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The high-energy limits of the 4-pion and 6-pion tree-approximation amplitudes in the non-
linear chiral-invariant Lagrangian and of the p-p scattering amplitude in massive Yang-Mills
theory are investigated in order to see whether Reggeization of elementary particles occurs.
We find that the 4- and 6-pion amplitudes are dominated asymptotically by exchange of Regge
poles with quantum numbers of the p and A& mesons, respectively. These trajectories are re-
garded as "ancestors, " because p and A& particles are not present in the initial Lagrangian.
The p-p scattering amplitude is dominated by the exchange of quantum numbers of the p meson,
but there are two trajectories present, so that Reggeization does not occur. Nevertheless, in
all amplitudes computed there is a striking regularity in the dominance of high-energy limits
by the exchange of quantum numbers of the p and A& mesons.

I. INTRODUCTION

We report here results of an investigation of the
high-energy behavior of tree-approximation am-
plitudes in chiral- and gauge-invariant meson
field theories. It is known that such amplitudes
beautifully embody current-algebra requirements
at low energies but are too singular at high ener-
gies to satisfy sum rules.

Our motivation is to test whether the high-ener-
gy behavior, although singular, corresponds to a
Reggeization of the elementary particles in the
field-theory Lagrangian. It was originally shown
by Gell-Mann et al. ' that the spinor particle is
Reggeized in a field theory of a spinor and a mas-
sive neutral vector meson. Their work critically
involved higher-order loop graphs. However, Reg-
geization already requires a nontrivial property
in the tree approximation. It requires that the
leading terms have appropriate asymptotic strength
and satisfy a factorization condition involving sense
and nonsense channels for all values of nonasymp-
totic variables. It has recently' been shown that
these conditions are satisfied for an I= & spinor
nucleon coupled to I= 1 vector mesons via a Yang-
Mills Lagrangian. ' The situation in several other
theories has also been investigated. '

We examine high-energy behavior in the non-
linear chiral-invariant Lagrangian for pions"
and in Yang-Mills theory for massive vector
mesons. The results can be described as follows:

(1) Complete Reggeization of external particles
does not take place.

(2) Nevertheless, the leading high-energy be-
havior in these theories is concentrated in ampli-
tudes of very well-defined quantum numbers.

The full significance of (1) and, especially, (2)
is not clear, but we believe that a presentation and

discussion of the results is justified.
In Sec. II we study nonlinear chiral theory, pay-

ing particular attention to the 6-pion amplitude,
in order to test for the Reggeization of the ele-
mentary pion which occurs in intermediate states.
The study of the Reggeization phenomenon in am-
plitudes with more than four external particles
is an innovation of the present work. In chiral
amplitudes we find leading asymptotic terms
characteristic of p- and A, -meson trajectories,
not a n trajectory. This suggests that p and A,
mesons should be included in the phenomenologi-
cal Lagrangian from the beginning, and that one
should look for Reggeization in the asymptotic
limits of amplitudes with external and internal 7i's,

p's, and A, 's. A closed subset of these amplitudes
is the p-p scattering amplitude in which only the
p appears internally. We test for Reggeization of
this amplitude in Sec. III, using a Yang-Mills La-
grangian to describe vector-meson interactions.
The factorization properties of the high-energy
limit indicate that two trajectories, out of a pos-
sible four, are present, instead of the single tra-
jectory which would mean full Reggeization. The
connection of this result with the counting argu-
ments of Mandelstam' is discussed. In Appen-
dixes A and 8 we write the helicity amplitudes for
p-p scattering in Yang-Mills theory and give the
isospin analysis of the 6-pion amplitude.

II. NONLINEAR CHIRAL LAGRANGIAN

We choose the simple Lagrangian

1
1 y —v~ (s $)&

2

which gives unique chiral-invariant S-matrix ele-
ments for processes involving only massless pions. '
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To check for Reggeization of the pion, one must
examine the asymptotic behavior of amplitudes in
which the pion can be exchanged internally. The
simplest such amplitude has six external pions
[Fig. 1(a)] to which both pole- and contact-type

Feynman graphs contribute. We express the am-
plitude in terms of individual isospin couplings
and, by convention, take all momenta pointing in-
ward. One isospin term is

(Pl +P2 P4) (P3 P2 P4) (P2 P3 P4) (Pl P3 P2)

(P, +P. +P,)' (P. +P. +P.)'

