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From general principles of quantum field theory (especially locality and Poincare invari-
ance), the small-distance behavior of commutator matrix elements, and partial conservation
of axial-vector current (smoothness of the matrix elements in the meson masses), sum rules
between the four weak isovector form factors and their first derivatives at zero momentum
transfer are derived.

I. INTRODUCTION

In two recent publications" we started a systematic investigation of the behavior of commutator matrix
elements at small distances on the basis of general principles of quantum field theory. These investiga-
tions gain some physical significance' in connection with Gell-Mann's program of current-generated com-
mutator algebras. "

In the present article we give an application of these ideas and derive from the current-density algebras,
especially from the nonoccurrence of q-number Goto-Imamura-Schwinger terms and partial conservation
of axial-vector currents (PCAC), a sum rule between the four weak isovector form factors.

We assume the equal-time commutation relations for the current densities, '

»m&+Il j:(yt, ; It). , j8(o)~]~'&'=e( .8)'&+Jj",(o)cl4'&It(o)~

to hold for all C" functions it (x), all state vectors 4', 4 from a certain domain D of the Hilbert space of
physical states O which is stable under the Poincare group, and all symmetric 5-sequences y, (x')
=:(1/5)cp(xo/5). Here y(x') is a C" function with compact support contained in [-a, a] and normalized ac-
cording to'

dx'y(x') = 1. (2)

(The equality sign with the colon means "is by definition. ") Of course, we assume the currents to be mem-
bers of a complete local Wightman field theory. ' "

T means subtraction of the vacuum expectation value before taking the limit.

&oil . . ]lc&'=&41( ]14& —&Ol[ ] lO&&4 JI4».

A consequence of (1) and Poincare symmetry of the theory are the following two relations':

lim d x qq x' x h x (4 a„j~(x,, j8 0 „4 =0 (4)

lim d xyz x'x h x(% j (x„c),ja(0~ 4 =0 (k=1, 2, 3). (5)

In other words Eqs. (4) and (5) are necessary (but not sufficient) conditions for the absence of q-number
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Goto-Imamura-Schwinger (GIS) terms in the Gell-Mann relations (1).
In the following we will use the relations (1), (4), and (5) only for the special test function h(x) = 1

(charge-density relations). However, the conditions (4} and (5), even in this special case, are in general
valid only if no GIS terms occur in (1). Suppose we add on the right-hand side of (1) such a term:

(4 I
S".,"'(0).

I C», , h(z)

with

Sought

l(») [5 (5cv 5cA) + 5cA]d )' guts JK(»)

+[5„(5'"—5'~)+5'~J i~f ~'e"P',"(»},+ ,'e„8-~(1+g")e"'„,[a"A "(»), —a'A,"(»),]), (6)

where J,"(»), andA "(»), are local operators, e"'" is the complete antisymmetric tensor, and the constants
e, f, g have the symmetry properties

ee f g f 8 dfyg defy ~y= y y= 'y y= — y

Then we get, in the same way as in Ref. 2,

d'» V', (»')»'h (x}(e
I
[a„j&(»).; j', (0),]14'&' = 2[5.,(5"—5'") + 5'"ld. ,"&e

I
s „Z„'(0),I e& h(z)

$ ~p Bgg Z =0

(8}
and

lim 'dr»p~(»)' »(hx)(4'
~ [j'„(»),; s,j8(0),] ~4&

$~0

= —2i&. iY" —P )+r Id".s" (&e'"la'a. z;to). lsihio) ~ «'18.&;(0).l+) h( i
ff Z =0

Obviously, for the special case h(x) -=1, the condition (4}holds, but (5) does not if GIS terms of the type
occur in (1).

Furthermore, this example shows that the relations (4) and (5) are not sufficient conditions for the non-
occurrence of GIS terms, since the second and third term of (6) do not show up any more in (8) or (9).

