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The general properties of analyticity, covariance, and unitarity are studied in quantum
field theories regularized by finite-mass, indefinite-norm states. After reviewing the gener-
al status of indefinite-metric theories, a relativistic scalar model is analyzed for covariance
and analyticity. This model shows that a commonly accepted prescription for treating the neg-
ative-norm states is not covariant, and more sophisticated methods are required. The tech-
nique of shadow states developed elsewhere is reviewed and applied to this problem.

I. INTRODUCTION

The problem of constructing finite quantum field
theories has received considerable attention in
recent years. Although it was invented by Dirac'
as early as 1941 and has been the subject of care-
ful studies for the past decade, the possibility of
using quantized fields which are linear operators
in a space whose metric is not positive definite is
only gradually coming to be widely appreciated.
Some of the confusion was due to the misconception

that such a quantum field theory with indefinite
metric is the same as the recipe of regularization
introduced by Pauli and Villars in 1949.' The
conceptual framework, including the question of
probability interpretation and the need to select
out a subset of states to be the physical states, has
been reviewed by one of the present authors in his
report to the 14th Solvay Congress. '

The main conclusions of the above-mentioned
investigations are the following:

(i) Every order of perturbation theory yields
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finite contributions, provided masses and coupling
constants are suitably chosen.

(ii) It is essential to select a subset of all avail-
able states and consider these alone as physical
states insofar as questions of the physical S-matrix
elements and unitarity are considered.
(iii) This selection of physical states entails certain

features with regard to the analytic properties of
the scattering amplitudes. The threshold for the
production of one of the unphysical particles sig-
nals the change from one analytic function to anoth-
er. This means that the transition amplitudes are
continuous functions, but are only piecewise ana-
lytic.

(iv) Since the higher-mass quanta, which are
necessary for the convergence of the theory, could
decay to the lower-lying states, one should find
kinematic resonances. ' This is necessary even
for the electron and neutrino, as well as for the
nucleons.

(v) The usual assumed analytic properties of
scattering amplitudes are no longer expected to be
valid. Both complex poles and branch cuts are ex-
pected.

Despite these various radical differences it is
possible to show that many familiar results would
remain unchanged. As a particular example, it
has been shown that the finite quantum electro-
dynamics so constructed agrees with the standard
results. ' The leptonic resonances that are pre-
dicted by the theory have not yet been identified,
but neither have there been any decisive experi-
mental tests.

Recently the theme has been taken up by Lee and
Wick' ' and by Lee.'"These authors have explored
the possibility that the negative probabilities are
all associated with complex-mass quanta, and
have given a set of rules of computation of the S-
matrix elements in such a theory. It was their
declared conclusion that in such a theory, at least
in the lowest-order diagrams, the unitarity troubles
did not arise provided their computational rules
were followed. We will examine this claim in this
paper and show that the Lee-Wick rules do not lead
to amplitudes with the properties which they re-
quire; in particular, their results are not relativ-
istically invariant. The method must therefore be
abandoned.

In an earlier paper two of the present authors
investigated the physics of complex-mass particles
in an indefinite-metric static-model field theory. "
In this model it was made clear that a field theory
of complex-mass particles was not automatically
free of unitarity difficulties. It was shown that the
primary difficulties are associated with real effec-
tive-mass states composed of two particles of
complex-conjugate mass. A realistic program for

II. INTERACTING FIELDS WITH INDEFINITE
METRIC

We consider model field theories" which involve
two distinct scalar fields g and ft) with an interac-
tion Lagrangian density of the form

Lr=Zf. 0"0
n. m

(2.1)

where m, n are integers. The simplest nontrivial
interactions are of the form

Lz =fk0'

f )2y2 ~

(2 2)

(2.3)

the formulation of indefinite-metric theories with-
out unitarity troubles was reviewed.

In this paper we elaborate on the proper method
of constructing S-matrix elements in an indefinite-
metric theory; for the simplest diagrams the
result is naturally identical with the result desired
(but not obtained) by Lee and Wick. The general
rule for arbitrary diagrams is outlined; it is im-
portant to recognize that the scattering amplitude
so calculated is only piecewise analytic. Hence,
the notions of crossing symmetry and analytic
properties of the amplitudes have to be viewed in
a new light.

