] leads to the brick-wall frame of reference.
In both cases we obtain a standard little-group
expansion in one variable and the group O(3, 1)
supplies a further expansion of the corresponding
par tial -wave amplitude.

Similarly, choosing the group G to be the Euclid-
ean group E, we obtain the E, little-group expan-
sion for lightlike momentum transfer (t=0 in non-
equal-mass reactions) and a generalization of this
expansion for tt0, supplemented by an integral
representation of the corresponding partial-wave
amplitude.

The motivation for the whole approach using
two-variable expansions is to achieve a greater
degree of separation between kinematics and dy-
namics than is provided by the little-group expan-
sions. This should enable us to make. dynamical
assumptions about the behavior of the expansion
coefficients, leading to "predictions" for high-
energy behavior, angular distributions, etc. Fur-
ther, the separation should enable us to impose
some of the general principles of scattering theory
in a general manner ("as kinematics"' '). Finally,
a successful application of the two-variable expan-
sions would make it possible to perform model-
independent phenomenological fits to experimental
data of a more extensive character than using only
the single-variable expansions. Thus, the expan-
sions based on the O(3, 1)DO(3)DO(2) chain are
suitable for performing energy-dependent phase-
shift analysis, i.e. , describing angular distribu-
tions at different energies in terms of one set of
parameters. The O(3, 1)QO(2, 1)QO(2) expansions,

II. THREE —BODY DECAY AMPLITUDE AS A

FUNCTION ON A SPHERE

Consider the decay 1-2+3+4, where all parti-
cles have zero spin and let the particle momenta
and masses satisfy

P, +p, +P3+p4 0, m, ~m, +m, +m,
and the mass-shell condition P,.

' =P, ,'- p,
' = m, '

for all four particles (i =1, . . . , 4).
The Mandelstam variables

s=(p +p ) t=(p +p ) u=(p +p )

in the decay region satisfy'

stu —K'(as + b t+ cu) ~ 0,

my + m2 + m3 +m4 =s+t+u,
with

(2)

(3)

(4)

on the other hand, are suitable for supplementing
the complex-angular -momentum description of
high-energy scattering by an explicit parametri-
zation of the momentum-transfer dependence of
the amplitude s.

In order to actually perform such phenomenolog-
ical fits, it is still necessary to overcome certain
difficulties related to the noncompactness of the
group O(3, 1). To avoid these problems we first
consider a problem that is mathematically simpler
and is of separate physical interest, namely, two-
variable expansions of decay amplitudes. The big
simplification is due to the fact that the physical
decay region is finite, so that it can be mapped
onto a manifold homogeneous with respect to a
compact group, namely, O(4). Since this group is
compact, the two-variable expansions will involve
only sums and no integrals, which makes the ac-
tual treatment of data a simple matter.

In Sec. II we consider the kinematics of three-
body decays and obtain the decay amplitude as a
function on an O(4) sphere. In Sec. III we discuss
some relevant results on the representation theory
of O(4) (most, if not all, of which are contained in
the literature). In Sec. IV we present and discuss
the two-variable expansions and compare them
with other treatments of three-body decays. In

Sec. V we discuss their possible applications to
processes like K- 3z or g-3z decays.

An actual application of the suggested formalism
to K- 3n decays has been performed with encour-
aging results and will be published separately.

Let us note here that two-variable expansions
inside the Mandelstam triangle have been con-
sidered previously, not, however, for actual decay
amplitudes, but for scattering amplitudes in a non-
physical region (when all four masses m, = m, = m3
= m, are equal). '" "



RELATIVISTIC TWO-VARIABL E EXPANSIONS FOR. . . 2341

and

Ka=(m, m, —m, m4)(m, +m, —m, —m, },3 2 2 2 2 2 2 2 2

Kb=(m, m, —m, m, )(m, —m, +m3 m4),3 2 2 2 2 2 2 2 2K

K 'c = (m, 'm 4'- m, ' m, ')(m, '- m, '- m, '+ m 4'),

(m, + m, )'- s &(m, —m, }',

(m, +m, } &t&(m, —m, ),2 2

(m, + m, )' & u & (m, —m, )'.

In order to apply the same approach as for par-
ticle scattering we introduce a center-of-mass-
like frame of reference for the decay (see Fig. 1).
In this frame particle 1 decays in flight, particle
2 emerges with momentum p, =p„and particles
3 and 4 emerge with p, = -p, and lpJ such that en-
ergy is conserved. Using spherical coordinates,
choosing 0» as the scattering plane and putting

p, = -p4IIO„we can write the individual momenta
as

P, = m, (cosha„sinha, sin&, 0, sinha, cos8),

p2 = -m 2(cosha„sinha, sin tI, 0, sinha, cos8),

P, = -m, (cosha„O, 0, sinha, ),

P4 = -m 4(cosha4, 0, 0, -sinha, ).