(2)

This expression is already invariant under the ex-
change 1—2, 3—4, and 5—6 of particle mo-
menta and isospin labels. The full amplitude con-
tains 14 more such terms each obtained from
Eq. (2) by permutation of momenta and isospin
labels leading to inequivalent isospin couplings,
e.g. , 5, , 5, , 6, , It can be verified that each14 25 S6
isospin term separately vanishes when any pion
4-momentum P;„-0. Thus the Adler condition'
is satisfied.

We must calculate the asymptotic limit governed
by the leading Regge pole in a single three-parti-
cle channel, and we choose the (123) channel. The
Toiler variables, studied in detail by Bali, Chew,
and Pignotti, " reliably ensure that the correct lim-
it is taken. With reference to Fig. 1(b), we must
specify

(1) one momentum transfer variable Q',
(2) two internal variables describing the 123

P61as

P, = (E„O, 0, z, ),

P, = (-E„O, -y„-z,),
P3 ( 3$ l y2l 3) 7

(4)

P, =(E„O,0, z,),

&, =(-E„o,-y„-z.),
P4 = (-E4, 0, y„-z4) .

(5)

cluster in a standard configuration,
(3) two internal variables describing the 456

cluster in a standard configuration,
(4) three Lorentz-transformation parameters

(42, g, y) describing the relative orientation of the
456 and 123 clusters.

We always take Q=P, +P, +P, =-P4-P, -P6 space-
like along the z axis:

Q = (0, 0, 0, v'-Q' ) .

With slight differences in convention from Bali,
Chew, and Pignotti, we choose the vectors of the
standard configurations as

P5t 5

p~) a4

P5

Py

P6

(a)

P(

Pp

pa~as

Pp

Energies E; are always positive and on the mass
shell. The equation Q =P, +P, +P, gives two con-
straints between z„z„z„and y, leaving two in-
dependent internal variables for the 123 cluster.
Similarly, the equation -Q =P4+P, +$6 leaves two
independent internal variables describing the 456
cluster.

The three Lorentz parameters describe a trans-
formation of the particular O(2, 1) subgroup of the
Lorentz group which leaves the z axis invariant.
We use exponential notation to write this transfor-
mation as

-i BJ3 -g Ck~ -g~J~
e 'e e (6)

FIG. 1. The 6-pion amplitude. Momenta and isospin
indices are specified in (a). The asymptotic limit of the
amplitude in which a Regge pole is exchanged between
the 123 and 456 clusters is illustrated in (6).

where, applied to 4-vectors, J, and K, are taken
to be the 4X 4 matrix representatives of generators
of rotations about the z axis and boosts along the



2322 DICUS, FREEDMAN, AND TEP LIT Z

z axis.
Invariant scalar products may be expressed in

terms of the Toiler variables as

p. ~ p. =p, ~ p;, t, t' «3

i i"-4

p, p, = (e""2e' "sp, ) ~ (e '"'s p,. ), i ~ 3 y o- 4.

We do not write these formulas in detail here.
Toiler's elegant group-theoretic work tells us

that the asymptotic limit of a 6-point amplitude
governed by Regge singularities in the (123}chan-
nel is precisely the limit & -~ with all other Toi-
ler variables fixed.

If the leading singularity is a Regge pole at
J = o.(Q') with factored couplings, the Toiler limit
would give

A = (cosh&) y (I8,z. , y, , Q')yg23(o. '/zj y yj y Q) d

where we always take i + 3, j & 4. It is worth point-
ing out that although the factorization of Regge-
pole couplings to multi-particle channels is widely
assumed, it has not, to our knowledge, been prov-
en to the same level of confidence as for two-par-
ticle channels.

The three-body analog of helicity amplitudes can
be defined by integration:

,f d f dl3
'"" " 'A.

The index n is the number of units of angular mo-
mentum of the 123 cluster about the z axis in stan-
dard configuration, and m has a similar interpre-
tation. It is necessary to take helicity projections
of the Regge residues to discuss the question of
sense and nonsense couplings of trajectories at
integer values of o. (Q') .

In two-body amplitudes there are at most a finite
number of helicity channels, but in the three-body
case there are an infinite number of channels due
to the helicities and internal structure of the 123
and 456 clusters. Reggeization succeeds when a
single factored residue containing the pole terms
of a particle in the Lagrangian can be identified in
the high-energy behavior of scattering amplitudes.
This is a much more stringent condition for three-
body amplitudes, because an infinite number of
channels are available.