These unusual properties are a reflection of the
presence of "shadow states'* in the theory. These
are states which enter the dynamical theory but
which do not contribute to the unitarity sum. " "
The indefinite metric is operative only within the
shadow states; the physical states are all positive-
norm states. Shadow states contribute to dynamical
effects like one-particle exchanges and resonance
enhancements as if they were real particles, but
they are not to be included in counting complete
sets of physical states ~

The plan of this paper is as follows. In Sec. II
a simplified model theory without spin or internal
symmetries is defined. The method of making such
theories finite by the use of an indefinite-metric
space is discussed. The possibility of complex
masses is noted. In Sec. III the rules given by Lee
and Wick are examined. In Sec. IV we outline a
computation, which is carried out according to the
Lee-Wick rules, of the simplest possible diagram
in perturbation theory. It is shown that the result
is not relativistically invariant. The details of
this computation are given in an Appendix. Section
V extends the proper method of calculation to
three-body amplitudes. In Sec. VI we argue that
piecewise analyticity, complex poles, and shadow
states are characteristic of finite relativistic quan-
tum field theories and that one should look for
these characteristics in particle physics.
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We shall calculate the lowest-order results for the
propagator of the P field for the interaction (2.2};
this will be one of the two terms contributing to
the lowest-order scattering amplitude of the quan-
ta of the g field. For the interactions (2.2} and

(2.3) the relevant diagrams are illustrated in Figs.
I and 2.

According to the standard rules for Feynman di-
agrams, "the lowest-order contribution of L, to
the self-energy is the loop

4m, ', (m, +~}', and 4~'. The discontinuities across
the branch cuts associated with the first and third
branch points have usual (positive) sign while the
discontinuity across the second branch cut is of the

opposite sign. This is consistent with the norm of
the expected intermediate states.

Lee explores the possibility of choosing instead
of (2.6) the expression

(2.'7)
4

Z(p) =, d'qD. ( ,'p+q)D. (-,'p —q), - (2.4)

where

D(q)= q' -m'+ iq' (2.5)

and rn is the mass of the quanta of the iII} field.
With this choice for D&(q) the expression (2.4} is
logarithmically divergent and therefore meaning-
less. This is the standard divergence of relativis-
tic quantum field theory. In the formal renormal-
ization program this infinity is simply canceled by
an infinite renormalization counterterm.

The attempt to make a finite quantum field theo-
ry for this model starts with the choice of a gener-
alized free field for P with propagator

P]

p +
&+ q (o)

2

where M is a suitable complex number. " This
propagator also falls off as (q') ' for large values
of q', and hence leads to convergence. In the usual
case of real masses, there is an infinitesimal
imaginary part attached to all real masses to indi-
cate how the integrals are to be performed in the
momentum space. In the present context they are
omitted, and instead a certain definite rule regard-
ing the path of integration over the momentum vari-
ables is specified.

D'(q) =D~, @ (q) =-i 1 1

-i(m, '-m, ')
(q' —m, '+ is)(q' —m, '+ ie) '

(2.6)

The field (I), with mass m, has the standard com-
mutation relations, but the P, field with mass m,
(chosen to be larger than m, ) has the opposite sign
of commutation relations. Consequently, any state
with an odd number of excitations of the P, field
has negative norm. The substitution of (2.6) into
(2.4) yields a finite and unambiguous result, which
explicitly depends upon P', m, ' and m, '. The ex-
pression so obtained would have branch points at

q + P
2

p)

P —P
I 5b+
2

P(+ P2
2

(b)

P2

FIG. 1. Self-energy diagram of the field $ in the
theory with Lz =f g@~.

FIG. 2. (a), (b) Lowest-order elastic g scattering
in the theory with L~ —-fg Q
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We note that instead of (2.7) we could have cho-
sen the expression

1 1/2 1/2
q — ' ~ q' —M' ~ i q' —M, ' ~ i )'

(2.7')

s =P,'- p'= @A+M*)' (2 8)

and a discontinuity on the real axis which would
have violated unitarity. It is the removal of just
this problem that prompted the introduction of a
computational prescription that differs from stan-
dard Feynman rules.

There are apparently many ways out of the prob-
I

considered the quantity (2.4) computed for real
Ml M2 as the boundary value of an analytic func-
tion, and then analytically continued the expression
for M, -M, M, —M*. The re suit obtained in this
way would, however, have a branch point at

lem of the "unphysical" intermediate states, and
these should lead to no branch cut (imaginary part)
originating at (M+M~)'. The method of shadow
states, treating the two-complex-mass-particle in-
termediate state as a shadow state, automatically
gives such a result. A prescription which also
leads to such a result has been developed by Cut-
kosky, Landshoff, Olive, and Polkinghorne, who
suggest it as an arithmetic rule for certain dia-
grams. "

The method advocated by Lee uses the rule that
in a frame in which P has a nonzexo spatial compo-
nent, P„one must use real virtual three-momen-
tum q, but qp can be complex. " The complex path
of the qp integration is continuously deformed from
the Feynman path for (2.7), so that no poles cross
the contour. Lee carried out the calculation to the
point where he was able to deduce that the result of
this integration gave a Lorentz-invariant, finite ex-
pression":