FIG. 1. The c.m. -like frame of reference for decays;
Ipil= lp&l =misinha, =m, sinha, ; Ipsl =lp41=mzsinha&
=m4 sinha4.

The conservation laws imply:

m y coshQy = m 2 cosha2 + m, cosha3 + m 4 cosha„

m, sinha, = m, sinha„

m 3 sinha3 = m 4 sinha4.

Choosing a, =—a, and 0 as independent variables,
(7) can easily be solved to express as, a„and a4
in terms of a. The decay amplitude is then F(s, t}
= M (p„p„p„p,) =f(a, e), i.e. , a function of the co-
ordinates of one single momentum P, .

In terms of the Mandelstam variables (3) we can readily obtain

2 2s+ m~ —m2
&

—= cosha =
2m ~'tis

3s(t- m, ' —m, ')+(s+ m, ' —m, ')(s+ m, ' —m, '}
-s+ m, +m2 -s+ m, -m2 -s+ m3+m4 -s+ m3 m4 '

(8)

(9)

(10)

so that

Formulas (8}and (9) are precisely the same kinematic relations that determine the variables used pre-
viously when treating scattering in the c.m. ' '. For scattering, the range of the variables s and t is such
that 1 & «~, -1 &z &1, i.e. , 0 &a&~, 0 &8&m so that the point p, covers the whole hyperboloid p, '=m, '
(if we add a cyclic angle Q). For a particle decay, however, s, t, and u are in a finite region, restricted
by the boundary (4) and satisfying (5). The range of the new variables for a decay is

44/ 1 ™2 Im +m /+m'-m
3m, (m, + m, )

0&a&a
„. „, 0&6I&m.

Thus, the physical decay region does not get mapped onto an entire hyperboloid, but only onto a finite
"cup" close to the vertex of the hyperboloid P,' = m, '. Such a region is certainly not convenient for writing
expansions in terms of the representations of O(3, 1), since this group acts transitively on the whole upper
sheet. Besides, one point on the boundary of the physical decay region, the singular point s = (m, + m4)',
where cos8 changes from +1 to -1, gets mapped onto an entire circle on the hyperboloid a =a

„, „, , 0 & 8 & m.
If such a mapping is used, analyticity properties of f(s, t) must be imposed artificially, this leading to var-
ious difficulties, like kinematical constraints on partial-wave amplitudes. To get rid of these difficulties
we make use of the finiteness of the decay region to perform a further mapping of the physical region from
the hyperboloid onto a sphere, this being similar to going into the Euclidean region of momentun1 space.
The simplest way of doing this is simply to construct a parallel mapping of our section of the hyperboloid
onto a hemisphere having the same radius as the maximal circle on the hyperboloid (see Fig. 2). This can
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be done by performing the mapping parallel to the axis of the hyperboloid onto a hemisphere with its center
at (0, 0, 0, 0). Instead of momentum space let us consider relativistic velocity space, defining relativistic
velocity as v=Plm. Thus, in velocity space we have

v = (cosha, sinha sin& cosP, sinha sin & sing, sinha cos6),

0&a &a,„, 0&0&7t, 0&)&2~,

where cosha and cos8 are given by relations (8) and (9). We project the point v on the hyperboloid onto
point v, on the sphere ("Euclidean velocity space"), satisfying

v, =R(cosP, sing sin& cosp, sing sin& sing, sing cos0),

0 & P &-,'r, 0 & ]9 & 7t, 0 & y& 2m.
(12)

Since the mapping is parallel to the timelike axis the angles 6 and P in (11) and (12) are the same and we
have

R sinP= sinha.

In particular the radius of the sphere is

g (m, + m, )' —(m, + m, )'][(m,—m, )' —(m, + m, )']}' '
2m, (m, + m, )

(13)

(14)

Using (8), (13), and (14) we finally obtain the coordinates of point v, on the sphere as cos&, given by (9),
and

s [m,'- m, ' + (m, + m, )']' —{m, + m, )'(s+ m, '- m, ')' '~'

s [(m, + m, )' —(m, + m, )'][(m, —m, ) —(m, + m, )']

However, the singular point s = (m, + m, )' is now

mapped onto the equator of the sphere and this
still leads to difficulties. We prefer to map both
singular points in s, namely the "threshold"
s = (m, + m, )' and "pseudothreshold" s = (m, —m, )',
into the two poles of the O(4) sphere. This is

0

easily achieved by introducing a new variable

(y =2/, (16)

given in terms of the Mandelstam variable s as

[(m, + m, )'- s][(m, —m, )'- s]
1

with 0&tv&m.

