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It is shown that dual-resonance amplitudes can be expressed in terms of rudimental
amplitudes defined by functional integrals which correspond to transition amplitudes of
quantum-mechanical systems of strings with imaginary time. The equivalence between the
path-integral and operator formulation of quantum mechanics is used to establish the con-
nection between this approach and the usual operator approach. The factorization of rudi-
mental amplitudes is studied to obtain the Feynman-like rules for dual-resonance ampli-
tudes. This allows us to express N-Reggeon vertices in terms of rudimental amplitudes,
and to determine the propagator, which is shown to be the usual spurious-free twisted
propagator. N-loop orientable diagrams are calculated. In general, the functional integrals
considered can be calculated by solving appropriate Neumann's boundary-value problems of
corresponding bounded Riemann surfaces. This provides a generalization of the analog
model to the case of external Reggeons which are described by extended momentum dis-
tributions on the boundaries.

INTRODUCTION

The dual-resonance theory' has been advanced
considerably through the factorization' of the mul-
tiparticle Veneziano amplitudes, and the establish-
ment of the operator formulation. ' There are still
some important formal problems left, such as
unitarity of the 5 matrix and its renormalization. '
In the operator formulation the resonance struc-
ture and factorization of the dual-resonance am-
plitudes are evident, but a complicated manipula-
tion is required to prove the duality properties of
the amplitudes. ' Recently, an interesting devel-
opment has been obtained by Alessandrini' and
Lovelace. ' Starting from the operator formalism,
they showed that the dual-resonance amplitudes
can be written in terms of automorphic functions,
thus demonstrating Nielsen's conjecture. ' How-
ever, their proof is somewhat lengthy, because
in the operator formalism automorphic functions
do not come in naturally.

Some time ago, the functional formulation of the
theory was presented' and shown to be equivalent
to the operator formulation. In the functional form-
ulation the crossing symmetry and duality of scat-
tering amplitudes are evident, although the reso-
nance structure is not. So, to some extent, these
two formulations are complementary. It is im-
portant to know whether one can simplify the com-
plicated machinery of one formulation by using
the other formulation instead. As an example,

the automorphic functions come in naturally in
the functional formulation, as was shown in Ref. 9
for particular cases.

In a recent note, "it has been shown that the
dual-resonance amplitudes in the functional form-
ulation can be regarded as the higher-order limit
of ordinary semiplanar diagrams with some ap-
proximations. The surfaces of semiplanar dia-
grams correspond to the Riemann surfaces on
which the functional integration variables 4 „(x,y)
are defined. Since the factorization of a Feynman
diagram is made simply by cutting internal lines
appropriately, the factorization of a dual-reso-
nance amplitude in the functional formulation may
be done by slicing the corresponding Riemann
sheet. Qnce the factorization properties are es-
tablished, the basic elements such as Reggeon
propagators and Reggeon vertices are obtained,
and one can generate higher-order multiloop am-
plitudes. In this paper we discuss those problems.
We shall show that our method of factorization is
automatically spurious-free, contrary to the usual
operator method, since we obtain directly the
spurious-f ree twisted propagator. "

We first notice that in order to factorize a semi-
planar Feynman diagram one must cut an infinite
number of internal lines in the higher-order limit.
Since the state of a number n- ~ of internal scal-
ar lines is specified by a momentum function p„{g)
(0 (g (w) in the sense that p„(jr/n) is the momen-
tum of the jth line, the sum over the intermediate

2291



2292 J. - L. GERVAIS AND B. SAKITA

N

N-t

FIG. 1. D for the Koba-Nielsen N-particle
Veneziano amplitude.

states is expressed by a functional integration
over p„(f). Therefore, the factorization of a dual
amplitude can be expressed as a functional aver-
age over two functionals of p„($).

Next let us remark that the functional integral
for a dual amplitude given in Ref. 9 is invariant
under conformal transformations. A unit-disk
domain has been used to obtain the Koba-Nielsen''-
N-particle amplitude (Fig. 1), while the shape of
the domain relevant to the operator formalism
is a strip" shown in Fig. 2. The factorization
in the operator formulation is made by inserting
the completeness relation Q ~~ X)(X

~

= 1 between
operators. This corresponds (see Ref. 9) to the
broken line of Fig. 2 which maps to an orthogonal
arc of a circle drawn on Fig. 1. Therefore, the
factorization of multiparticle amplitudes is sym-
metrically made by slicing the unit disk by vari-
ous arcs which orthogonally intersect the unit
circle.

As has been shown in Ref. 9, the functional
integrals of dual-resonance amplitudes can be
evaluated using the method of Neumann's bound-
ary-value problem to express the integral in
terms of energy integrals" which we call rudi-
mental amplitudes. They are functionals of mom-
entum-distribution functions p„(g) on the boundary.
The factorization of a dual-resonance amplitude
should therefore be expressed as a functional in-
tegral of a product of two rudimental amplitudes
of two connected regions over the momentum dis-
tribution at the common boundary of those regions.

In the path-integral formulation of quantum
mechics, one relates functional integrals to ma-
tric elements of the corresponding operators. Us-
ing the same method, we establish the relation
between functional and operator methods. Since,
as shown in Ref. 9, the corresponding time is pure
imaginary, some different features appear, as
compared with the case of the usual quantum mech-
anics.

In Sec. II we define rudimental amplitudes, and
discuss their properties. In particular, we es-

FIG. 2. D for the N-particle Veneziano amplitude in
the operator formulation.

tablish the slicing rule. Moreover, we establish
the connection with the operator method, and this
allows us to generalize the slicing rule to the case
of overlapping domains.

In Sec. III we write the multiparticle Veneziano
amplitudes in terms of rudimental amplitudes.
We also introduce the N-Reggeon amplitudes and
discuss their properties.

In Sec. IV the expressions for the Reggeon prop-
agator and for the 3-Reggeon vertex are given.
We then show that by the Feynman rules for dual-
resonance amplitudes we can obtain the multiparti-
cle Veneziano and the N-Reggeon amplitudes in-
troduced in Sec. III.

Finally in Sec. V, we construct the planar-loop
diagrams, and this leads very simply to the in-
troduction of automorphic functions associated
with the corresponding surfaces with handles.