In our case the residue factor y», (o, z;, y, ) must
incorporate the Bose symmetry under interchange
of isospin labels and momenta among particles 123,
with a similar requirement on y4„. The Toiler

conventions would need modification in order to
display this symmetry compactly. Fortunately, the

requisite symmetry will be obvious from our re-
sults. Indeed, for most of our work we can keep
the detailed Toiler formulas (7) and (8) in the backs
of our minds, and work simply with the scalar
products, remembering that p; p, becomes large
in the Toiler limit and P; ~ P,' and P, P,'. remain fi-
nite.

There are two generic types of isospin terms in

the full 6-pion amplitude. Terms such as
5, , 6, , 5, , are clea.rly pure I=1 in the 123 chan-

aIag aSa4 aga6

nel. Terms such as 5, , 5, , 5, , contribute to sev-
ala4 a2a5 a~a6

eral isospins in the 123 channel. See Appendix B.
For pure I= 1 couplings, the Toiler limit is

easily calculated in terms of invariant scalar prod-
ucts Fo.r example, the isospin term of Eq. (2}
has the limiting behavior

A- 2f, '5,-, 5, , 5, , p3. pd,

which is linear in cosh&. For mixed isospin cou-
plings one finds after detailed use of Eqs. (7) and

(8) that the limiting behavior is at most constant in

cosh&, and therefore negligible compared to (11).
Alert readers may be puzzled because the Adler

condition is apparently not satisfied by the leading
asymptotic term (11). The puzzle can be resolved
by examination of Eq. (2), which shows that be-
cause of poles, the Adler and Toiler limits are not
interchangeable and should only be performed in
alphabetical order.

The leading Regge structure of the 6-point ampli-
tude is now clear. Pure I=1 terms are proportion-
al to cosh( in the Toiler limit which indicates that
there are Regge poles at J =1. Similarly, Regge
singularities of the mixed-isospin terms only oc-
cur for J ~0.

In the language and standpoint of the Reggeiza-
tion program, J' = 1 asymptotic behavior when there
are only J= 0 particles in the Lagrangian means
that an ancestor is present. Although an ancestor
at J =1 does not strictly imply that Reggeization
of the pion at J=O fails to take place, we chose
not to study the detailed form of J= 0 terms be-
cause it became more interesting to investigate a
possible interpretation of the ancestor, which will
be discussed below.

Of the 15 isospin couplings, nine are pure I= 1
and contain the leading J= 1 asymptotic behavior;
the others are of mixed isospin type and can be
ignored asymptotically. The nine I= 1 terms pro-
vide fully symmetrized couplings for the ancestor
Regge pole. The leading asymptotic behavior of
the full 6-point function can be written, using unit
vectors e(1), e(2), etc. , to describe the isospin
wave functions of the individual pions as
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A--2f 'b„g 'ts(5) s(6)e, (4)p, „+s(4) s(6)e, (5)p, „+e(4) Z(5)s, (6)p,„]

x [ s(2) e(3)e,(l)p„+Z(1) e(3)c,(2)p, „+s(l) ~ s(2)e, (3)P~„], (12}

=-(2f,') 's(5. ..5... —5, , 5, , ) (13)

The amplitude is dominated by the asymptotic con-
tribution of a Regge trajectory at J= 1 of normal
parity and I=1 in the t channel, in short, by a p
trajectory without a p-meson pole.

It is now evident that the leading asymptotic be-
havior of amplitudes in the nonlinear chiral theory
is concentrat:d in amplitudes whose quantum num-
bers are those of p and A, trajectories, but in which
there are no vector or axial-vector meson poles.
We choose to interpret this as nature's way of tell-
ing us to put p and A, particles into the phenomeno-
logical Lagrangian from the beginning together with
&'s. We might then hope for a grander Reggeiza-
tion scheme in which the tree approximation to all
amplitudes involving external &'s, p's, and A, 's is
dominated by Regge trajectories on which these
particles lie. In Sec. III we test this idea by exam-
ining the asymptotic behavior of the p-p scattering
amplitude, where the quantum numbers permit the
p trajectory, but not the & or A, , to be exchanged.

representing the fully symmetrized factored cou-
pling of a single isovector Regge pole at J =1. The
Lorentz factors P, P; indicate that the pole has
normal orbital parity and therefore positive over-
all parity. They also show that the pole couples
only to sense channels with helicities +1 or 0.

Therefore, the leading asymptotic behavior of the
6-pion amplitude is a term whose quantum numbers
are those of an A. , Regge trajectory without anA, -
meson pole, which would be technically described
as a sense-choosing trajectory with vanishing res-
idue at J=1.