To each point on the Dalitz plot for the decay (I)
we can ascribe coordinates n and 6), given by ex-
pressions (9) and (17) (the coordinate P determines
the position of the decay plane and the amplitude
cannot depend on it}. From the Dalitz plot we can
reconstruct the decay amplitude f(n, 8) This is.
now a function defined on an entire sphere and it
can be expanded in terms of the irreducible repre-
sentations of the group O(4), rather than of the
homogeneous Lorentz group O(3, 1), which provides
expansions of scattering amplitudes. The O(4) ex-
pansions are given in Sec. IV and we shall see that
the correct thre shold behavior, occur ring in the
new variables at a=0 and e=v, is ensured automa-
tically by our choice of variables.

FIG. 2. Mapping from hyperboloid onto sphere.
8 = sinha max ~ sinha =R sin2O; 0 ~ a ~ a max ~

0 (g (7i.

III. SOME RESULTS ON THE
REPRESENTATIONS OF O(4)

The group O(4) has received extensive treatment
in the literature. "" To define our notation and
conventions we shall give a few results relevant
for our purposes. Readers who are only interested
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in the resulting expansion may wish to skip to
Sec. IV.

A. The Algebra and its Invariants

Using the notations
1L = 2EiklMkl) Af = Mf4, (18)

for the six generators of O(4), we can write the
commutation relations as

[L, , L,]=ie;,.„L,
[A;,A,.] = ie;,„L~

[L;,A,.] = i@;,„A~,

J; = ~(L;+A;), J; = 2(L; —A;),

yielding

[Ji,vJ, ]=ie, ,,J„. [Ji,J,]=~e,„J„.
[J,i,v J,] = 0.

(19)

The two invariant operators (Casimir operators)
of O(4) can be written as

I, =L +A =2(J'+ J ),

I =L A=J —J, (20)

and their eigenvalues can be written as

I, = 2[j (j +1) + j( j+ 1)]—:n(n+2)+ v

I, = j(j +1)-j(j+1)—= (n+1)v,

so that

(21)

The local isomorphism between O(4) and O(3) xO(3)
is demonstrated by putting

tary, and can be labeled by the two numbers v and
n 0

We shall make use of two different sets of basis
functions, corresponding, respectively, to the re-
ductions O(3) x O(3)&O(2) xO(2) and O(4)DO(3)
Do(2).

The first set will simply consist of products of
basis functions of O(3) and can be written as

~j mjm) Y=q (8, Q) YI-(tj, &j5). (26)

The O(4)DO(3)QO(2) basis functions are eigenfunc-
tions of the operators I„ I„L', and L, and can be
defined to be

~vnLM&= P (jmjmlLM)lj mjm&, (27)
m, m

where (j mjm~LM) are Clebsch-Gordan coefficients
of O(3). Note that the definition (27) not only en-
sures the proper transformation properties of
~vnLM& but also contains a phase convention.

Indeed, the phase convention in (26) is such that
the matrix elements of all the generators Jf and
Jf are real and satisfy

H„)j mjm) = [j (j +1)]' '( jm I p~j m + g) (j m+ pj's&,

(28}

H„I jmjm&=[j(j+I)]' '( jmlp) jm+ p) )j m jm+ p&,

where

Ho = J„H„=w (2) (J,+iJ,},
(29)

Ho= J„H„=+(2~)"(J,+i J,).
n= j+ j, v=j-j. (22) Putting

Since j and j can only be positive integers or
half-integers, we obtain that n and v are integer
or half -integer and

nofvf. (23)

Among the different possible parametrizations
of a group element two are particularly useful.
One corresponds to the O(3) xO(3)QO(2) x O(2)
reduction of O(4):

L~ ——H„+H~, A~ = H~ —Hp, (30)

Avi vnL M& (31)

=g(-I)"R~"„(LMIy~L+ kM +g)(vnL+kM + p&

and using (27) and (28), we can use standard angu-
lar momentum theory to obtain

L„~vnLM&= [L(L+ I)]'I'(LMI p.~LM + p, ) ~
vnLM + p&,

ZJ3 e f&t2 J2 ef 3J3 et 4J3 ec 5J2 ea 6J3 (24)
with

the other corresponds to the O(4)DO(3)~O(2) re-
duction

&4'gL3 &e) L2 et''yL3 e&&A3 t62L2 ei@2L3 (25)

and is particularly suitable for our expansions,
being intimately related to the O(3, 1)DO(3)DO(2}
reduction of the homogeneous Lorentz group.