In Secs. II and III we derive from Eqs. (1), (4), and (5) [taken for one vector —and one axial-vector —cur-
rent, external one-nucleon states, and h(x) =-1] and the PCAC assumption in the form of smoothness of ma-
trix elements in the meson-mass variables, the following sum rules between the four weak isospin form
factors:

(
d n d n-1

G (0)[F,'(I) +2u'F'(f)] —(I+2u')G (I)dt" mp dt"
,
f=o

n2u j m ' d" ' m' d" ' n —' d"'
+

ppg2 ~ df n-1 A~ ' 2~ dt n-1 m2 dt n-2 P~ IG (~)

(10)
where F, (t) and F (I) are the isovector parts of the electric and magnetic form factors, G„(f) is the axial-
vector form factor, F~(t) is the induced pseudoscalar form factor, and finally u is half the difference of
the anomalous magnetic moments of the proton and neutron. '

= z(uq —u„) =1.85.

M is the nucleon mass, m the pion mass, and rn~ the p-meson mass. The normalizations are

F,"(0)=F (0)=1, G„(0)=1.2, n=1, 2, . . . , n

The number n in (10) depends on the smoothness of certain matrix elements in the meson-mass vari-
ables. Roughly, it is the number of derivatives with respect to the meson masses being sufficiently small
at zero momentum transfer (see end of Sec. III).

In Sec. II we derive from Eqs. (1), (4), and (5) the corresponding Low equations. In Sec. III we apply
dispersion theory and PCAC to get our final result.
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Our next step is to replace the generalized charges, respectively, their first moments in (1), (4), and

(5) by four-dimensional integrals over the corresponding current divergences or, more generally, to re-
place the zeroth components of the currents as far as possible by current divergences. In general, this is
done by means of Gauss's theorem. "" In the present simple cases of charge moments of at most order
one, we can considerably simplify this procedure in the form of a division problem in momentum space.

We consider matrix elements between one-nucleon states IM, k, 6& of mass M, four-momentum k, and

internal quantum numbers (spin, isospin) 5. In short we denote these states often by lk&.
Furthermore, let us introduce the notation

F"' (x) =(k, I
[I'."(2x);i s( 2x)] l-k. &'

=e "*(-k,l[j."(x);jg(0)] Ik. &',

Fn, (x) = &k& I
[8„j"(ax))j 8( ax)-]

I
k &, etc. ,

with

P = -(k, +k, ), 4 = -(k, —k, ).

The Fourier transforms of these (generalized) functions,

(12)

satisfy the following divergence relations:

Fo...(q) = -i(q —&)„F,"„„(q),

P,"...(q) =i(q+n )P,":,,(q),

F,„D,(q) = i(q &) P-,"„~,—(q)

=i(q+n. )„Pn, (q)

= (q -&)„(q+&)F,":„(q).
Let us first consider the left-hand side of (1) for the special test function k(x)—= 1:

((, l(f(y;t)is(0)(l& )' (2')"*f.d )=l ;,( &', ~)('".( ),

with

(14)

(15)

(16)

(17)

We want to use the divergence equations (14) to replace j' by e„j":
P n, (&u+a', Z) = i(dF0', (~+-n, ', Z). .

For the unique solution of this equation (division by ~) we need the exact behavior of all functions in the
neighborhood of co =0. This can be obtained from the spectrum of possible intermediate states in the com-
mutator matrix elements.

Besides the discrete one-nucleon states we have a continuous spectrum of many-particle states starting
with the two-particle pion-nucleon states. The support of the latter contributions is given by

suppP:::(q)„(:-(q: (q' & -p'+[(M + m)'+(p+q)'J '")U(q' & p' —[(M + m)' —(p —q)'] '")].
Here m is the pion mass. At the point q = ~ +4 we therefore have

F .. . ((d+a', a)« ——0 for (dggP

with the region 9R defined by

(18)

(19)

k —[(M+m) +k,2]"2«()&k +[(M+m) +k,']'" k =(d(k;)=[M'+k']" ) (20)
The essential point is that there always exists a finite circle of 6 =0 with 9R&@. In the following we re-
strict 4 to such a circle without mentioning it.