Z(P) = -(32m') 'f' -(M' -m')ln —,+-(M*' -m')ln , --(M' -M*')ln

—(8m' —2s)J(s; m, m) + 4(M'+m') ——(M' —m')' —2s J(s;M, m)

+ 4(M*'+m') ——(M*'-m')' —2s j(s;M*, m) —(2M' —2s)J(s, M, M)s

—(2M*' —zs)j(s, M, M*) — 2(M'+M*') ——(M' —M ')' —s J(s; M, M*)(,

where
S P Pp P

2 — 2 2

j(s; p „p,) = F ' ln P,
F =Is —(p, + p, ,)']"'[s—(W, —p,)']"',

and

(p, '+ p, ') —s+F
(p, '+ p, ') —s —F '

We shall investigate the computation and show that
Lee's deduction is incorrect; his integration pre-
scription gives an amplitude which is not the above
expression and is not Lorentz-invariant.

III. THE METHOD OF LEE AND WCK

As mentioned above, the scheme proposed by Lee
and Wick is as follows: In every Feynman diagram
in any order of perturbation theory integrate over
real three-dimensional circulating momenta only.
The integration over the time components of any
circulating momentum is along a complex path de-
fined as follows: Break up the integrands into indi-

vidual terms so that each term has internal lines
with well-defined masses; the complex path of the
circulating integration variables is obtained by a
continuous deformation of the Feynman-StGckelberg
path as the complex masses in the problem are re-
alized starting with real masses. While there are
some questions about the uniqueness of this defini-
tion of the integration path for complicated dia-
grams, for the simpler diagram that we shall in-
vestigate it is unambiguously defined.

It is somewhat curious that the prescription is
supposed to be valid in any Lorentz frame except
that for the evaluation of the integral (2.4) we are
supposed to exclude the center-of-momentum
frame. The suggestion was made that for more
complicated diagrams such a restriction is not
necessary.

It was argued by Lee and Wick that the absence
of any imaginary part due to intermediate states
containing one or more complex-mass particles
was to be expected from physical considerations
as follows: If the two intermediate particles have
the same sign of imaginary part, their total energy
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K (c)

(for real individual three-momenta) will always be
complex and would therefore never satisfy energy-
momentum conservation for real external energy
and momentum. For the case of two complex-con-
jugate-mass particles, if their three-momenta
have the same magnitude their total energy would
also be real. However, the set of real spatial mo-
menta which satisfy this criterion is a set of mea-
sure zero when the total three-momentum is non-
zero. Hence, according to the argument, the con-
tribution comes only from a set of measure zero
and therefore may be ignored. '

This argument is incomp&. ete in two respects.
First, the states of a complex-mass particle in a
relativistic theory have to be defined with some
care. States with well-defined spatial momenta do
not exist. Rather, one should admit only those
states for which the momentum-space wave func-
tions are analytic. " Under such a constraint, the
complex-momentum states are no different from
highly singular linear combinations of real momen-
ta. Also, when we have a pair of complex-conju-
gate particles, it may be sufficient if their total

momentum is real. Secondly, even in the usual
perturbation theory it is quite evident that while
the discontinuities of scattering amplitudes are as-
sociated with the possibility of intermediate physi-
cal states with all the particles on the mass shell,
the actual contributions to the discontinuity come
not only from the "mass-shell" part of the propa-
gator but also from the "off-mass-shell" part.
For the single loop in Fig. 1, with real masses,
equal amounts stem from the completely "on-shell"
and the completely "off-shell" parts. " For the
case of complex masses we must not therefore sim-
ply assume that the contribution is zero.

Since the prescription is frame-dependent, we
must investigate whether or not the results are
frame-dependent. One cannot rely on the relativ-
istic invariance of the theory or analytic continua-
tion since the integral is defined by the explicit
form (2.4) and not by analytic continuation. Other-
wise, we would get the standard result anyway.

As a general observation we can assert that no

modification of integration contours can yield am-
plitudes which would satisfy the proper unitarity
condition. This stems from the fact that the unitar-
ity condition, in its basic form, deals with the en-
tire state and should thus be associated with the
propagator for the entire state rather than for indi-
vidual particles.

In view of these considerations and the indirect
justifications given by Lee for the expression ob-
tained for the quantity (2.4), we must evaluate it
directly and study the resulting expression.