For comparison we write the well-known 4-pion
amplitude of Weinberg and extract its large-s,
fixed-t limit

A(s, t) =-(2f,') '(5, , 5, , s+b... 5, , t+5, , 6, , u)

III. YANG - MILLS THEORY

We choose to describe vector-meson interactions
by the Yang-Mills Lagrangian

Q = ——(B„p —8 p„—gp„x p ) + ™~p&~ p„. (14)

It is not strictly necessary to do this in order to
incorporate an SU(2) &&SU(2) symmetry into the phe-
nomenological theory, but the Yang-Mills Lagran-
gian brings an additional gauge symmetry, broken
only by its mass term, and ensures a vector-dom-
inated current satisfying the commutation relations
of field algebra. " It probably also gives the best
chance of success for our Reggeization scheme be-
cause Abers, Keller, and Teplitz' have shown that
the nucleon Reggeizes when coupled to the p meson
with a Yang-Mills Lagrangian.

Although Toiler's methods can be applied to or-
dinary scattering amplitudes, we revert to the
tried and true method of parity-conserving helicity
amplitudes and seek to identify the factored resi-
dues of a p-meson trajectory in the J=1 singularity
of the I=1 s-channel partial-wave amplitudes.

For each isospin value (I=O, 1, 2) there are 13
independent helicity amplitudes T„,~, ~ ~,(s, t ).
After partial-wave projection one finds ten inde-
pendent normal-parity P = (-) combinations, and
three independent abnormal-parity P =(-) " com-
binations. The ten amplitudes together form a
4&&4 symmetric matrix, and it is here for I=1 and
J=1 that the p meson resides.

The tree-approximation amplitude for p-p scat-
tering, containing both pole- and contact-type
Feynman diagrams, can be readily calculated from
the Lagrangian given by Eq. (14). The notation
for momenta, isospin indices, and polarization
vectors is specified in Fig. (2). The amplitude is

T =t,-'(5., 5„—b„b„)f[(P,+p, ) -nP] '[(2p, +p, ) e(1)c„(2)—(2p, +p, ) e(2)e„(1)+(p,-p, )„s(1)~ e(2)]

xÃ"'t(2P, +P.) s*(3)~.*(4)—(2P, +P,) e'(3)e.*(4)+(P.—P,).~*(3) e*(4)]

+e(1}~ e*(4)e(2) ~ e*(3)-e(l) ~ c*(3)c(2)~ c*(4)j

+ [P2, b, e(2)——p~, c, e "(3)]+ ip2, b, e (2)—-p4, d, e *(4)]. (15}

The 13 independent helicity amplitudes are written in detail in Appendix A, using faithfully the conven-
tions of GGLMZ' and Jacob and Wick. ' Calculation shows that the leading asymptotic terms are linear in z,
indicating that ancestors (J ~ 2 Regge poles) are absent. Further, the leading linear terms are pure I= 1
and contribute only to J-plane singularities at J=1 of the normal-parity partial-wave amplitudes.
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Therefore, all the asymptotic action is in the p-meson Regge-pole segment, and to study it in detail we
write the most singular parts of the normal-parity 1=1 partial-wave amplitudes, at J=1, calculated from
the leading asymptotic terms in z by partial-wave projection with appropriate orthogonal functions. The
variables are E = 2'v s-, k' = -,'(s —4m ) .

T1 1 ~ 1 1=kg [k (S m )] m (4E 19&)6g

T, , 0, = 7/g'[k (s -m )] '2Em(4E2-19m2)62, ,

T, 1 2 &&

= sg [k'(s -m )] '(4E —7E'm' —12m )6

T21; 21 = kg [k (s m )] E (4E 192rP)6&

, 4E
T. . .,.= 2g2[k2(s —~)]-'—(4E' —7E'm' —12m') 6»,

2

To,o;. .= ~ [k'(s -m')] '(4E' —3E'm' —8E'm' —8m')6, „
5 2 2

» 1-1= 2( )

(16)

10g' Em
1, -1;o,1 ~6 k2 (J'-1)

2 '1
2 2= ~ 2 (E +4m )(rj 1)

T. . . 1=g 2 (8E2- 3m2)(J —1)
21

o —1
J, 1 (17)

These ten amplitudes are the elements of a 4x 4
symmetric matrix in the helicity channels 11, 01,
00, and -11 of which the first three are "sense"
and the last is "nonsense. "

In the Reggeization program one looks for the
factorization properties of the amplitude in Eq. (16)
among the helicity channels, interpreting the Kro-
necker 5» as

for sense-nonsense amplitudes, and

, (r", ', )'(c/ —. 1)(o'+ 2)
Tl, -ll 1,-1 tj —lX

, (r'1. ,) O~)J—a (18c)

for the nonsense-nonsense amplitude. In the tree
approximation a = 1+O(g') .