Next we calculate the one-nucleon contributions to the intermediate spectrum:
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F~' (q}, =(2v)"' Q[e(p'+q'}5((p+q)' —M')&k,
I
j„"(0)IM, p+q, r& & r, p+q, Ml j~(0) I k, &

- e(P' —q')5((p - q}' —M*)&k, I js(0) IM, p - q, r& & r, p - q, Ml j".(0)1»&J. (21)

FD, ((u+n, o, Z) =Fn„D ((u+n, ', Z) =0.

In view of (22) and (23), Eq. (17) has the unique solution"

Now, it easily follows from (14) and (19)-(21)together with u5(u&) = 0 that for &u&R

1F"'(u&. .+. 6,Z) =(2v)"'5(&a&)g &k, I
j„"(0)lk„r& &r, k, lj ",(o) lu, &

— &u, lj,'(0) lk„» & r k, )j90) lk, &

(22)
(23)

F „(& +n', ~) = —'F', , (~+n.', Z)+(»)"'5(~)g &» Ij'.(0) Ik» r& & r, kil js(0) I 2&
I

&k, ljp(0) Ik2, r& & r, k2lj~(0) lu, &
2(d k2

(24)

(25)

For the special case v=0 we can go one step further and divide once more. In this case we get, from the

divergence equations (14},

~FD, (~ n+', Z) = -i[F~ D ((a+a', Z) —i 2n.,F"D, (&a+a, Z)J.

According to the boundary condition (23), the unique solution is

FD, ((u+n. ', Z) = ——[FD ~ ((u+b, ', Z}—i2n. ,FD, (&a+a', Z)J. (26)

Inserting (15), (24), and (26) into the commutation relations (1), we get the Low equations

i(2~)"' Iim ~ Fn, 8(~+ n. ', Z)„cp q(~}
$-+p

+(2v)'g &»Ij'.(0).l» r&&r, kil js( 0)~l k. &
—

k
&k, ljs(0)~lk2 r&&r k. lj'.(o). Ik. &

Y

=e[,8] (k Ij (0), lk &

(27)

or, for v =0,

(2v)"' lim —
~ [FD D (&u +6', Z)„—i 2h g ~„(u+a', Z)„Jy ~ (u }.

$~p

+(2v)'g &k, I
j'.(o). Ik„r& & r, k, Ij's(0)~ lk, &

—
}

&k, lj'8(0)~ Ik»» & r, k, lz.(0).Ik. &

=er, s]'&ki Ifq(0)~1k~&.

(28)
We want to mention here that the explicit one-particle contributions in (27) and (28) are exactly the con-

tributions of the infinite timelike surfaces in the usual application of Gauss's theorem. "'"
The derivation of the Low equations corresponding to the equal-time limits (4) and (5) is done along the

same lines as above. However, there we will face a new problem. %e have to give a unique definition for
the product of the two distributions I/u and F(u) with the latter having point support in &@=0. We will dem-
onstrate this in the case of Eq. (5).

f 8
d'xq, (x')x'&k, l[f' (x), a„j,'(0)J I k, &

'=i(2v)'" d&o, F,' n(~+a', . q) qr, (&o)
q=Z

From the divergence equations (14), we obtain for q = &u+b.