[(n+1)' L'](L' v] ' -'—
L(2L 1)-

(n+ 1)v

[L(L+I)]'" '

l t ~ ')*-t& ~ &)*Ill ~ &I'- *1]'"
(L+ 1)(2L+3}

(32)

B. The Basis Functions for irreducible

Representations

The group O(4) is compact; thus all its irreduc-
ible representations are finite-dimensional, uni-

Thus, in the "canonical" basis (27) the phase con-
vention is such that all matrix elements of L„and
A„are real.

We are actually interested in the O(4) spherical
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harmonics, i.e. , in basis functions ~vnLM) real-
ized a.s functions on an O(4) sphere.

Let us introduce spherical coordinates, putting

T,f(x) =f(a 'x), (34)

where f(x) belongs to the Hilbert space of functions
over the sphere, satisfying

xy = sine sin8 cosp, x, = sin(y cos 6,

x, = sin~ sin6 sing, x, = cosa.

Consider the quasiregular representation"

(33}
I!f(cl., 8, P}l'sin'o sin8 dad8dp & ~. (35)

It is a simple matter to find the generators of O(4}
as differential operators on the sphere:

a a
L, =i sing —+cot8cos{IF),—,1 a8 7

a a
L, =i -cosP —+ cot6 sin{I}—,

a6

a
L =-i—,3 ay )

a a sing a
A =i sin8cosf —+cot+cos6cosp ——cote1 aQ a8 sin8 ap

{36)

~ a a cosp a
A, = i sin6 sing —+cot~ cos8 sin{I) —+ cote

aQ a6 sin6 af
a a

A = i cos6 ——cote sin6—3 a Q a6 .

Writing down the operators I„ I.', and L, as differential operators, noticing that I, =0 identically, so
that the only representations realized in this space are those with v=0, and solving the equations

I 4 „„(o,8, y) = n(n+ 2)4 „,„(o., 8, y),
L'4 „(o., 8, y) = L{L+I)e „(o,8, y),

L,c „(~,8, y) = Mc „,„(n, 8, 4),
we can check that the normalized spherical functions satisfying (31) are

,.&,~,&~2 "''I'(L+1) (L M)! (N+1)-I'(N-L+1) '~'
I!ONLM)=4«„(a, 8, P)=e "'

2 (2L+1)(L+ M)! I'(N+L 2)

x (sinn)~C„"~(cosa)Pz"(cos8)e'"~.

Here P~(cos8) and C„"~(cosa) are Legendre and Gegenbauer polynomials, respectively. An equivalent
form, more similar to the one figuring in O(3, 1) expansions, is

(36)

,~)2 P~y~+g (cosc)P~ (cos8}e(sinn!
,,„„2L+1(L-M)! r(N+ L+2){N+1)0NLM)=4«„(a, 8, 4)=e '' '

4v {L+M)! I'(N L+1)-
C. Spherical Functions and Finite - Transformation Matrices

Making use of the local isomorphism between O(4) and O(3) xO(3), it is quite simple to obtain the matrix
elements of finite transformations, i.e. , the O(4) D functions. We do not need their explicit form but only
the relation between the D functions and the spherical functions (38). Consider again the quasiregular rep-
resentation (34}. By definition, we have

@«u{g &) = ~g4'«v(&) = Z D~i+v', Ie(g}C'«'v'(&)' (40)

Consider the point xo= (0, 0, 0, 1), i.e. , put +=0 in {33). The function 4«„(0, 8, Q) cannot depend on 8 and
{II), since these angles have no meaning for +=0. Indeed we have
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N+1
@NLhf( l 81 4) 6L06N0~2 (41)

Substituting (41) into (40) we have

M+1 oN
@NLNM X0) ~2 00 LN(R)'

Putting

e F3pl e iL2p 2 e K3p 3 e aA3 e tL29 iL3{ff' @)

with p„p„and p, arbitrary, we have

N+1
NLN(lr 8, ~) —~2„D00.LN(g)

(42)

(43)

D. The Clebsch - Gordan Series

Let us define the Clebsch-Gordan coefficients for O(4) by the relations

(44)

(45)
Ll M1, L2, V2 1 1 2 2

Our notations are such as to stress the analogy with the O(3, 1) case." Equation (27) and its inverse make
it possible to express the O(4) Clebsch-Gordan coefficients in terms of purely O(3) quantities and we obtain

2(121+ v, ) 2(nl vl) LI

( = (2L, +1 (2L2+1)(n+ v+1)(n- v+1 ' '(L1M1L2M2LM 2 n2+ v2 2(n2 —v, L, , (46
1 1 2 2'