The residue factors are

which is the approximate form for a Hegge pole
near u =1.

The partial-wave amplitudes of Eq. (16) can be
expressed as the sum of factored couplings of two
Regge trajectories, one sense-choosing and one
nonsense-choosing. We use the conventions of
GGLMZ to present the results, writing

(s) (s)

T = 2
YX3, X.4 Y),1, X2

X3, X4, X1, X2

(n) (n)

2 ~~3 ~ ~4~~1 ~2{+—1}{n+ 2}+g +O(g')

(18a)
for sense-sense amplitudes of the helicity channels
11, 01, or 00,

(J 1) 2 (J+ 2) Ty

(s) 3~4 1/2~l 1

(/2 1)1/2 k2(s —m )
1/2

(n) m
18k2

y(s) 2E 3 4 1/2

(/2 —1)' m k (s —re)

(n) yyg

18k'

~(s) 4 1
- 1/20.0(1)1/23k,(2)(E+ 2m)

2E2 ~2 1/2
(n)

re 18k'

2 $ —m(~ 1)1/2 r(2)
3 k2

(19)

(s) (s)
X%3,X47 1, -1

2

J —n

(n) (n)
YX.3, X.4~ 1, -1

+g +O(g )J —e
(18b)

The leading asymptotic behavior of the p-p scat-
tering amplitude is not dominated by a single Regge
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p»c) ~&

P4) d)

FIG. 2. The p-p scattering amplitude with momenta p;,
polarization vectors ~;, and isospin components speci-
fied.

trajectory of the p particle. There is a second
trajectory with the same quantum numbers present.
The desired Reggeization of the p particle does not
occur, although it fails by a slim margin.

It is traditional in studies of the Reggeization
phenomenon to compare the results of explicit cal-
culation with the prediction of the Mandelstam
counting argument. ' In this argument one counts
the number of Castillejo-Dalitz-Dyson- (CDD) pole
and subtraction parameters in the sense-sense am-
plitudes, and the number of threshold (s =4m') and

nontrivial conspiracy (s =0) conditions. If the num-
ber of conditions exceeds the number of param-
eters, then the Froissart-Gribov partial-wave am-
plitude analytically continued from the higher
value of J coincides with the J=1 amplitude calcu-
lated from the Lagrangian, if both amplitudes are
unitary.

In the case of p-p scattering with three sense and
one nonsense channels at J=1, there are four CDD-
pole parameters and four subtraction constants. In
an L-S basis one can count ten threshold conditions.
There are two conspiracy conditions. Therefore,
the theory should Reggeize if the amplitudes are
unitary.

Of course tree-approximation amplitudes are not
unitary, and the Mandelstam counting argument

does not strictly apply. However, evidence has
accumulated' indicating that failure of the Regge-
ization of spinor-vector amplitudes in the tree
approximation is connected with violation at large
energy of the unitarity bound on partial waves.
Previous work has also suggested that when the
violation of the unitarity bound is confined to a few
partial waves, there are fewer trajectories than
the number of helicity channels available.

The Yang-Mills model also has this feature. In
Eg. (16) one can see that T. .., , E' -and T. .., , -E
for J= 1 in violation of the unitarity bound. It can
also be shown that higher partial waves are bound-
ed for large E. The occurrence of two trajectories
in this model in association with a mild violation of
the unitarity bound agrees with previous work.

IV. CONCLUSIONS

The Reggeization program, which is the theme
and leitmotiv of this paper, never fully succeeds
in any of the amplitudes calculated here. Neverthe-
less, the leading high-energy behavior of the tree
approximation in chiral- and gauge-invariant La-
grangians seems to be very simply described in
the language of Regge poles, since exchanges of
very well-defined quantum numbers, those of p
and A, mesons, are dominant. This regularity
would not be expected merely on the basis of mo-
mentum power-counting arguments in the inter-
action Lagrangian.
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APPENDIX A

After applying constraints due to parity and time-reversal invariance, and the scattering of identical
particles, one finds that there are 13 independent helicity amplitudes for p-p scattering. The amplitudes
listed below are calculated from Eq. (15) of the text. We choose s as the direct channel so that s =4E',
t =2k'(z —1), and u=-2k'(z+I) with k'=E' —nP and z the cosine of the scattering angle. We also use the
notation y = (1 —z')"'

Each amplitude is expressed as

~ =( sc M
— . d0ch' 'xT~; ~ ~ +(~.n&cu —&au~oc)g'T' x~; ~ x +(&ac&w —&.~&.a)g'T~, x . ~, , ~-