II. RUDIMENTAL AMPLITUDES

It has been shown in Ref. 9 that the N-particle
Veneziano amplitude can be expressed as a func-
tional average of

over 4 „(x,y) on a unit disk, where Zj = zj+iy,. is
a point on the boundary of the disk. In this section,
we generalize the expression to the case of an
arbitrary boundary with arbitrary momentum dis-
tributions on it, and investigate its properties.
In Sec. IIA we define them in terms of functional
integrations, and in Sec. IIB we relate them to
matrix elements of operators.

A. Functional Method

Let us first consider a bounded simply connected
domain D. We assume that its boundary contains
m line segments y,. (i= 1, ..., m), which are de-
fined by the following set of conformal transfor-
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mations g,. (i=1, ..., m):

g;:~p-X;
where Zp represents the upper half of the unit
circle,

Z, =(ZCZ, : Z=~, [g]=e" 0(g&x).

(2.1)

(2.2)

1
C (x, y) = 4 '(x, y) —i~ Q2w gp

d ~ p,. (g)N(z, g,.~[t']) .

where ni is the normal to the boundary.
As has been shown in Ref. 9, the functional

average can be evaluated by the following change
of variables:

Let us next define the rudimental amplitude in

D, with momentum distributions i),. (i = 1, ... , m),
by the following functional average:

(2.11}

Since 20~ dxdy Z(42) is a Dirichlet integral, i.e. ,

Pl P2 Pm
4

-2 dxdyC 4)= D 4„,4 „}, (2.12)

exp i~2K d$ p, $}-@(ggp $ )
D

(2.3)

where ( ~ .
)D is a functional average defined by

with

and since

ff d (BB By Bd By)

1
(d(d)), = — BBB'd(*,y)d(d) 2 d*dyd(d)).

np D

(2 4)

In order to avoid confusion we adopt the conven-
tion that for any conformal transformation, say
h, such that Z- Z', we write Z'=h[Z]; on the
other hand, h(x} denotes a. conformal transforma-
tion which depends upon a parameter x.

In Eq. (2.4) one has

, =((2 )'2'(0)) 'f. . .f BBBBd(,y)BBB dydyd),
D

(2.5}

(2.6)

Throughout this paper we use the Euclidian metric
assuming that the Wick rotation can be performed
at the end of the calculations.

Next, let us consider a curve Z which is ob-
tained from Pp by a conformal transformation A:

D(C „(Z),N(Z, g})= -2mc„(g), (2.13)

we obtain the following expression for the rudi-
mental amplitude Eq. (2.3):

ydy 7l

«2 (2))
gX g2 ' ' '

gm Z a p

p,.
p dp1J .d(d, ((),2,.(('I)).

(2.14)

p& p2 ''p' p2 'p p&

gy g2 gm ~ g2 '''gmgz (2.&5)

The rudimental amplitudes defined in Eq. (2.3)
and Eq. (2.4) have the following important proper-
ties, which can easily be verified from their def-
inition:

(1) Cyclic symmetry,

(zcz; z=o[t]-=A~, [t]j. (2.7) (2) Conformal invariance,

N(Z, Z') = In iZ —Z'~ + N'(Z, Z'), (2.8)

We analogously define a general amplitude with
momentum distributions on p by replacing pp and
Z, by v and Z, respectively, in Eq. (2.3).

Let us next define the Neumann's function" of
D as the function which satisfies the following
conditions:

(2.16)

pl P2 P Pl P2

g, g2 ~ ~ g Ag, A '
Ag2A

~ ~ 0 P m

-Z

pl p2 pm pl p2 pm

„ggl gg2 ggm y gl g2 gm

where g is any conformal transformation.
(3) Reference curve-invariance,

Vx N'(Z, Z') = 0,
and for Z on the boundary

BN(z, Z')
= const,

Bnz

(2.9)

(2.10)

(2.l7)

As discussed in Sec. I, a rudimental amplitude
can be sliced into two rudimental amplitudes.
Next we establish a theorem relevant to this prob-
lem.
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Slicing mule. Let us consider two simply con-
nected domains Dy and D, which are connected by

a common boundary y (see Fig. 3). Let g be a
conformal transformation such that g: Z -y and

p(() be a momentum distribution on E. A rudi-
mental amplitude of D (D= D,UD, ) is expressed
as an average of a product of rudimental ampli-
tudes of D, and D, over p(():

~m ~m+& ~n + . . . g(4) ~)
Pl Pm ~ ~ ~m+1 Pn

0 (2.18)

The proof we give here is a heuristic one which also shows the relation of two functional measures
&" p($) and &"~4($). Let II, 5"~(C (go[)])) be a 5 functional such that

~ . ~"'e g~ ~ ) n"'(e gv ~ )}=1.~ ~ ~

E

Let us define the measure &' ~p($) such that

n~"'i~i~ [an= " "'~i~I-. ~~ '«~i(I'I"iaI).
E' 0

One obtains

(2.19)

i ' ~ ~ &" 4'(gg ()) ~ ~ ~ & p $)exp v2mi d$ p $)4 go ]))-p g)4' go ( ) =1.
&0

(2.20)

Inserting this expression into the integral (2.3), and factorizing it into two parts belonging to D, and D„
respectively, by identifying x)~'~4'(ga[$]) as a part of the D, functional integration and noting that no is in-
dependent of D, provided it is simply connected, we obtain Eq. (2.18).

From now on we shall use the following convention:

n " ~&'&P ~) = dP (2.21)

In order to use the rule for sewing two rudimental amplitudes, one must use the conformal-invariance
property (2.16) in general, so that the two sewn domains have a common segment of boundaries.

B. Operator Expression

[a„(n),a,'(m)] = 5„,5„ (2.22)

p, v= 1, 2, 3, 4, and m, n = 1, 2, 3, ...

In the operator formalism of dual-resonance
amplitudes one considers a Hilbert space gener-
ated by an infinite number of creation and annihil-
ation operators, and a pair of coordinate and mo-
mentum operators. The commutation relations
are given by

,((I=
q &u, E —. ~& sI &If „( I — ', ( I]I,
1 1

n=&

(2.25)

where the parameter ( is restricted to 0 & $ &z.
This field can be associated with a free string" "
of length m. By taking the time to be pure imagin-
ary, the system is described by Lagrangian Eq.
(2.6).