2(n+ ) v(n 2v) -I,

where the curly brackets denote a 9-8 symbol (for definitions and properties see, e.g. , Ref. 20).
Let us note that v, = v, = 0 does not imply v=0 in (46}, i.e. , the direct product of two "degenerate" repre-

sentations with v; =0 will contain general "nondegenerate" representations. However, a special case of
interest when v, = v, = 0 does imply v = 0 is

on On vn n+ 1= ~Uo&Lo&Mo00 00 LM " " (n, +1}(n +1) (47)

Performing a general O(4) transformation on both sides of (45) and making use of the orthogonality rela-
tions for the basis functions, we obtain

1 1 ( )D 2"2 ( & ~ lnl 22 1 1 2 2

L M L M LM L' M' L'M' L'M'
unLM L'M 1 1 2 2 1 1 2 2

(48)

Using (43}, (47), and (48) we obtain an expansion formula for products of spherical functions (evaluated at
the same point):

[(n+1)(n'+1)(2l+ 1)(2l'+1)]' ' g(N+1)' '(fml'm'~LM)
1

&2m NLM

1 l
2n rn

2n' m2'
1 1

2N

(49)

Note that the 9-4 symbol in (49) is equal to zero unless n+n'+N+l+l' Lis+even.

IV. TWO - VARIABLE EXPANSIONS OF DECAY AMPLITUDES

Let us now consider the decay amplitude f(s, f) as a function f(n, 6} of a point on an O(4) sphere, indepen-
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dent of the azithumal angle ltl. Expanding in terms of the functions (38) satisfying the normalization condi-
tion

7I 7r 2 7I'

sin ndn sin6d6 dpC„l (n, 6, p)4„* l m'(n~ 6 4l)= 5nn' 5ll b'm'
0 0 0

we obtain
n 2l+4/Rln(t (n+1 I' n-I+1

f(n, 8)= P ga„,e 'i'~'I' (2l+1) (sinn)'C„"', (cosn)P, (cos6}, (50)
27l I'(n + l + 2)

a„,=e'~'~'I'2'"t'I'(i+ I) (2l+ 1)
(n+ 1)1'(n- l + 1)

I (n+ l+2)
sin'n dn sin8 d6f(n, 6)(sinn)'C,"t(cosn)P, (cos8)

(51)
If particles 3 and 4 are identical we must have

f(s, t, u) = f(s, u, t), i.e. , f(n, 8) = f(n, ll-8), (52)

so that a„,=0 for odd values of l. The same symmetry (52) results from C invariance in 7I- 37l decay where
the m is particle 2. For kaons, CP conservation and the b, I= —,

' rule also relate the amplitudes for various
decays (see Ref. 21).

If particles 2, 3, and 4 are all identical (e.g. , K - ll'll'll') then f(s, t, u) must be invariant under arbitrary
permutations of s, t, and u. This is somewhat more difficult to ensure; however, use can be made of the
O(4) partial-wave crossing matrices derived in a. previous publication. '

Expansion (50) of the decay amplitude can be used directly to fit experimental data, considering the a„,
to be arbitrary complex numbers. It is, however, convenient to also have an expression for the decay
probability directly, i.e. , an expansion of the square modulus I f(n, 8) I'.

Using (50) and (49) such an expansion can be readily obtained. Indeed writing (50) in the form

f(n, 6}= Pa„,c „,(n, 8),
n, l

we have

If(n, 8)l'= p a„la ! ClC 'l Q'e a la l'C jc l'

(53)

n, l, n', 1'

Thus

If(n, 8)l'= P gb„, „4,( , n),6
X=0 L= 0

with

n, l, n', l'

(54)

—,'n n l

(N+1 '"
b =sip [(n+ 1}(n'+1}(2l+1)(2l'+ I)]'~ (l0l'0!LO) zn' zn' ll e" a„,a„",,

n, l,n, l'
-N 2N L

(55)

The relation (55} immediately supplies useful selection rules. Thus bs~w0 only if

I+1'+L =even, n+n'+N=even, Il-l'I&L & l+l', In n'I&N&n+n', -0 &L &N. (56)

In particular, if ~ and ~' are even, then L must also be even. The amplitudes b~L are of course real num-
bers. The correct threshold behavior of our partial waves is ensured by the presence of the factor (sinn)'
in (50), since

([(m, + m, ) —s][(m, —m, )'- s][s- (m, + m, )'][(m,'- m, ')' —(m, +m, )'s]['~'
2m, '(m, + m 4)R 's