IV. STRUCTURE OF THE VACUUM

POLARIZATION LOOP

We calculate the integral

'K2 (c)
1

de&,(='p+ q)D, (-'p e), —
27ri

with

1 1/2 1/2
D (q)= i-q2- m2 q2 M2 q2 M*2 (4 1)

FIG. 3. Areas of discontinuity for the terms of type
(c): The contours of the dz integrals go within the fish-
shaped figures (c) and (c'), whose surface is given by
the values of f(:2 which satisfy Eq. (4.8). The "physical"
thresholds z() = (m+M) and Ko = (m+M*), respectively,
do not play a specific role as boundary points, but lie
in the interior of the figures (c) and (c').

for real values of Pp and p This expression con-
tains six terms which can be classified as follows:

(a) Both propagators have mass m.
(b) Both propagators have mass M or both mass

M
(c) One has mass m and the other M or M*.
(d) One propagator has mass M and the other

mass M*.
Each of these terms separately is logarithmically
divergent, but this divergence cancels when we
take their sum.
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Considered as a function of q, the integrand has
four poles at the points

and

'P.-—-[(-'p+ q)'+ p ']'"
~.= h. - [(-'p- q)'+ u.']'"

(4.2)

e.=- lp. +[(lp+q)'+~ ']"',
~.= lp. + [(lp q)'+-&']"'

where p, „p,2 have the values

(4.3)

y. , = g, =m for the terms of type (a),

pr2 M OI p 1 p2 =I* for terms of type (b),

g, =m, g, =M or M for terms of type (c),

g, =M, p, =M* for terms of type (d).

The integration over q, is to be carried out over a
path that goes from -~ to +~ below the poles (4.2)
and above the poles (4.3). The integration over q
goes from —~ to ~ along the real axis for each
component. In the case where at least one of the
masses is complex the open contour of integration
becomes detoured off the real axis to complex val-
ues to q, .

Expanding the D@(q), the six terms in I can be dis-
played directly as

I(P) = I(m, m; P) + —,
'

I(M, M, P) + ~I(M*, M*, P)

—I(m, M, p) —I(m, M*, p) + —,'I(M, M", p),

(4 4)

where

I(p, „p,,;P) = s dl dk' —+—1 1 1

0 1 2 PO I 2

with

The integration over K' is to be carried out over
the complex contour defined by (4.6) for each value
of l as k' varies from 0 to ~. For different values
of l the variability domain of K is, in general,
along a different complex contour. As k'- ~, K'

—~, and the other end point of the K' contour is
given by

[~'(1 ) + p ']'"= [(RPE+ 1} +» ] + [(~pc -1)'+ &2']" .
(4.8)

In all except the terms of the type (a), the v' inte-
gration runs over complex values within a fish-
shaped domain which includes (p. , + p.2)' at the inner
point.

This fish-shaped domain avoids the real axis al-
together for terms of the type (b) and (c), as we
may see from Eq. (4.8) or (4.6), since in both
cases the imaginary part of v'(I) is either positive
or negative. [See the cases (c) and (c') in Fig. 3.]
Since the complex masses enter these terms in a
symmetric fashion, it follows that the net contri-
bution from these terms for real p, is real. For
terms of type (a), the v' contour is always real and
the resulting function has a branch point at p'=4m'.

For the term of type (d) the fish-shaped domain
sits astraddle the real axis. The shape and extent
of the fish-shaped region depend on p, and as long
as P, &0, there are contributions off the real axis.
The integral clearly is real for real p. For differ-
ent values of l we get a series of gentle curves
peeling off the edges of the fish (Fig. 4).

The tip of the fish, K';„, can be calculated and
is

K2 M2+M+2 1P 2

+[(2MM + —,'p, ')'+(M —M*)'p, ']'". (4.9)

E, =[k'+ (-,'P, +l)'+ g, ']'",
E, =[k'+ (-,'p, —I)'+ y, ,']'". (4.5)

Clearly, for p, ~0 and ImM 40,

;„&Ko' =(M+M*)'. (4.10)

We have carried out the transition to cylindrical
coordinates in computing (4.5). Details of this sub-
stitution and the subsequent manipulations are con-
tained in the Appendix. By introducing the complex
variable K', which is defined by

This inequality shows that the result of the integra-
tion is not Lorentz-invariant since K'~, „explicitly
depends on p,' for the complex-mass ease. It is
therefore not only a function of the invariant quan-
tity p', but also of p, . Rewriting (4.7) in the form

(K +p, ')'" =[k'+ (-',p, +l)'+ p, ']'"
+ [k'+ (

—p, —l)'+ y, ,']"',
(4.5) may be written in the form

1(v„w.;D)= J «

(4.6)
I(M, M*; p) = v d l

0

1 1
2 2~1/2 2 2+ ~)

~K +P, ) P —K

(4.11}

1 1

(4.7)

we now integrate (4.11) by parts with respect to l.
Dropping the unimportant surface term (see the
Appendix) and changing the name of the integration
variable ~' to s', we get (A13):
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ds', [s' —(M -M*)']'"[s'—(M +M')']'", , + c.c.

p (M'-M*') 1
)+ C.C ~4S' P —s' (4.12)