Let us consider a Heisenberg field operator de-

and

[x„,p.] = i5„„, (2.23)

respectively. As in Ref. 9, we introduce the fol-
lowing field operator @„(()and its canonical con-
jugate momentum v„(t) in this space:

1/2
4 (() =~2 x„+P — cos(n$)[a„(n)+a„(n}]

n=l

(2.24) FIG. 3. Slicing of D, +D&-y into D& and D&.
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fined by

4 (t', v) = e ""C(t)e'", (2.26)

I et L(„& be the generator of the infinitesimal trans-
formation Z- Z' such that

where 0 is the usual Hamiltonian given by
Z'" = Z" +pgq,

where n is an integer. Then we get

(2.32)

H = p'+Q nat(n)a(n) .
n=l

(2.27) e4
dt' —,

' cos(n$) II'+ ——i sin(n))II—(n) 8(
This Hamiltonian can be derived from Lagrangian
(2.6) with the usual canonical formalism.

We may regard field (2.26) as a function of a
complex variable Z= e px( v+i$) and of its complex
conjugate Z. The explicit form of 4(Z, Z) is giv-
en by

z, (z, z) (.=, p,).(zzg1

+g ~ [(Z"+ Z")a„(n)1

„,v2n ,(z-, z- ).;(.))1
(2.28)

For a given Mobius transformation g on the
complex Z plane, we consider the corresponding
operator O(g) acting in the Hilbert space of states
such that"

(2.33)

Using Eq. (2.24) and Eq. (2.25), we can verify that

:L(0) '. =8 (2.34)

and L(y) L( g) and: L«&. are the usual genera-
tors'8 of SL(2, ft). Furthermore, L(„&, for all n,
consists of the generators of Virasoro's transfor-
mations. "

One can construct O(g) by exponentiating these
generators. We ma. y regard O(g), gCG, as a rep-
resentation (nonunitary) of G, where G is the
group of Mobius transformations [G- SL(2, C)].

Since the operators 4(t') (0(((II) commute
among themselves, they can be diagonalized sim-
ultaneously to lead to the following representation:

O(g)C „(Z,Z)O(g) '=4 „(g[Z],g[Z]) (2.29) @(&)14)z,= V(4) le)r, (2.35)

We can construct the corresponding generators
from the Lagrangian by using Noether's theorem
and the canonical quantization. Let us consider
an infinitesimal transformation 5g such that

6g [Z] = Z+ 6Z =- x, + ix, + 6x, + i 5x, .
Then using Noether's theorem we obtain the cor-
responding generator

(2.30)

4(Z, Z)lg) =y(t)ly), If Z=o(t)

Obviously,

(2.36)

where y($) is a real function of $. Since C($) can
be considered a.s the operator C(Z, Z) on the upper
half of the unit circle Zo, we write Z, to the side
of the ket. We then consider a state such that
4(Z, Z) on Z is diagonal, where E is given by Eq.
(2.7):

where

ac eZ —5 .Z.
ex; s(sc/sx )

(2.31)

In the Appendix we show that a matrix element
of O(g) [gESL(2, R)] is expressed in terms of a
functional integration:

(2.37)(z(lolz) lq, '),.= (ll ~(z(() -z(z-'„((I)&II ~(q, '(() -z(„((l)&).

The domain D in the functional integration is shown on Fig. 4. We restrict ourselves, for the moment, to
the case where g is such that our definition of rudimental amplitude makes sense, namely, we assume
that Zo and gZO do not cross. The general case will be considered later on.

By taking the functional Fourier transform of Eq. (2.37), we obtain the following rudimental amplitude:
fr 7r

&cp&y'exp i 2n d(d$' p $)y $)+p' $)y' $') y 0 g) y' z
=

Let us next introduce

lzz& ff ~z zz(, &&. fz(=z((lz(()]o.(z)lz) (2.38)
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FIG. 4. D for the functional integral (2.37).

z&P, g'g
II

= z&P g II o(g') '

,(P, &ll f&wexg( =-~&f day(a& qfzl), ( II,

(2.39)

(2.40)

,«II =, &q Io(A)-'.

With this definition one gets

(2.41)

where the 5 functional is normalized in such a way
that

We would like to express the rudimental amplitude
(2.37) as a transition probability amplitude be-
tween two states in such a way as to satisfy the
three properties (2.15), (2.16), and (2.17). First,
notice that (2.37) cannot be written as &P, 1IP', g)z
since this would contradict the conformal-invari-
ance property (2.16). The reason for this is that the
representation O(g) is not unitary in the ordinary
metric of the Fock spaces.

Therefore, we introduce bra vectors z(P, gll and

z&yll which satisfy

duced by the symbol ( II ) is such that ( II is linear
rather than antilinear as it is in quantum mech-
anics. " This unusual convention is necessary
because Eq. (2.44) is just the cyclic symmetry
(2.15) of the rudimental amplitude.

Properties (2.45) and (2.46) correspond to the
conformal invariance (2.16), and to the reference-
curve invariance (2.17) of rudimental amplitudes,
respectively.

As we already emphasized, (2.37) defines the
matrix element of O(g) only when the rudimental
amplitude exists. Moreover, we have defined the
sewing of two rudimental amplitudes only in as
much as they do not overlap. On the other hand,
the operator O(g) is defined more generally by
Eq. (2.29), and it follows from Eq. (2.42) that

dpq, 1 0 ) p, 1 -p, 1 Og) q, 1

= &q, 1 II O(g, g2) I q„ 1)z

even if the corresponding sewing of rudimental
amplitudes cannot be done, or if those operators
cannot be defined by rudimental amplitudes. For-
mulas (2.29) and (2.42) allow us therefore to gen-
eralize the results of Sec. IIA.

In particular, let us apply Eq. (2.42) to the case
of two rudimental amplitudes with domains Qy and

D, such that D,CD, (see Fig. 5). One can see that
the matrix element of O(g,g, ) corresponds to the
rudimental amplitude obtained by integrating only
at the points of D, which are outside D, . In this
way, for example, one gives a meaning to the
equation OO ' = 1 in this generalized sewing rule.

Assume now that

&q„ 1 IIO(g, ) IP, 1)z

is such that g and g,g intersect. Let us call Dy

dp pg g z -pg =1. (2.42)

Using (2.16), (2.17), (2.37), (2.39), and (2.40),
one can now show that

-=&P, g II P', g'& z. (2.43)

It follows from our previous results that

&P III P' g&z=&P' gIIP»z
&P, IIIP', g&, =&P', g'IIP'g'g&, ,

and

(2.44)

(2.45)

&»gx II P g2&z,
—&»AgiA II P' Ag2A &z,~~z, .