The subamplitudes are listed below with subscripts omitted for simplicity.
1 1'1 1'

4k~z
z

T'=, (8 ' ky'2( +zI)'+[2 ' Ek(+I+z)] j+—(1 —z) —1,
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T"= ) (8k)y + —,'(1 —z)'[2E'+k'(1 —z)]}——(1+z)'+1;
u —m' 4

4k zT = — 2+2~s —m2

T'=, —(1 —z)'[2E'+k'(1+z)]+ —(1+z)' —1,t-m2 2 4

T"=,
2

(1+z)'[2E'+ k'(1 —z)] —-(1 —z)'+ 1;

O, IiO, I '

1 8k2E2 1T'=, ) (1+z)——(1+z),

1+& k4 2E4 k2E2 E2T'=, —,(3 —z) —,z+, (Bz —8) —— y'
t —m' m2 m' m' 2 m'

u 1 k 2 2E kE 1 1T"=, —2—,y' —,y'+, (1+z)(1—5z) + ——,(O' —E'z)(1+z).
M —m' m' m' m2 2 nl2

0, 1;0)-I '

-1 Sk'E' ETs
S m2 m2 (1 —z) +—(1 —z) ——(1 —z)m2 2

2E4 k4 k2E2 1 E2T'=, —,z ——,(1+z)+, z(5-z) + —,y',t- m' m' m' m2 2 m2

w —m 2
y' —,[2(E'+k)) + O'E'(z —7)] + ——,(O' —E'z)(1 —z);

1 4 1 1 2
m' 2 nl

TI, I;0, 1 '

-1 Sk E 1 E
s —m' W2m v2 m

-1 1 4k E E 1 ET' =, y (1 —3z) +—(1+z)[2E'+ k'(1+ z)] — ——y(1 —z),t —m' ~2 m m 2v'2 77'

-1 1 4k'E E 1T" = )~ y + (1 + 3z) +—(1 —z)[2E + k (1 —z)] — —y(1 + z)u —m 2 m m 2&2 m

1,1;0,-1

1 8kE 1E
s —m' vYm-' ~2 m

1 y' 4k'E E, , 1 ET = ) ~ (1 —z) ——(1 —z)[2E +k (1+z)] — —y(1+z),

T"=,~ (1+z) ——(1+z)[2E'+O)(1 —z)] — ~—y(1 —z);
1 y 4k'E E 1 E

I, I;0,0 '

-1 4k'T' = . , z(2E'+ m'),s —m m'

T = ) —)y (E +k )+ ) (1 —z)(z —8z —1) +—)(E)+k)) ———y)
2 nl

T =, ——,y (E +k )+, (1+z)(1 8z z') —(E)+O') +
u 1, , 1E'

u —m' m' m' m 2m-
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0 100'

1 4W2k2E k2E
2 y(2E'+ m')- u 2

T'=, v 2 yE[2E'z+k'E'(4 —9z+z'}+k (5z —3)]——
2 y(k'+E'z),

T"=,W2yE[ 2E'z-+k'E'(4+9z + z') —k'(5z + 3)] — —y(k—' —E'z);
24 —m vYm

TO, O;0,0 '

-1 4k2 4k2E2
z(2E'+ m')'+ z

S m2 m4 m4

O'E k2E2T'=, 8 (1 —z}(3+z)(k2 —E2z) —8 ~ (1 —z)'[2k' +E'(1 + z)] —2 —(k2 —E2z)2[2E +k (1 +z)]t- m' m4 m' m'

$2E2 E4
—2 (1 —z) — y'

m4

k2E2 k2E2T"=, 8, (1 ~ *)(8— )(k' ~ E'*) —8, (I *)'Ikk'+E'tl — )) —2—,(8'+E'*)'(2E'+k'(1 — )))u —m m m' m'

k2E2 E+2, (1+z)+,y';m' m'

1,-1;0,1 '

Ts 0

T =, (1-z)—[k'(3-z) —2E']+ —y(1 —z),
1 y E 1 E

&-m' 2 m 2' m

z) —[2E' —k'(3+. )] — —y(1 —z);
g 1 1 E

Q —m2 m 2&2 m

TI, - I;0,0

T' =0,
2 1 E2T(=,—,[k'E'(5 —z) —2(E'+ k')] + ——y'm2 m2 2 ~

'

)2 g2T"=,—[-k'E'(5+ z) + 2(E'+k')] ———y';
M —m m2 2 m'