(57)

vanishes correctly for s = (m, —m, )' and s = (m, + m, )' [the additional zero of sinn at s = (m, '- m, ')'/
2(m, + m4) has no physical meaning, since it lies in the physical scattering region, where we use the origin-

al O(3, 1) mapping].
In a separate publication" we apply the presented method, in particular, expansions (50) and (54) to treat

the Dalitz-plot distribution of K'- m'z'p' decays". In doing this we must naturally restrict ourselves to
a finite number of terms in each sum, e.g. , by taking 0 ~ n & n, for some fixed n, and considering all ac-
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ceptable values of / T. he relation between the amplitudes a„, in (50) and b„~ in (54) for low-lying values of

n and & is given in Appendix A.
Let us now discuss the relation between our analysis and the usual one in terms of Dalitz variables (see,

e.g. , Ref s. 2 1 a.nd 23).
The Dalitz variables x and y are introduced when considering a three-body decay in the rest frame of the

decaying particle. Let the kinetic energies of the produced particles 2, 3, and 4 in the rest frame of par-
ticle 1 be T, {k=2, 3, 4) and introduce

—T2+ T, + T, —m, —m2- m3- m4.

Then we define

T,-T 3T —Q (59)

Our variables a and 8 can easily be related to x and y (see Fig. 3):

2Q (1+y)[6»2+ Q(1+ y)]
3R 3(m, —m, ) —2m, Q(1+y) '

cos6 =[Q(I +y)[6», + Q(1+ y)][(m, - m. )'- (m, + m, }'--',m, Q(1+ y)l[(m, —m. )'- (m, —m, )'--'. »,Q(1+ y)]]
' '

x(—[(m, —m, )' ——,'m, Q(1+y)][6m, +Q(2+&3 x—y)]

+[3(m, —m, )- Q(1+ y)] [(m, —»,}'+m, ' —m„' ——', m, Q(1+ y)]t. (61)

(62)
m, k= 0

Let us compare this expansion with the O(4) expansion (50) which we write as

f(s, t}=P Q a„,4„,(a, 9).
n=O E=O

Making use of the inverse formula (51), we obtain

The most common way of treating, say, K- 3z decays is to expand the amplitude in a power series in x
and )I:

f(s, t)= P R, x y".

with

m, k= 0

km
nl ~km~ {63)

I'P =2'"t'I! ' e'"t !' da(sino)' 'C„' I{cosn)y x P, (cosB}sin{idg.
(n+ l +1)!

Similarly, making use of the fact that

(64)

~m+0

R~ =
I, f(s, t)km mIpr gX g&k

we find that

x=y=0

nR„=Q Q,J„"' a„, ,
n=O E=O

with

l! 2' (2l + 1)(n+ 1)(n —l) t"

(65)

The "overlap coefficients" I"„, and Jk"' can easily be calculated explicitly and we discuss them further in
Appendix B. In any case, it is obvious that the relation between the two types of expansions is not trival
and that a finite number of terms in one expansion corresponds to an infinite number in the other.

In particular, if we use the linear approximation for f(s, t) (as is often done when presenting decay data},

f(s, t) = ROD +R goy,

then the nonzero terms in the O(4) expansion will be

(67)
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a=choo 0
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a =80

—1.0 I.O X

0
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a=o

FIG. 3. Dalitz plot for K —37) decay parametrized
in terms of the Dalitz variables (x,y) and the O(4)
variables (n, g). The boundary of the physical decay
region is coso = +1.

00 10
00 pp~pp+ 00+10

10a 0=I 0810 &yg (oO
(88)

The first few coefficients I„', and Jyp have been

evaluated numerically for E'- n'm'm' decays and
are presented in Tables I and II.

and 8, given by expressions (9) and (1'7). The O(4)
-group expansion of f(a, 8) is then provided by for-
mula (50), or alternatively, the decay probability

~ f(n, 8)~' is expanded using formulas (54) and (55).
Important features of this method are:
(1) Scattering and decays are treated on the

same footing, the only difference being that the ex-
pansions for scattering must be provided by the
noncompact group O(3, 1), since the physical region
is infinite.

(2) The fact that the expansions are explicit in

both kinematic parameters makes it possible to
represent the total information contained in the
Dalitz plot in terms of a few parameters -the
O(4) amplitudes a„, in (50). These amplitudes
should then be sensitive to the actual dynamics of
the decay, i.e. , to questions like CP violations in
K- 3m decays, the AI= —,

' rule in nonleptonic weak

decays, etc.
(3) The partial-wave amplitudes have the correct

threshold and pseudothreshold behavior built in

explicitly, since the basis functions contain a fac-
tor(sina)' vanishing as [s-(m, +m, )')'~' and

[(m, —m, )'- s]' ', respectively.
(4) A "fringe benefit" obtained by using the O(4)

expansions (50) is that the statistical errors in the
expansion coefficients a„, are (at least in a some-
what idealized case) uncorrelated, since the func-
tions 4„, are orthonormal when integrated over the
physical decay region only. Indeed, the phenome-
nological coefficients a„, are obtained by minimiz-
ing the y' function