(2.46)

Property (2.44) indicates that the metric intro-
FIG. 5. Sewing of two rudimental amplitudes with

domains D& and D2 such that D~CD2.
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the domain shown on Fig. 6(a}, which is the natur-
al extension of the case considered in Sec. IIA. If

&p, 1II o(g, ) ~q, 1)

corresponds to an ordinary rudimental amplitude
[Fig. 6(b)],

(q„ l. II o(g,g, ) ~ q„ 1)

is given by the functional integral obtained by in-
tegrating over the points of D,UD, which are out-
side DlA D2 Indeed this domain is bounded by the
curves g,Z and g, 'Z as shown in Fig. 6(c).

We now introduce multi-Reggeon states by

and

I pl& gl&P2& g2»"P»'& g &z P I p& go&z~ ~ ~
P Pl Pn

go % '
gn Z

(2.47)

z(pk l g»pk& gk»''' P & g ll P z&P& g'0
Ppk-''' P.
go gl ' ' '

gn Z
(2.48)

Using the completeness property (2.42), we can easily show that definitions (2.47) and (2.48) do not de-
pend on go.

Using the conformal invariance property (2.16), we can show that

o(g) lpk gk' ".P, g, &z
=

Ipk& gg»" '
Pn&gg&&zn

z&p„g&;".;P., g. II o(g) =z&pk, ggk;";P. , gg. ll .
We can also prove that

(2.49)

(2.50)

Pl Pn
&Pk &gk &Pk &gk »'''Pk &gk II P.„gk »''Pk &gk &»

n

where kl k is any cyclic permutation of 1, ..., n,
and t is an arbitrary integer between 0 and n.

The slicing rule of Sec. IIA is now a simple con-
sequence of Eq. (2.42), which here also allows us
to generalize the sewing procedure with essentially
the rule that one integrates functionally at the
points of the union between the two sewn domains
which are outside their intersection.

In the usual operator formalism one uses the
matrix I = (, 0) which satisfies

O(r)C(Z, Z)O(r) ~q&, =C —,= ~rp&z, (2.56)
1 1

it follows that

O(r}lq»z, = lq&z, . (2.57)

Since the set of states ~q&&, is complete, it fol-
lows that O(I') = 1, which is a contradiction.

rdr =g-', (2.51)
III. MULTIPARTICLE VENEZIANO

AMPLITUDES AND N-REGGEON AMPLITUDE

where g and g are related by

(2.52)

For gESL(2, fl} one can show that

o(g) = o'(g) . (2.53)

So, if there exists an operator O(I') which satis-
fies the analogous operator equation

In this section we first write the N-particle
Veneziano amplitude in terms of a rudimental am-
plitude defined in Sec. II, in such a form as to be
factorized by using the slicing rule. We also dis-
cuss the N-Reggeon amplitude.

Let us consider N points on a. unit circle (see
Fig. 1), which divide the circle into% segments
y,. (i = 1, ..., N). Consider a set of Mobius trans-
formations such that

o(r) o'(g) o(r) = o(g) -'

for all gESL(2, ft), we could write

(P, g II =&P, glo(r).

(2.54)

(2.55) g,.g[0] = Z, , g,. v[v] = Z,.„. (2.2)

However, O(I') does not exist in this Hilbert space.
This can be shown by noticing that from

Then the N-particle Veneziano amplitude [(All) of
Ref. 9] can be written as
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x»ig;o[d -g;o[('] I),
(3.6)

a.nd d'U(Z„. ..,Z„) is a Mobius-transformation-
invariant measure" defined by

d'0(z„... ,z„)

Iz, -z„liz„-z„,llz, -z„,l

i=l
ZZ fz,. -z, , l

(3 't)

The p, (g) is a smearing function which we assume
to have the foIlowing property:

(b)

firn p, (f) = a(~),

so that

&())=&()) 0( )).so[(]

(3.8)

(3.9)

As a preparation for the factorization of the am-
plitude let us briefly discuss Mobius transforma-
tions.

A Mobius transformation

aZ+bz- z'=g[z] =
cZ+ d

(3.10)

is represented by the following 2x2 unimodular
complex matrix

(c)

FIG. 6. Sewing of bvo rudimental amplitudes with
domains D, and D2 in the case when the boundaries of
D f intersect: (a) Boundaries of D~ . ~ and g f ~
which intersect. {b) Domain Dz. (e) Domain of the
sewn rudime11ta1 amplitude.

(3.11)

Let Z„Z„and Z, be a set of three points on the
complex plane which are transformed from a giv-
en set of three points, say Y1 Y2 and Y, by a
transformation g. As is well known, g is unique-
ly specified by Z„Z„and Z, for a fixed set of Y„
Y~ and Y3. Following I ovelace, we denote it by

(2 )'6"'(Q k;)V (k„..., k )
j=1

Y Y2 Y3

Z2 Z3
' (3.12)

Z1 P ~ ~ ~
& Z~) Z' Z'~ ~

j=l

xhm QE(g) '
6~0 0

1 ~1 &2

where

a,.(g) = s,.p, (g),
z-= ej~j

(3.3)

(3.5)

From now orr we choose the Y's to be 1, -1, and

0, respectively; and we specify the curve P to be
Z,. Geometrically g is represented by the figure
shown in Fig. 7.

It is convenient to use all these representations-
Eq. (3.11), Eq. (3.12), and Fig. 7 —in the following
discussions, so we tabulate in Fig. 8 those trans-
formations that will be used frequently in this sec-

tionn.