T' =0
7

—y2[k2(3 —z) —2E 1+t-m'2

T =,—y [2E —k (3+z}]——
y

1 1 2 2 2 1 2

ll —m 2 4

T' =0,

—(1 +z)'[2E' +k'(1 + z )] +—(1 + z )',1 1 1
m2 2 4

1 1, , 1T"=,—(1+z)'[2E'+k'(1 —z)] ——(1+z)'
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APPENDIX B

The most general amplitude for the scattering of
three particles of isospin 1 and z components a„
a„and a, into three particles of isospin 1 and ~

components a4, a„and aB is (5, , = 5»}

M456l123 ~ 1 65 43 21 2 64 53 12 3 63 54 21

t, +t, =t,
t+t, = T.

Squaring the two preceding equations gives

f(f+1)=4+2t, .t„
T(T+1)=t(t+1)+2+2t t3.

We find

T=0: t, t =-1, t. t3=-2;

T=l: t, t =-2, t t=0,

=+1t 3

T=2: t, t2=-1, t t, =+1,

=+1t

T=3: t t2=+1,1
t. t3 =+2.

We can use this to construct projection operators
for the various states. Since a definite value of T

4 65 42 31 5 64 52 31 6 62 54 31

~ 7 65 41 32 8 64 51 23 9 61 54 23

A 10 63 52 41 11 62 53 41 12 63 51 42

+ 13 62 51 43 14 61 53 42 15 61 52 43 t

where A, t A15 are isoscalars. We wish to find
the combinations of Al A15 which correspond to
states of total isospin 0, 1, 2, 3.

We find the total isospin T by adding together two
of the isospin vectors to give an isospin vector t
and then adding the third isospin vector to t to get
T. For example,

corresponds to a definite value of t, t, + t t, , we
can form a projection operator out of t, t, +t, ~ t,
+t, t, to project out states of total isospin. Then
to project out the states within a given T value we
can form projection operators out of t, t, to operate
on the initial particles and t4 t, to operate on the
indices corresponding to the final particles.

Defining (456~ 123) = 5„5„5„andusing for example

(456
~ t, t, ~

123) = -5636)4,8)52,

we can write all projection operators in terms of
Kronecker 5's.

After projecting completely, the amplitude

M„,.», in Eq. (1) is written as the sum of a T = 0
amplitude, a T =3 amplitude, four T =2 amplitudes,
and nine T =1 amplitudes, each multiplied by the
corresponding isospin projection operator

M456;123 ™0(0)456;123 3( 3}4561123

+ M2 P 2 456 ~ 123
i,f=l

(')(f)+ 1 ( 1 }456l123 '
& J=O

For T = 2 the index means t, and t, are added to-
gether to give t =1 while i=2 implies t4 and t, are
added to give t =2. The index j refers to the same
thing for t, and t24 For T =1 the index i = 0, 1, or
2 (j=0, 1, or 2) identifies the states with t=0, 1,
or 2 for the final (initial} particles.

The projection operators are normalized by

PO PO t

P, =P3,
2

()()P()(f)P()(f)jj
2 2 2

n= 1

2
P(')(")P(")(f)= P('){'f) t =0 1 21 1 1 t t2

n=O

normalized projection operators are

I( 0 }456;123 Y ( 63 52 41 62 51 43 61553 42 63 51 42 62 58 41 61 52 48) &

( 8}456;»3 = 3'0( 63 52 41 + » 51 43 + 61 53 42 + 63 51 42 + 62 53 41 + 61 52 43 63 64 »

—2562,4 13 2 „54 2,),
(P2 )456 123 & (458,5»54, +458355, 542 —45685545, 2

—25625»5„—256,5»54, —256, 558542 —25„5»548

65 43 12 64 53 12 52554513 561554523 565 41 32 65 42 31 564 51032 64 52 31) 1

(P2 )458 123 =tr v 3 (25„5»54, +25»5»5„—2581558542 —256, 562548 + 5645525»

85 42 31 64551532 65541 32 561554 32 62 54581}1
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(l 2 )4ss; 123
= A &3 (2581553542 + 2583583541 —2562551543 —2581552543 + 584551532

84552531 585542531 85541532 2585543521 584553521)&

2 )458l123 A ( 83 52 41 83 51 42 2562553541 561 52543 562551543

61 53 42 3 84 51 32 65542 31 64552 31 3 65541532)

(o)(o) =2
I )456 i 123 lj 583554 21 &

(o)(1) 1
I )456 l 123 6 (561554532 62 54 31) t

1P ); —36~~(35 5 5 +35 5 5 —25 5 5 )