P

&u, F,' ~ (&u+n. ', q) =i,F» (u&+ho, q} —iF,' n (~+~', Z}l g~g)g q
~ D +D

q =6 &nDS
q =6,

(29)

(30)
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Again we need the behavior of the square brackets in the neighborhood of the origin as a boundary condition

for the division by &d. From Eqs. (19)-(21), we get for &uQR

8 I

, F~ ((d yn. ', q) =(2v)"' Q 5(&d), (k, I
j"„(0)I M, q, r) & y, q, M

I
().j8(o) I k. &

q =6

+, k, ~,j80 M, q, y y, q, M j" 0 k'2
-'2

k'
——5(~) ' g&k)lj"(0)lk) y)&y) k)l d, j()(0)lk. &

de 2(d k&

k'
, (o, I

o j&(o ) I
o r) ( r, k, I ) ', to \ I(, ))I2&d k2

(31)

and, furthermore,

(&d+no, q) —ip). D (&()+n', Z) =-i(2v)"'5(&d)g ', &k, lj'„(0) Ik„y) &y, k,
I ()„j&)(0)Ik, &

q =6 )

*,(o, to.),'to)lo„r)(ro. l)'.(o)to ,)).

(32)

In contrast to the case before, the inhomogeneous part of Eq. (30) does not vanish at &d =0 but has a 5 singu-
larity at this point. Therefore, we have to define the product with I/&d in such a way that the result is zero
for v&9R. This is achieved by the definition1,. I 1 1—o E(u)) = —,

' lim
'

+ E((u)
(d p~p g (d+E (d —6

with the prescription that the limit as ~- 0 has to be taken at the very end of all manipulations; for in-
stance,1,. 1 1—o 5(&()) = —, lim ——— = 0.

Eel e~p E

(33)

This prescription should be kept in mind throughout the whole paper. It becomes very significant in the
calculation of the one-nucleon contributions to the dispersion integrals in Sec. III.

Now, the unique solution of Eq. (30) with the boundary condition (31) is

a
, r ( o', i() = —,r ( o', o) —ir,' ( o', o))CX g

q =6

+(»)"'p «~) . . 2„,-&k, lj'.(0)IM, q, »&r, q, ~ls.j8(0)lk. &

q =4~

8
+ ( - &k, le.js(0)l~, q, r&&r, q, ~lj'. (0)lk. &

q =k2

g

5(&d) k, &k, I j'„(0)
I k„y) & y, k, I e„j()(0)I k, )

o

2&v(k )2
(o, lo.),'(o)o„r)(r, o, l)'. (o)lo, )

)
Inserting Eqs. (29) and (34) into Eq. (5) we get, by means of lim 4),(&()) = 1, the I.ow equation:~p

(34)
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8
-&2 »"* ~ —~ i'...( ~ ~', 4& —i!.,( ~~'

i&), &, & &

Q ~p bq'

+2(»)'Q
&

- &&2, Ij'(0)l~, q, r&&r, q ~Is, jt&(0)l&2&
i Bq' 2~(q q =k

'y

+
& 2 «- &, I&. js(0)1~, q, r) &r, q, ~l j'.(0)l~2&

aq
' 2'(q q =k2g

In the same way we obtain the Low equation corresponding to (4):

[2 &"* d —,i,', i +~'', 2& ~, &i&, , ( i', t&&- i F; „„( +~', i&&ll-, = )i & &

=0

(35)

~ (& &'g, (2 - ( I
&ii'. t IMD&, , t&i&(iI Mt,i&l0

'y
2 q =k

+, 2
- &~&lif(0)IM, q, r&&r, q, ~Is„f."(0)l~,&

sq& 2ur q q =k

Instead of this equation we will use in the following the difference between (36) and (27) for v = l.

=0

(36)

III. DISPERSION THEORY AND PCAC

Our first task in this section is to transform the Low equations of Sec. II into covariant dispersion rela-
tions. We define smooth retarded and advanced commutators F.::(q,A)' by

1F "(q, q, )
' =-—

0 . F "(~,q)q~(~ —q')
27t (d —Q' + Sf

2, „.f d *fdi e e('i &» i'"—*i'&i''::(*&,'

F".(q, q ) F".(q, q ) =--2F" (q).