The transformation g,. ts defined by E(fs.(3.1}
and (3.2), and can be expressed as
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1

Z t

0 1 -1 i

Z,. ' 1 -1 0

(3.13)

Zl

where Z, is an arbitrary point on the unit circle
which will be fixed later. The transformation 7

maps the real axis onto the unit circle keeping 1

and -1 fixed.
We factor out the Z dependence of E(g,.) by using

Eq. (3.9):
FIG. 7. Geometrical representation of z z z

1 2 3

E( )
1

I Z;„-Z; I

"OI Z; —Z; I"E(1)
/Z, .„—Z,. /

o

Then inserting (3.14) into (3.3), we obtain

N ~Z, „—Z, ~

o k, . k„(2v)'5" g k,. Vgk„... , k„)= lim[2 0/E(1)]" ~ ~ ~ d'U(Z„. .., Z„)g

(3.14)

(3.15)

From the results of this section and of Sec. IV, it will follow that the N-Reggeon amplitude is the gen-
eralization of (3.15) obtained by dropping condition (3.4) and taking general extended distributions p,. (t')
for all Reggeons. Namely, we shall prove that the N-Reggeon amplitude is written

aZ+b a b 1 -1 0~
CZ+d C d Zl Z2 ZP

Zq

Z 1 0 -1 —1 0

0

Z —i 1 1 -i 1 -1 0
T

1 —iZ v2 -i 1 1 -1

1+Z ~'
1 —3Z I, , )~

-1
0~

0 1

h(s)
Z+ tanh(1/2s) cosh(1/2s) sinh(1/2s) 1 -1 0
1+Ztanh(1/2s) sinh(1/2s) cosh(1/2s) 1 -1 tanh(1/2s)

FIG. 8. Table of the Mobius transformations.

tosh ( I/2s)
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(2 )'&"' QJ A);t() )).(),((), (-(,()) ff=dU(&„,&,)II (3.16)

In this picture the ith Reggeon is described by
an extended distribution along the unit circle be-
tween Z,. and Z,.„. In the particular case of a dis-
tribution reduced to a 5 function, at Z,. Eq. (3.16)
is reduced to Eq. (3.15) when the appropriate lim-
it is taken after multiplying by factor [2 ()/E(1))s.
Lowest-lying external particles are therefore rep-
resented by external momenta located at the cor-
responding Koba-Nielsen points. This last fea-
ture is well known in the analog model. ' A rep-
resentation of general Reggeons by extended mo-
mentum distributions has been proposed by Ales-
sandrini. " However, he takes distributions ex-
tended from Zj, to Z'

y
instead of Z,. to Z,.„

as we have here, so that in his picture distribu-
tions overlap, and as we shall see this is not sat-
isfactory from the point of view of factorization.

Formula (3.16) involves N arbitrary parameters
Z,. (i = 1, ..., N). Let us investigate how it actually
depends on them. For this we make use of the fol-
lowing identity:

1 -1 0
g = " 7/((pl,

i j+1 i

(3.17)
P = ln](Z, .„,Z, , Z, , Z,.)],

where /z((3) is defined in Fig. 8:

1 -1 0
/(/')=

1 1 t,nh P

integral does not change. Moreover the integra-
tion volume of (3.16) and the factor which is at
the power np are Mobius-invariant. Therefore,
the integrand of (3.16) is Mobius-invariant. Thus
the N-Reggeon amplitude (3.16) is independent,
up to gauge transformations, of the three fixed
points chosen when one integrates over the Z
variables.

In practice two different ways of choosing the

Z,. are of interest, depending on the pg. rticular
property of the amplitude one is interested in.

1. Cyclic Symmetry Form. ula (3.16) will be
cyclic-symmetric if the Z,. are chosen in a cycli-
cally symmetric way. An example of such a
choice is

(3.21)

As we shall see, this corresponds to Lovelace's
X-Reggeon amplitude. " However, with this
choice, factorization is true only up to gauge
transformations, which we shall discuss in Sec. V.

2. Facto~ization. We shall show how to factor-
ize (3.16) in any tree configuration. This will be
done by appropriate choices of Z,. which will be
such that, in general, cyclic symmetry is only
true up to gauge transformations.

First let us change the integration variable Z,.
to variables which are Mobius-invariant and more
appropriate for factorization. From (3.17) it fol-
lows that if the following equation is satisfied,

In general we denote cross ratios by

(z z z z)-( I)( ' ').
(Z. —Z, )(Z, —Z, )

'

Moreover, one can write

(3.18)

-1 0 1 -1 0
Z, Z Z, Z Z,

then the parameter s is expressed by

s = ln ~(Z„Z„Z„Z,) ~,

(3.22)

(3.23)
j+1 j j+1 j ~ Sap (3.19)Z'-Z Z; -Z;

Therefore, changing Z,. into Z,. in formula (3.16)
amounts to multiplying the ith Reggeon line by
e oh(P). As we shall see this corresponds to a
gauge transformation, and therefore all depen-
dence on Z,. disappears when (3.16) is taken be-
tween physical states, or multiplied by spurious-
free propagator, as we shall always do.

Assume now that we change all Z,. and Z,. by the
same Mobius transformation g; then one can write

1 -1 0 1 -1 0
g[Z;) g[Z;„) g[Z;) Z; Z;„Z; '

(3.20)

From formula (2.16) it follows that the functional

where r is defined in Fig. 8: r[Z]= -1/Z.
We try to express the integration variables

Z„.. . , Z„, of integral (3.3) in terms of the three
fixed points Z„Z„, Z~, and N-3 cross ratios
as follows. Choose one of the integration vari-
ables —say Z, —and express it by a similar ex-
pression, as (3.22). Explicitly it is given by

Z, = /)(s()r[0].
1 -1 0

N-1 N-
(3.24)

Then we connect the relevant four points Z] Z„
Z„, Z, in terms of the cir "ular arcs orthogonal to
the unit circle, as shown in Fig. 9, indicating that
Z, is expressed in terms of the other corner
points of the circular quadrilateral [1,N 1,N,l]-
and its cross ratio. Next choose another point Z
and express it in terms of Zy Zp y Z, , and a
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n-I

N-I

FIG. 9. Triangulation of D in terms of circular arcs.

cross ratio using the circular quadrilateral
[m, N 1, 1, l]-(see Fig. 9):

FIG. 10. The triangulation corresponding to
multi-Regge exchange.

where the f,. 's are given by

Z. = h(s„)r [O],
1 -1 0

/ N-1 1
(3.25)

Z = h(s, )rK 'h(s )r[O], (3.26)
1 -1 0

N-1 N-

where we used (3.22) and N is defined in Fig. 6:

f, =h(s, )rN,

f, =f, ,Nh. (s, ,)rN,

fN-2 =fN-3K

fN-1 K )

i=2, ...,N-2
(3.29)

1 -1 0
-1 0 1

1 -1 0 1 -1 0
K

Zr ZN 1 Z1 Z„1 Z1 Z,

Repeating this procedure, we can express all Z,-
successively in terms of s,

There are as many ways of expressing them as
there are possible triangulations of Fig. 1 in
terms of orthogonal circular arcs. An example
corresponding to multi-Regge exchange is given
by Fig. 10. In a given triangulation, each triangle
represents a vertex. To each arc common to two
triangles will be associated a propagator whose
integration variable is the s variable computed in
the way described previously from the rectangle
obtained by joining the two neighboring triangles.