The integration goes along the complex path which

is the boundary of the fish-shaped region in Fig. 4.
To be more explicit, there are two paths: one in

the first contribution of each term from K ~jg to
infinity in the lower s' plane, and the other path
which has to be taken from K';„ to infinity in the

upper s' plane for the complex-conjugate term.
Both paths are described by the parametrization

s'(I) = ([(-,'P +I)'+M']'"+ [(-,'P, —I)'+M*']"'P- P,',
(4.13)

with l = 0 to +~ and I = 0 to -~, respectively.
We are now in a position to study the complete

vacuum-polarization integral (4.1). For this pur-
pose we divide the domain of values of the invari-
ant s= p' into two ranges:

is invariant. The first piece gives an invariant
pole contribution. However, the second term in
(4.12) does not vanish in this region, and is not in-
variant. Therefore, the function in this region is
not relativistically invariant. The amplitude here
is not the analytic continuation of the region-I am-
plitude, because its derivative is discontinuous at
the pseudothreshold K'~jg.

Consequently, explicit calculation reveals that,
contrary to the hopes and declarations of Lee, the
rule for evaluating amplitudes does not give rela-
tivistically invariant results. A theory based on
such rules should therefore be abandoned.

V. THE TRANSITION AMPLITUDES IN A THEORY
WITH INDEFINITE METRIC AND SHADOW STATES

mjli &

II. K j„s
The contribution of the terms from type (a) does
distinguish between the two regions, because there
exists one covariant threshold which corresponds
to Kp in thi s

case�.

The fi sh figure s from the type s
(b) and (c) do not include parts of the s axis, there-
fore the region I covers the total s axis in both
cases. To summarize, for real values of s the
contributions of type (a), (b), and (c) are all
Lorentz-invariant. The terms of type (a) have the
usual branch point at s =4m'. The only interesting
term is the one of type (d), which comes from a
pair of particles in the intermediate state with com-
plex masses which are complex conjugates of each
other. In what follows we confine our attention to
this term only.

In region I, the integrand of (4.12) has no singu-
larities and we may therefore deform the s' inte-
gration contour to lie along the real axis from K'

to ~. It is then verified that the second term of
(4.12) does not contribute at all and we get the stan-
dard Lorentz-invariant contribution from the first
term. This result is therefore the boundary value
of a real analytic function; the analytic continuation
of this function has a branch point at s = (M+M*)'.
However, this branch point does not lie in the re-
gion I, where this is the proper expression.

In region II the first term in (4.12) can be split
into two pieces by integrating from K' . to Kp' and
from Kp to +~. The second contribution is the ana-
lytic continuation of the function from region I and

2
&mtn

3~0
I

II=0

)&0

2
KA

FIG. 4. Area of discontinuity for the terms of type (d):
The tip of the fish is called K ~jg EQ. (4.9). The surface
points with maximal imaginary part are K&

——(M +M ~)

+ 2M*[(M + p ) ~ —M] and K 2

We are led back to the question of unitarity of in-
definite-metric theories. The aim of any such theo-
ry is to produce finite results, but the states with
complex mass and negative norm should not contri-
bute to probability and hence should not enter the
unitarity sum. The principle of these theories is
to deal with the propagator for the complex state:
We chose it to be a standing-wave propagator for
the shadow states and a forward propagator for
physical states. The physical states consist exclu-
sively of physical (real mass, positive metric)
quanta; all other states are shadow states. The
general theory of shadow states has been developed
by one of us and is discussed in several other pa-
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pers. "'" Here we shall consider them only within
the context of the two diagrams that we have ana-
lyzed. 21

For the single-loop diagram (Fig. 1 or 2) the for-
ward propagating Green's function for the two-par-
ticle state is given by the product of the two causal
propagator s:
( ~ — )=qi blspql p2q~ 2+ ie(pq)2p2+

(5.1)

But the standing-wave propagator is obtained by
taking the average of the forward and the backward
propagator s":

1 —2 ~g

2 q' —g, ' —ie (p —q)' —g, ' —ie

{5.2)

Of the four types of contributions considered in
Sec. IV, only those of type (a) are physical states
and should use propagators of the type (5.1). The
integrations over the circulating momenta for shad-
ow states are to be carried out covariantly accord-
ing to the prescriptions (5.2). With this prescrip-
tion the remaining contributions to (4.1}and (4.4}
are explicitly real and covariant. Since they have
no contributions to the imaginary part of the dia-
gram there is no contribution to unitarity by the
shadow states. This of course occurs at the cost
of the analyticity of the loop diagram. It follows
that unitarify is satisfied to the lowest order by the
physical states alone.