V. CONCLUSIONS
E 2

2 f(~k ~ 8k) 2 snl4 nl(+ki 8k)
X -0

(59)

Let us summarize the contents of this paper.
Two variable expansions previously developed for
scattering amplitudes, ' ' have been modified to be
applicable to general three-body decay processes
(1) involving particles of spin zero. The physical
decay region is mapped onto a three-dimensional
sphere in Euclidean velocity space, so that the

decay amplitude is a function of the variables n

where the k summation is over all experimental
points (or over the centers of each bin in the Dalitz
plot, or some other such quantities, depending on
how the data are presented). Here Ak is the exper-
imental error in f(ak, 8„). The n, l sums are over
finite numbers of terms. The errors on the coeffi-
cients are uncorrelated if the inverse error matrix

TABLE I. The overlap coefficients I"„0expressing the O(4) expansion coefficients a„o in terms
of the power-series coefficients R» for K' -x'7t'71' decays.

10

4.443
0.767
1.077
0.318
0.498
0.161
0.283

0
-2.027
—0.426
-0.973
-0.261
—0.567
-0.157

0
—0.294

0.890
0.091
0.647
0.109
0.458

0
-0.050

0.267
-0.405

0.069
-0.389

0.007

0
-0.010

0.066
-0.185

0.205
-0.112

0.231

0
-0.002

0.016
-0.060

0.177
-0.119

0.104

0.004
-0.017

0.047
—0.074

0.077

0.001
-0.005

0.016
—0.034

0.048

-0.001
0.005

-0.013
0.024

0.001
-0.004

0.010
-0.001

0.004
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TA.BLK II. The overlap coefficients J„"0expressing the power-series coefficients Ryp in terms
of the O(4) expansion coefficients a„o for K'- 7('7r'm' decays.

10

0.225
0.114

-0.168
-0.199

0.067
0.232
0.051

0
-0.446
-0.452

0.550
1.124

-0.115
-1.643

0
-0.137

0.747
1.513

-0.952
-4.265
-1.119

0
—0.034

0.510
-0.890
-4.267
—0.075
12.725

0
—0.008

0.209
-1.280
—0.089
10.110
7.959

0
-0.002

0.072
-0.780

2.370
4.857

-19.283

0.023
-0.357

2.198
-2.516

-19.100

2.027
-0.141

1.315
-4.824
-3.195

0.002
-0.051

0.637
-3.887

7.413

0.001
—0.017

0.271
-2.316

9.318

-0.006
0.106

-1.163
7.017

eiWl

nl, n'1'
2 2 ~nn' ~l l'&2n b,

(73)

so that the errors are indeed uncorrelated.
Important questions which should be settled by an

actual treatment of data, e.g. , for K- 3m and
q- 3m decays are the following: How fast do the
O(4) expansions converge for physical amplitudes?
How stable are they with respect to the cutoff no~
How sensitive are the expansion coefficients a„,
with respect to interesting features of the decay'P
How do the O(4} expansions compare with other
treatments? Some answers to these questions are
contained in Ref. 22.
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2 Ba„)Ba„)
is diagonal. We have

4nJ(+k & 8o)@'n' l'(+Or 8k)
Hnl, n'l'

k

Consider now the ideal case of a very large num-
ber of measurements [K- ~ in (69)]. We can re-
place the sums over experimental points by inte-
grals over the Dalitz plot (the physical decay re-
gion), so that

H„, „, =
)

" ', " ' sin'o. dnsin8d8.4.,(~, 8)4. , (~, 8) . .
(72)

However, if we assume that the errors are uniform
over the Dalitz plot 6(a, 8) =d, =const, we can make
use of the orthogonality properties of 4 „, to obtain

Remmel and Dr. P. A. Souder for sending us
copies of their unpublished theses.

APPENDIX A: REMARKS ON THE DECAY

PROBABILITY

If a decay amplitude is expanded using formula
(53), then the decay probability will be represented
by (54). The general connection between b„and
a„, is given by (55}. The amplitudes a„, are in gen-
eral complex, whereas the b~~ are real. In practice,
we always consider a finite number of terms only.
Since the phase of f (0., 8) is arbitrary, we can fix
an over-all phase for the coefficients a„,e.g. , by
putting a~ = real, positive.