We shall therefore change the integration vari-
ables from Z,. to s,. in (3.16) in order to obtain a
factorized form.

For a given triangulation let us choose Z,. of
(3.16) to the opposite corner of the arc (Z,.Z, „)
of the triangle which contains (Z,.Z,.„).

In the case of the triangulation of Fig. 10, we
have

We then compute the Jacobian using the following
partial derivative formula for s,. which is defined
by Eq. {3.23)

sg,. az,. fz,. —z, f fz,. —z„,f

fz„,—z, f

We obtain

(3.30)

i —2 II;—, I z; —z;, I

i —2

= d'o(Z„. .., Z„),
which is obviously Mobius-invariant.

The factor

(3.31)

Ppc +~ N-2

(d~ enpp. )
Pl PN

po i =2 Al gN

fz,. —z,. f

in the integrand (3.16) is then expressed in terms
of the cross ratios si, and we finally obtain

(2 I'd"(Q fpp!)p„(p, ..., p„)
i =1

N-1&

N-2 N 3 &
=Z

i=A, 1, ...,N-3

(3.27) (3.32)

N-1 1 P

1 N-1 N-

1 -1 0~;=Z Z Z f;,
1 N 1 N

{3.28)

Apart from the factor e p'p the integrand of (3.32)
depends upon s,. through the dependence of the g, 's
on those variables.

We have obtained (3.32) using a particular tri-
angulation, but one can verify that the same formu-
la is true in all cases with the appropriate defini-
tions of g,



2302 J. —L. GERVAIS AND B. SAKITA

As we shall see in Sec. IV, Eq. (3.32) is factor-
ized directly by using the slicing rule of Sec. II,
without performing any gauge transformation. On
the other hand, this expression becomes cyclically
symmetric after rather complicated gauge trans-
formations are multiplied.

B. 3-Reggeon Vertex

We define the 3-Reggeon vertex as the following
rudimental amplitude:

r(p~ p (4.5)

IV. FEYNMAN-LIKE RULES

OF DUAL-RESONANCE AMPLITUDES

If we use the slicing rule along the arcs in a
given triangulation discussed in Sec. III, we can
express multiparticle Veneziano amplitudes in
terms of the three-Reggeon vertex and the Reg-
geon propagator. In this section we present the
expression of these in terms of rudimental am-
plitudes and show that the multiparticle Veneziano
amplitudes are constructed from them by Feyn-
man-like rules.

These rules simply consist of:
(1) drawing a Feynman-like diagram, "
(2) writing down factors corresponding to the

vertices and propagators of the diagram, and
(3) integrating (functionally in this case) over

internal Reggeon momenta.

ds e""(p
lf O(h(s)r) I p')r (4.1)

Using (2.44), (2.45), and the equality

rh(s)r = h(-s) = h '(s), (4.2)

we can prove that (p ff P fp') is symmetric under
the exchange of p and p'.

The operator P is invariant when multiplied by
the gauge-transformation operator

G(u) = e"o"O(h(u)), (4.3)

A. Reggeon Propagator

The Reggeon propagator is given by the follow-
ing matrix element" of the operator P:

+sr,

(pllplp')= dse ", „( )

The explicit form of the transformation K is given
in Fig. 8, from which one can derive

K = K ~ (4 6)

Indeed (4.5) corresponds to a special case of the
N-Reggeon vertex we gave in Eq. (3.16) with Z,.

Z ] ~

The sewing of the vertices and propagators is
done according to our results of Sec. II. Using re-
lations similar to (3.29), one can verify that for
any dual configuration this leads to an expression
identical to (3.16) except that for all Reggeon legs
g,. appears instead of g,. [see formula (3.13)]. One
thus obtains what we call a N-Reggeon vertex
where the functional integral is performed over a

domain bounded by arcs of circles orthogonal to
the unit circle (shaded area of Fig. 10).

As it is clear from their construction, those
N-Reggeon vertices can also be used as building
blocks. Qn the other hand, the N-Reggeon am-
plitude (3.16) will be obtained if one multiplies
O(r) on all Reggeon distributions This .is equiva-
lent to changing the reference curve &0 to the seg-
ment f -1,+1] on the rea. l axis."

As shown in Sec. III, all operators are trans-
formed by the corresponding similarity transfor-
mation, and this leads to (3.16) where the domain
of the functional integral is the unit disk. As al-
ready mentioned in Sec. III, the N-particle Vene-
ziano amplitude (3.15) is obtained by taking the
appropriate limit of (3.16).

Using the identity

Using (2.15), (2.16), and (4.5}, we can prove the

cyclic symmetry of I".

(4.7)

which follows from the identity

h(u)h(s) = h(u + s) . (4 4)
1 k 1 k' ~ ~ ~

E(l} 1 ~ E(h(s)) h(s)

In order to apply the gauge transformation to the
propagator from the right, we must multiply by
e 0" O(h(-u)) because, in general,

dp(e o, -p)(p' o, p = (p' o,o, -'
q .

This relation combined with Eq. (4.2} shows that
Eq. {4.4) is invariant by gauge transformations
applied on both sides.

one can prove that Eq. (3.15) is indeed gauge-
invariant.

The N-Reggeon vertex defined by using 50 is
suitable for a geometrical description of sewing.
However, (3.16) can also be used with the modi-
fied propagator O(T) P 0(T '). Let us remark that
the gauge operator is not changed since

rh(y)T '=h(r).
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V. CONNECTION WITH THE USUAL
OPERATOR FORMALISM

In this section, we establish the connection of
our previous results with the usual operator for-
malism. " In particular, we shall show that the
symmetric N-Reggeon amplitude (3.16) with the
choice (3.21) corresponds to the N-Reggeon vertex
of Lovelace. 23

Up to now, we have described each Reggeon in
term of a distribution of momentum on the upper-
half unit circle Zp. This is natural from the point
of view of Ref. 9 (see also Sec. II 8) since the cor-
responding time v appeared to be v = —In~ e ~, and

p 0 thus corresponds to describing the states at the
fixed time v=0. However, explicit connection with
the usual operator formalism requires using in-
stead of Zp a half circle Z, orthogonal to the real
axis, going through the points 0 and 1. More pre-
cisely, we connect the points of Zp and the points
of Z through the transformation

where we have made the change of variable

1 —xeS
x

and where

(5 6)

Our propagator coincides with the standard twisted
spurious-free propagator"; indeed one can write

D(x) = d(x)1 ,
where

(5.9)

x (o)II(I x) (5.10)

and Q is the twisted operator which corresponds to
the matrix

d(x) = 0 1
x

is the Mobius transformation which corresponds to
the operator

0 1 -1 -2 1
(5.1) (' ') (5.11)

As discussed in Sec. Il, all operators in this new
description are deduced from the expressions
given in Sec. IV through the similarity transforma-
tion

o, =o(A)-'o, o(A) . (5.2)

In particular, the 2x2 matrices corresponding to
r and v. are

(5.3)

It is remarkable that, with the method of factor-
ization we have developed, the twisted propagator
is automatically spurious-free. This is not the
case in the usual approach.