These considerations can be extended to the cal-
culation of the double loop. (See Fig. 5.} The inter-
mediate state containing the particles mMM* is by
definition a shadow state and the integral becomes

~ ~ ~
Z(p) = —,

' d'q d'k q'-m'+is k'-M'+ie {p—q —k)'-M*'+is
-z

q' —m' —ie k'-M' —ie (p —q —k)'-M*' —ie, ' (5.3)

This contribution to the vacuum polarization is
a real function for all real values of p' given by
J(p)+J (p). The function is continuous across the
point p'= (M+M*+m)', but on either side of it we
have different analytic functions.

For more complicated graphs, like the box dia-
gram, these considerations have to be elaborated
somewhat. We should arrange the calculation so
that the intermediate states are explicitly displayed.
Among these only the physical states have forward
propagators associated with them, and they alone
lead to imaginary parts for real values of the mo-
menta. The shadow states have standing-wave
propagators. While the recipe sounds tedious, for
the simpler diagrams for which explicit computa-
tion is feasible the shadow-state prescription is
straightforward. "

The net result of the introduction of shadow
states is as follows: We calculate the contribu-
tions from various Feynman diagrams in the usual
manner. From these diagrams we subtract out the
discontinuity coming from shadow states in a sys-
tematic fashion. We subtract the contribution from
the second-order diagrams, and this result is used
to compute the next order, the shadow-state contri-
bution to the discontinuity is then again subtracted
out, and so on. Of course the shadow states affect
the scattering amplitude through their continuous
part, and hence contribute to the total amplitude
indirectly. But all imaginary parts are directly

associated with physical intermediate states, and
these alone satisfy the unitarity condition. "

VI. DISCUSSION

We have shown that the method of shadow states
leads to finite quantum field theories with explicitly
Lorentz- invariant transition amplitudes. Unitarity
is satisfied by physical states alone. The ampli-
tudes so obtained have local analyticity and continu-
ity properties, but they are never given by a single
analytic function. Rather they are represented by
piecewise analytic functions which are continuous
at their joining points along the real axis of the in-
variants. This is a fundamental property of any
theory with shadow states ("hidden" states) and we
do expect that scattering matrix elements should
not be represented by global analytic functions in

FIG. 5. Self-energy diagram of the field fI) in the
theory with I I =f PQ .



2250 GLEESON, MOORE, RECHENBERG, AND SUDARSHAN

any consistent quantum theory.
It is curious to note that all the rigorous argu-

ments for analyticity based on basic quantum me-
chanical considerations only require local analytie-
ity. It is only quantum field theory with its twin

assumptions of the completeness of scattering
states and the symmetry between emission and ab-
sorption that suggests global analytic functions. In

any theory with shadow states (and these appear to
be the only consistent theories at the present time}
the scattering states satisfying unitarity by them-
selves are the subset comprising the physical
states and are, therefore, not comp/etc in the
sense of quantum field theory. It is therefore not
surprising that the use of standing-wave propaga-
tors naturally leads to violations of the global ana-
lytic ity.

Such violations of analyticity would exhibit them-
selves in the asymptotic behavior of wave functions.
A discussion of this question is beyond the scope of
the present paper. We are content here to point out
that the departure from the assumption of global
analyticity as well as the possibility of complex
poles would make it imperative that we reexamine
many of the conclusions that we have arrived at in
particle physics.

We have shown above that avoiding shadow states,
and yet dealing with indefinite-metric theory using
certain rules of computation, fails to produce a rel-
ativistic theory. Quantum field theory with indefi-
nite metric, however, has a satisfactory theoreti-
cal framework and should be systematically tested
against experiment.

Added note. After we had completed this work,
Professor H. P. Stapp brought to our attention a re-
port of lectures, delivered by T. D. Lee at the
"Ettore Majorana Summer School, 1970" at Erice,
in which he seems to have completely retreated
from the previous Lee-Wick prescriptions. We un-
derstand from his writing that he agrees with the
fact that the old prescriptions are not covariant
and that he proposed a new set of rules. Professor
S. Okubo has kindly informed us about a paper by
N. Nakanishi, who also has reached the conclusion
that the prescriptions given by Lee and Wick are
not covariant. " We would like to thank Dr. N. Nak-
anishi for several critical remarks.

APPENDIX: QUADRATURE OF THE VACUUM-

POLARIZATION DIAGRAM IN THE
LEE-WICK PRESCRIPTION

In calculating perturbation diagrams of quantum
field theory, several methods have been developed.
In our case, we perform a direct integration of the
vacuum-polarization diagram and avoid the use of
the niore sophisticated methods. There are sever-
al advantages to this direct approach. The direct
integration does not involve any implicit analytic
continuation and, since analyticity is not preserved
in these amplitudes, direct integration does not in-
troduce any misleading simplifications. The form
of the propagation functions is not manifestly co-
variant and direct integration of the diagrams will
reveal any frame-dependent terms. The obvious
disadvantage is the difficulty of studying more com-
plicated diagrams.