(1){o) 1
I )456i123 gg (565 43521 64 53 21) 1

I )4561123 T(585541532 + 564552531 565542 31 64 51 32) &

(1)(1) 1

(1)(2) 1
( I )456;123 l2$ l5 ( 65 43 21 6455321+ 564552531 3584551532 3565542531 3 65 41 32) t

1
+

I )456'123 2 5 ( 61 54523 2 62 54531 65 42 31 564552 31 65 41532 3 64551 32) 9

(2)(1)

{2}(2) 1( I )456 123 IR( 565543521 64 53 21 62554531 61 54 32 63554521

65 42 31 64 52 31 9 65 41 32 84 51 32) '

The isospin amplitudes are

Mo A1o A11 A12+A13+A14 A15

3 =A,o+A»+A, 2+A, 3+A,4+A, 5,
(1)(1)

M2 2A1P A11+2A12 A]3 A14 A]5 P

M{2){1)
2

M(2) {2)
2

M(o)(o)
1

M(o)(1)
1

M{o)(2}
1

M{1}(o}
1

M(1)(1)
1

M(1){2)
1

M(2) (o)
1

M(2)(1)
I

= Il 3 (A „-A„+A,4 -A „),
= 2A 1o +A» —2A, 2 -A13 -A,4+A, 5,

=2(3A, +3A, +9A, +A, +A, +3A, +A, +As+3A, +SA„+A„+SA„+A„+A„+A„),
=MS (-A, -A, —3A, +A, +A, +SAB-A„ -A„+A„+A„),
=2v5 (A4+AB+3A, +AI+As+SAB+A. „+A„+A,4+A„),
= u 3 (SA, —SA, +A, -A, +A I -As -A „+A„-A„+A„),

4(-2A, +2A, +2A, —2A, +2A,6+A„—2A „-A„-A,4+A „),
2II'l5 (-2A, +2A, —2A, +2A, -A„+A„-A„+A„),
2v 5 (3A, + SA2 +A 4+A, +A, +A, +A „+A„+A, 4+A „),
2II'l5 (2A4+2A, —2A, —2A, -A„-A,B+A,4+A„),

M{2)(2)
1 2 (A 4 +A, +A, +A 6) + —,

' (6A, B +A. „+6A „+A„+A,4 +A „).
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A discussion is given of the conjecture that classical space-time properties prescribe a
unique $ matrix which approximates strong-interaction phenomena.

I. INTRODUCTION

An esthetically compelling speculation is that
the laws of nature might be determined uniquely
by requirements of self-consistency or, phrased
more picturesquely, by a "bootstrap. " This paper
puts foward and analyzes a "partial bootstrap"
conjecture that has for some time been the sub-
ject of informal discussion, but that heretofore
has not found its way into research publication.
The conjecture is the following: Qzcanturn super-
position, zvhen expressed through a nontrivial S
matrix, can achieve compatibility zvith the real
(classical) zoorld zn only one possible ufap —close
to the zciay exhibited by natzcre for hadrons.
Recent progress by Stapp and collaborators' ' in
clarifying the relation between the S matrix and
classical space-time suggests that the moment
may be ripe for systematic analysis of this unique-
ness conjecture.

From the standpoint of hard science, the com-
plete bootstrap idea is inadmissible because sci-
ence requires the a pro~i acceptance of certain
language-defining cone epts, so that "questions"
can be formulated and experiments performed to
give "answers. " The role of theory is to provide
a set of rules for predicting the results of experi-
ment, but rules necessarily are formulated in a

language of accepted ideas. Among currently un-
questioned notions prerequisite to the conduct of
science are:

(l) Three-dimensional space and a unidirec-
tional time, with an associated cause-effect event
structure; the existence of suitable measuring
rods and clocks is corollary.

(2) The arrangement of macroscopic matter
into blobs of sufficiently well-defined shape and
permanency that the isolated system or "object"
concept becomes meaningful.

(3) The existence of weak long-range inter-
actions like electromagnetism and gravity that
allow "measurements" to be made upon "objects"
without the objects losing identity; the observer's
integrity must also be preserved.

The foregoing detailed prerequisites may de-
ceptively be summarized by the single term,
"measurement, " but the concept of measurement,
on which hard science is based, is admissible
only because of certain special attributes of na-
ture, attributes that a complete bootstrap theory
would have to explain as necessary components
of self-consistency. It is in this sense that the
idea of a complete bootstrap, while not obviously
foolish, is intrinsically unscientific.

Although natural philosophy eventually will no
doubt identify a framework more general than