Finally, it is convenient, following Lovelace, to
choose the points z,. to be z,-, which is one of the
cyclically symmetric choices we discussed in Sec.
III. In this case the Reggeon distribution is asso-
ciated with the transformations

0 1 i 0
—,'(1+i) 0 1 I+ i —1

0
V]=A g,. A=

Z& z j+1
(5.12}

It is also easy to check that

O(A)-'O(h(y))O(A) = e

where

(5.4)

(5.5}

which are the ones introduced by Lovelace. " As
an illustration let us discuss the sewing of two
symmetric N-Reggeon vertices. The notations are
displayed on Fig. 11 and the two rudimental am-
plitudes to be sewn are

W=L(p)- L( y) (5.6}

and I.~„& is given by Eq. (2.33}.
Therefore the gauge transformation e& "oo(h(y}),

which we introduced, just becomes the standard
gauge operator e& 0 ~ of the usual operator for-
malism. This shows that our propagator which
was found to be invariant by e" oo(h(y)) does not
propagate the spurious states. Indeed, one has

+ oo

O(A) ' dse~o(h(s)r)o(A)
E

=
J dx(1- x)~-' x-+-'O(D(x)),

0
(5.7)

FIG. 11. Sewing of two symmetric multi-
Reggeon vertices.
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(Plt Vlt P2t V2t ' ' ' t Pj t Vf II PEt VE& z

and

&PF t VF II Pj+ lt Vj+ 1 t Pj+2t Vj+2t ' ' ' t P» t i»&z,

where V,. is given by Eq (5..12) and

0 1 ~ 0 1
VE=

] Z ' ZE Z]

Vj„=
F j+1 Zj+2

I

QO

VF =
Z j+1

(5.13)
0 1"

ZF Zn

In order to sew, one inserts the propagator and

integrates functionally over the intermediate
Reggeon distribution. Taking into account the com-
pleteness property (2.42), we can write

&Plt Vlt tP, V, II p, +lt V, +» . tp» V»)z

dpzdpF&plt V» t plt Vfllpz VE&z& PE'VE-II PF VF-&z&PF VFllpl Vt'l »» V»&z.

(5.14)

In order that (-pE, VE II -pF, VF) be identified with
the matrix element of the propagator (5.8) the end

points of the two momentum distributions should
coincide. This is so because D(x) leaves invariant
the points 0 and 1. Therefore, one should have

ZE Z j+1 7 ZF —Zl

In this case one can check that indeed

(5.15)

&-PEt VEII PF' VF&z & PE-II PFD(x}&z-

since

D(x) = VE 'VF (5.16)

x = (z», z,.„,z „z,. ) . (5.17)

Condition (5.15}was obtained by Lovelace" in the
operator formalism without giving any clear inter-
pretation. "

In order to obtain the N-Reggeon symmetric ver-
tex we have to change V, and Vj„, respectively.
As we have shown in Sec. III, this is achieved if
the Reggeons p, and p,.„in Eq. (5.14) are multi-

plied by the appropriate gauge transformations so
that ZE in V, becomes Z„, and ZF in Vj„becomes
Zj, respectively.

Finally, as far as the integration over the Z vari-
ables is concerned, it is convenient to choose Z„
Zj, ZE and ZF7 Zj+17 Z

pf as fixed in the two sewn
vertices. After sewing, one changes variables
from (Z„.. . , Z, „x,Z +„.. . , Z„,) to
(Z„. . . , Z, „Z,„,. . . , Z„,). It is easily checked
that this leads to the Mobius-invariant integration
volume d'U (Z„.. . , Z„) with Z„Z, , Z» kept fixed.
Moreover all terms to the power z, combine to
give the appropriate factor of the N -Reggeon ver-
tex.

As we already discussed, our propagator is sym-
metric, and therefore is invariant, by the same
gauge transformation e o-~'~ on both sides. This
is in contrast with the usual twisted propagator
which is left invariant if one multiplies by e& 0- '

on the left and by e& o-~ on the right. This fea-
ture of the operator formalism is not satisfactory,
because right- and left-hand sides, which play the
same role, should be treated symmetrically.

VI. MULTILOOP DIAGRAMS

The orientable diagrams involve the symmetric N-Reggeon vertex and the twisted propagator. "
Let us first discuss the sewing of the Reggeons p, and p, in the vertex (p„V„... II ...;p„, V»&z. According

to our previous discussions one should compute

R„'", =] dPdP&P„V„. ..;Pf, V, ;.. . Il ...;P„V,; . . .;P», V.&,& P, ll«D(. })I--P&„

which can be written as

(6.1)

(0R» 2
= dpj(p» V» ... ', -pj V,D(x)t ... ff. .. t p t Vf t t p» V„&z

4

This functional integral is computed by going back to the explicit functional expression of (... I
f. ..) and using

Eq. (2.19}, one gets

R„",= exP i 2m d~Pr &
'@' V1 & ~@' V;D& z C Vjz

l2'Stf+j 0 sgE
(6.2)
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The integral is carried out in the domain bounded by the curves C, = V, Z. The symbol 5 means that one

integrates over the function 4 with the boundary condition that it takes the same value on the curves C, and

C~ at points z; 6 C; and z& E C& such that

z,- = V, D(x) V, -'z, .

More generally, after sewing r pairs of Reggeons of indices i„j„'...;i„,j„, one obtains"

(6.8)

Rg ~„= exp g ~2' "«),))) ),.[)))} n n «) „o)*,))»- ) „)»)
l g ~ ~ ~ ~ ~ Sgll fgI ~ e ~ y1p'

~ W p n=j. . .r zgZ

One can interpret the 5 functional as expressing the fact that the functional integration is carried out on
the surface obtained from the original surface by identifying all pairs of boundaries C, , C,. through the
transformation

(6.6)S'= V,.„D(x,) V, ,-'.
The transformations S" are the generators of the automorphy group of the surface which has y handles.