The Energy Integration

Starting from the integral (4.1}we carry out the

dq, integration. According to the Lee-Wick pre-
scription, the contour should pass below the poles

and

and above the poles

V. = -2P. + [(2P+i)'+ u, ']'"
and

e0 = 2P0+ [(2P —i)'+ V2']"'.

Since the integrand (4.1) is eventually regularized,
I is supposed to behave well at q, = ~ and we may
close the contour at infinity. Therefore the q, in-
tegral is 2' times the residue of either the two
poles above or the two poles below the contour.
The integral is

1 1 1
1(i2g~ 02~ P) —2 d 0 + 2

with

(Al)

New Variables in the Three-Momentum Integration

Introducing cylindrical coordinates

q„=k cosp, q„= k sing, q, = l, (A2)

and defining the direction of the incoming three-momentum p as the z axis, "the angular integration be-
comes trivial, and the integral (Al) reduces to

I(g„p,„p) = w dl di, 2 —+—1 1 1

0 1 2 PO 1 2
(A3)
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FIG. 6. Mapping of the k2-/ half plane to s', l variables.

In the case of the usual Feynman prescriptions with real masses, the further evaluation of (AS) is straight-
forward and we review it so that the required changes for complex masses will become apparent. The inte-
gration variable k' is replaced by a new variable s', defined by

and

(s'+ p, ')'" = [k'+ (-,'p, + l)'+ p, ,']'"+[k'+ ( tp, —l)'+ g,']'", (A4)

1 1
I(y»p, ,; p) =, v dl ds',

(y Ls'+ P )
min

(A5)

The path of integration goes along the real s'axis from a minimum value s',.„, depending on l and p„ to in-
finity. The mapping between the k'-l plane and the s'-L plane is shown in Fig. 6. After interchanging the
dl and the ds' integrations, I(y.» p, „P) becomes

I{p» y.,; p) = v ds' dE, ,~s +P. j1 2

where

l, =
2

', (p, ' —g, ') + 2, (s'+ p.')'" [s' —(g, —g,)']'"[s' —(p, + g,}']'".
The trivial l integration can now be done directly, and the result is

I(p» p2,
.p) = I(p, ,', g, ', s= p')

a isa 2 1/2 1=v, [s' —(p,-g,)']'"[s' —(p, , + p, ,)']'"
~v, +v, )'

(A8)

where we have now introduced the -i~ prescription.
The steps leading from Eq. (A5) to Eq. (A8) are not legitimate in the case of complex masses with the

prescriptions of Lee and Wick. Equation (A4) does not define a real quantity s' for real values of the three-
momentum q. This in turn implies, after change in the order of integrations, that the dl integration must
be over a complex path. We remark, however, that none of these complications would arise in the special
case of a, complex pair in a frame with p, =o. This case Lee and Wick exclude as pathological.

The Complex-Pair Loop Integral

To be specific, let us now turn to the case of p, =M and p, ,=M*, and to a real s. In this case the integral
(A5) should be real because to each contribution from a path s (l) we find the complex-conjugate contribution
from a, path s'( —l). Therefore, we can replace Eq. (A5} by

I(M, M*; p) = m dl ds', 2 yg2 +c~ c.1 1
(A9}

The paths in the complex s' plane are shown in Fig. 4.
It is very tempting to pass from the area integral (A9) to a surface or line integral by integration by
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parts. The derivation of the ds integral with respect to the variable l yields two terms. One is coming
from the boundary according to Eq. (4.13). The other results from the fact that the paths in the ds' integra-
tion are also l dependent. These latter contributions cancel against the "surface" term of

IM M* —2 dll
1

[(-' +f)'+M']'" [(-' —f)'+M*')'" [s'(l)+ ']"' s —s'(l)

(A10)

This surface term is finite at l = ~.
Now we replace the dl integration by a ds' integration via the s'-defining relation (A4), and obtain

I(M, M; P) = x ds'l(s'), , „, , + c.c. .1 1

K min

(A11)

The remaining l in Eq. (A11} can be expressed in terms of s', according to

f(si) Pz (M2 M+2) + (s +P ) I [s —(M —M+)~]&l [s —(M+M+)2]&l
2S 2s

(A12)

In Eq. (A12) we recognize an old Eq. (A7); however, in the present case only the positive square root has
to be taken. Therefore, different terms from those expressed in Eq. (A8) will appear. We insert the re-
sult (A12) into the integral (A11) and obtain

I(M, M; p) = I, +I, ,

where

p, (M' —M*') 1
ds I I 2w lf'2 I+ C.C ~

~s &s +Pg &

min

and

I2= x ds', [s' —(M —M*) ]' [s' —(M+M*) ]',+c.c. .
K2 . 2S s —s

min

(A13)

The paths in the s' integration go from z ~ to infinity in the lower half plane for the first contribution to
each integral, and in the upper half plane for the complex-conjugate contributions.