Let us consider the case when we cut off the sums
in (53) at n, = 2, i.e., consider only aoo ~ 0 and a„,
a„, and a», which are complex. Further, assume
that particles 3 and 4 are identical so that l and I,

'

are even. The selection rules (56) show that these
an, contribute to b«with 0 &N + 4, 0 ~ L &¹Ex-
plicitly evaluating the 3j and 9j symbols in (55), we
find:

(laool'+ f a,.l'+ Ia..l'+ la..f'),
1

W27r

v2
Rea„(a,*,+ a,*,),

v2n

(-
~ a» ~' + 2v 2 Reaooa,*, —u 2 Rea, ~,*,),

1

W25„=—Rea, oa20,
jr

1
5» = —Rea„a,*„

Tr

1
iso = ( Iaoo I

+ r~o la22 I )
V2 7l'

—(Iao2 I'+ 7W2 Reaooa,*,),
1 1

2' 5

9 1
&.4=

5
—la..l'

57r q7
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It follows from the above relations that a three-
parameter fit to f (o, 8) (the parameters being a„
~ 0, Rea», and Ima, o) corresponds to a simple
three-parameter fit to !f(a, 8) I' (the parameters
are b„, b», and b„). On the other hand, a seven-
parameter fit to f(o/, 0) corresponds to a, nine-

parameter fit to the decay probability [the param-
eters b», ..., b«of (Al)], with two (nonlinear) con-
straints on the b~. These constraints can readily
be obtained from Eqs. (A1), however they are too
inelegant to merit publication.

APPENDIX B: RELATION BETWEEN O(4) AND DALITZ VAR1ABLE EXPANSIONS

The overlap coefficients, I'„, and J",', relating the two different types of expansions, have been defined
in Sec. IV [see formulas (64) and (66)]. Let us first discuss I"„P In or.der to perform the integrations in
(64) we first express x and y as functions of ( = cosa and z = cos 6!. We then expand x and y" and (1 -()'"
in powers of ( and z, so that finally the only integrals actually needed are24

„,em I'(a+1)
2"' I'( '(l+a+-3)) I'( '(-l+a-+2)) (B1)

and

m(n + I + 1)!I' (b + 1)2"""l!I'( '(b -—n+ l)+ 1) I"( '(b+n+ —l)+2)(n —l)!

Expressions (60) and (61) can be inverted, to give
(B2)

y= -6m m -2m Q -3m, 'R +3m, R +3m''R cosQ
2mQ

m 2R R2 m 'R'/m ' I/2
+3m, m, (2+R') 2+ ', 1—,coso. 1- '. ..', cos~

m2 + 2+m, R y'm
I

(83 )

and a somewhat more complicated expression for x as a function of n and 0.
We have obtained a general expression for I'„, , which is, however, quite cumbersome, containing one

infinite sum and many finite ones. If we only consider a special case when m =0, then we obtain a some-
what simpler result, namely,

~"'= a {-1)""~2 ( +1)I t--nl l0

(2P -n)! I' (c/2+ 1)
g=o b=o c=o p (b b)!c!(b-c)!(2p—-a b+ c n)!(2a+b--c+n--2p)!(p+1)!(p-n)!I'(c/2 -a+1)

2 2p -a-b+c/2 2 2 2 a+b -c+n -2p
+ 22a+b -c -4p(3 )b 1 R4P

m2'

m'
& (2+R ) 2+ ', R' (6m, +2@+3m,R') '.

2
(B4)

Expression (B4) was actually used to calculate the first few coefficients numerically. The program was
so arranged that all terms in the finite sums were taken and the infinite sum over a was cut off as soon as
the sum over the last three terms in a was less than 1% of the total value of the corresponding coefficient
I„"',. The results are presented in Table I.

The coefficient J„"' of (66) can also be calculated in general. To do this we need an expression for the
nth derivative of a composite function, which can be written as

n a

«. =ZZ b, b, [4(l)] .[4(l)]' .+(0). (B6)

The general coefficient J„ is again quite complicated, the special case L=O is simple enough to be presented
here. Indeed, we have
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(B6)

I 2m, Q
'" '" ' ' ' (-I}2'a! I'(-a+ b+ c+ d+ k)

'a!W2 3 ) I I I 2 !)( —b —)!( —d)!d!I'(- +b+ +d)'
a=o b=o c=o d=p

, C„'(cosa)
k))t mo y tq2 + Py

~e can now directly apply (B5) with !})=cosa and F()f)) = C„'(cosa), cosn being given by (60}. The result can
be presented 3.s

where

2Q 6m, +Q
sf'' 2(m, -m, )' -2m, Q

'

x icos}iC„'",(cosP}] ~„,(s)' ' ' ' '~„,A ' 'B' 'C',

s~„,=(m, -m, )' —-', m, Q,

(B7)

m '+m, '+m, 'R'
A= —

2m 2~, )
(m, ' -m, ')'

2m 'R
1

(B8)

Formula. (B7) was used to calculate the first few values of J,"' numerically, as presented in Table II.
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