In order to transform the functional integral, let us first go back to the case where the boundary of the
surface is a smooth curve. This is done if one multiplies by T all unsewn Reggeon distributions, and the
final result is the functional integrals computed on the surface 8 "' shown on Fig. 12, where C,. and C,.
are identified through S".

Let us now introduce the Neumann function N"' of the surface 8'"', namely, the function which satisfies
conditions (2.8) and (2.9), and which has a constant normal derivative on the boundaries of 8)"). The func-
tional integral is transformed in the way recalled in Sec. II [see (2.14)j, and one gets

sc")2 ) =~"'( —'I'f ),)))«)e ) (-I f «j « )))) ) ')), )~"))).))'I): )), )), , . '

l t, m

where K'" reads
I

5(4 V,. D x,) z ) —@(V, z ))exp dxdy2
p k =1) - ~ ~, r' 8+$

(6.6)

(6 7)

The Neumann function N'"' can be expressed in
terms of Poincare series. " This has been studied
in detail by Alessandrini. '

In formula (6.6} one recognizes the exponential
of the heat generated by the current distributions
p, on the surface S'"'. As one sees, the results
of the analog model are proved very simply in the
functional method where the Neumann function is
naturally introduced through (2.11}. In the usual
operator formalism one has to collect a lot of
terms in order to reconstruct that function after
rather tedious computations. "

K is not given by the analog model. Let us no-
tice that K can be obtained from P'"~ by setting all
p, be zero. In order to compute K, it is better to
go back to the operator expression for g'"~, since
in this limit it becomes simpler; the reason for
this is that the vertex operators involving external
Reggeons reduce to 1. The general expression of

has been calculated. "

be useful because the two-dimensional geometry
introduced here is the natural framework to des-
cribe the properties of dual diagrams. In particu-
lar one is led rather simply to the formulation of
the analog model in terms of energies associated
with momentum distribution attached to general
surfaces. Moreover, as already emphasized in
the Introduction, this approach is strongly suggest-
ed by the fact that dual diagrams can be consid-
ered as limits of very dense semiplanar Feynman
diagrams.

In this paper we did not consider nonorientable
diagrams. It is well known that this case is more

VII. CONCLUSION

It is clear that the formalism we have developed
in this paper is somewhat more abstract than the
usual operator formalism. However, it seems to FIG. 12. The surface S ".
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complicated. In fact, there is no simple spurious-
free untwisted propagator. Also, the introduction
of the corresponding Neumann's function requires
the doubling of the original surfa, ce. In our for-
malism we shall have to extend our definition of
rudimental amplitudes to the case where the mo-
mentum distributions are not all running in the
same direction. This problem is now under in-
vestigation. %e think that, in the same way as in
the case of orientable loop diagrams which were
found to be automatically spurious-free, our meth-
od may turn out to be more powerful than the us-
ual one.

Finally, let us remark that the N-Reggeon ver-

tex we have obtained is dual if spurious states are
removed from the external legs. If one thus mul-
tiplies the twisted propagators to every external
Reggeon leg, one may define the off-shell dual
Green's functions of the dual theory. This would

be very important for understanding renormaliza-
tion and introduction of currents in this theory.
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APPENDIX

In this appendix we present a proof of (2.37}using a method" which provides some insight to the measure
of functional integration. Since, as mentioned in the text, the slicing rule is equivalent to the complete-
ness condition of the operator method, and since O(g) is expressed as a product of an infinite number of
infinitesimal transformations, it is sufficient to prove relation (2.3 t) for an infinitesimal transformation.

Let 6g be an infinitesimal transformation which maps a point os)] = x,($)+ ix2(g) on Za to a point 6gog(]
=x,'($)+ix2(]) on Z'= 6gZ, . Then the equation to be proved is

(el&(&a) l( ')., = n r(( t() -4( d(ll)IIt'(('(() -e(ng 4(l)))

—pl p +p (p y)exp dzdy Z {z,y) (Al)

To first order in 6g the functional integral of (Al) is approximated by the exponential of the action, where
p is computed by replacing 84/», by finite differences. Let

6x, (g) = x,'(g) —x, (t)
and der,. be the surface element of Zp defined by

dXjder. = e-.—J d(,4 J

(A2)

(A3}

where ~, , is given by

ij ji~

The functional integral is then written as

(A4)

(A5)

4 (x') = e (x}+—ax. = @'(~),
ae
Bx ~

1

1—exp d o,.6x,.Z,
Zp

where A is the measure to be used in the integration. The Lagrangian in (A5) can be expressed in terms
of rp(g) and y'($) as follows. Because of the 6 functional in (Al), we have

c(x) =q(g),
so that

(», /~$)l q(f) —&p'(k)]+ 6~,(~y/~,")
(do,./d~}sx,.

Inserting {A7) into the Lagrangian, we obtain

do', , Bp BA, dg, Bc/

(A6)

(A7}

(A8)
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where we have used (Bx,./B])'= 1.
We then use the following identity:

1 ' dg, ', By Bx;
exp —— d$ ' 5», y —y'+ ——'5x,.'

j

dG . — 9(p Bx
= C &p(()exp d5 -~p'(E) '6x,. +is'2m p () (p —y'+ ——'gx,.

0 J d$ ' B( B$

where

C-'= ~p ~)exp -~ dg p' ~) d"qx
0

and

~(~) = -f

II 5(y(5) —y'(()),1 ",da,.

2, d$

(A9)

(A10)

(A11)

Then we obtain the following expression for (A5)..

&0 1 d0'; 2 8(p

AC ' 2, d] ' Bt
- exp —— dk '5»; ~'(()+ — -2f —7r(()—'5», (y ly'),

where we have used the normalization

(y l
y') = n. II5(y(t) —y'(&))

(A12)

(A13)

which is consistent with all the definitions in the text.
Thus if we choose A = C, we obtain (A1) from (A12), provided that the exponent of (A12) is equal to (2.30).

This last fact can easily be checked using the following relations:

.do; BZ . da; a4
d$ B(B4/Bx, ) d$ Bx,

'

(A14)
ac ~x, aC

Bg Bg C)X,
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