Evaluation of the Integral (A13) in the Different Regions of s

Let us assume a definite three-momentum P, of the incoming particle. Then we can talk about different
regions in the variable s = p, ' —p, ': (I) In the first region, s is below the pseudothreshold &'m~. (II) In the
second region, s lies between x';„and the "physical" threshold (M+M*)'. (III) The third region extends
above (M+M*)' to infinity.

In the first region, I, the integrands of both integrals I, and I, have no singularity, because s does not
fall in the fish-shaped region. Then we may detour the s' path to the real axis, and the same paths may be
taken for both contributions to each integral. Now, in the first integral, all factors are real except for
(M'-M '). But then the conjugate-complex term cancels the other one. The second integral, I„we may
split into two parts, according to

r
OO (N+ N+)& oo

ds' ~ = ds + ds (A14)
min

2
min

2 (N+ N )2

Then the first factor, [s' —(M+M )']'", is purely imaginary since s' is below the threshold, and the conju-
gate-complex term cancels the other. The final contribution is

I(M, M*; p)=v, [s' —(M -M*)']' '[s' —(M+M*)']'", for s&x'
(g +~*) S s —s (A15)

In region II, that is, ~' in& s & (M+M*)', the integrands of both integrals 1 and 2 show singularities, and

the s' integral cannot be detoured to the real s' axis at the point s = s', but can only be brought to slightly
above and slightly below the real axis.

Thus we have to replace
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1 1
, —P, +i5(s —s'),

s —s s —s
(A18)

where P refers to principal value, and the (+ ) sign to the complex-conjugate term.
With the formula {A16) the integral in region II becomes

I(M, M*; p) = v'i — '
2 ~, +p, (M' —M 2) [s —(M -M )']'"(+)[s—(M+M")']'"

S S+P~ s
40 I

+v, [s' —(M -M*)']" [s' —(M+M*)']"', , for v'~;„& s &(M+M")'. (A17)
(M+M )

s —s

Here the explicitly indicated (+) sign before the imaginary square root reminds us that we have to take the

(+i) root T.he result (A17) is obviously noncovariant.
Finally we evaluate in region III above the physical threshold and obtain

9r' -M*') " ds 2 1 2
I(M, M*; p) = —s~i ' + 1r ', [s' —(M —M*) ] [s' —(M+M ) ] P

for
s o- {M+M*)

(A18)

In the expression (A18) the second term of the right-hand side of Eq. (A17) is missing. However, the tran-
sition from region II to region III is analytic. " Thus we may consider the regions II and III as a single one.

We note that in the limit P, -O the fish-shaped region shrinks to the real axis, region II disappears, and

all the noncovariant contributions are removed.
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We consider a two-dimensional field theory which is a generalization of the Thirring model
to include SU(2) symmetry, and investigate the properties of the isospin currents in this theo-
ry. The anomalous divergences of the axial-vector currents are calculated using functional
methods. The results agree with those obtained by Hagen using nonperturbative techniques.
The anomalies are found to have the form suggested by a dynamical theory of currents in two
dimensions.

I. INTRODUCTION

Field theories describing massless fermions in
two-dimensional space-time have some peculiar
properties which can sometimes be used to sim-
plify calculations. In the Thirring model, for
instance, these properties can be used to write
down an explicit solution. ' The trouble with the
Thirring model is that it is too simple. While it
may give some insights into purely field-theoreti-
cal problems, it is not an interacting theory in
the usual sense. Thus it might be interesting to
look at nontrivial generalizations of this model.
One possibility is to give the fermions a mass. '
This leads to a nontrivial theory, but at the ex-
pense of giving up the simplifying features as-
sociated with massless fermions. In this paper
we take a small step in a different direction by in-
vestigating the properties of the currents in a
Thirring model with internal symmetry.

The theory we have in mind is described (for-

Cr", r'k = -2g'".
We also introduce the matrix

y'=r'r'

and the invariant pseudotensor density

I v
yves F01

(1.3)

(1.4)

(1.5)

For a vector A", we will introduce the notation

mally) by the Lagrangian

2 =20+ Zoj,"j,„,
where

z, = ,'fqy s„q —.—'f(sp)y"—q (1 2)

In (1.1), j," are the vector currents gy~ ~v'g,
where the 7., for a=1, 2, or 3 are Pauli matrices
acting on the internal-symmetry indices twe work
with SU(2) for simplicity, but everything we do
works for SU(3)J. We use the notation -goo =@"= 1.
The Dirac matrices satisfy