(37)

(38)

Furthermore, we make the technical assumption" that the limit 5-0 of (37) exists uniformly in q from a
neighborhood of @=A:

(39)lim F...(q, qz)'=&F . . :(q)'.
Q ~p

Our main demand, the absence of q-number GIS terms in the equal-time commutators, implies that these
limits define Lorentz-covariant sharp retarded and advanced commutators (see Appendix).

With the shorthand notation,

F":(q)'= '2tF:::(q)'+F (q-) j, .
'

the Low equations (27), (28), and (35) read

-(2&&)"' limF&2 ((u+&) &,
+(2»)' Q &"& i j&2(0). I "&, » &y»& lj&&(0)i& I&t'2&

(40)

1-, (&, I&&&&o&. &i., y&(i, &. &i'(0&. Ii.&)='r si'&i, lil(0&. I&, &
2(d(k2)

(41)
a 1

i(27&)" lim [FD 0 (&2&+6),o —2—i&,F",8(~+&),', j+(2&&)'P 2„(& )
&I'i lj'.(0). II2&, » &» I2&lj'8(0)& l&2&

1
&&

&i&, li'sto& Ii., i&(i, i. li'. &0&. l&.&)='r, i'(i, li , t 0l &,i'
2

(42)
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-i(27()'" lim, F~ D ((d+b', q} —iF,'. () ((u+() ', Z)
q =Z ab

+I(»)'p, - &k, I
j'.(o). IM, q, r& &y, q, MI s.j8(0)bl k. &

+, &k, ls, ji)(0)ofM, q, y&&y, q, Mfj (0), fk~& =0.

Finally, the difference between Eqs. (36) and (27) for v= l reads

t(2v)"' lim, F» ((v +to', q}„—2ito.„F» ((o) +&', q)„~~O Qg a 8 ah fj D a&8 q=D

(43)

+ (2 )'~, 2;-;&k Is, j".(0}.IM, q, y&&r, q, Mfj'8(
sq' 2~(q) q=k

I+, - &k, li'8(0)olM, q, r&&r, q, Mls„j".(0).fk, &

1
(o )*I:Io o (o, l)..(o).(lo„»(|,o, (l~', (o), (lo, )

1
&k&lj8(0)ofko y&&»kolj (0) Iko&i et. , (i'&k&ljI(0)

(44)

In the last two relations the symbol o indicates the limit prescription introduced in Eq. (33):

(45)

(46)

with

lim F((d+t), )~ = ~ lim [F((d+t).)~+F( (u+n. ) ].-
ur~O Id~0

We decompose the (retarded/advanced) matrix elements into invariant functions. In this decomposition we

write explicitly, besides the invariant energy q p, the invariant momentum transfer t =4to', also the (off-
mass-shell) boson mass variables p =(q —a)' and t =(q+a}':

4

F".,(q)(')= t g u" (k, )r'T", (q)(b" „,, + tabb D.„}((q—&)', (q+t )', t
I
q. 0)' ) u "(k,),

y'= 1

Ti(q) = r', Tl(q) =n", T,"(q) = q", T."(q) = I (47)

The commutator F,v ~ (q), can be described by the same invariants as in (47) by means of the commutator
relation:

F,".n, (q), = -Fn„„(-q),. (48)

For the sake of technical simplicity, we assume unsubtracted dispersion relations in v =qP for the invari-
ant functions. The results do not depend on this assumption. They remain true if we admit an arbitrary
finite number of subtractions, since the PCAC assumption is made anyway for the real parts of the ampli-
tudes.

o:::(o,(, tlo o)l"=-o,j, ( o„,) o::(o. (, tl )„. (49)

with a similar expression for b:::(t(,, $, tfq p)(' in terms
b(. }, [b( },] into the one-nucleon contribution b(
b( ~ ~ )" [b(" ~ )"]

The one-nucleon part can be calculated from Eq. (21).
ant form factors, "

(k, I
j"(0)v fk, ) =u"(k, )ly" G'(t)+F"G'.(t)) u"(k, ),

&k, I j„"(0)„fk, &
=u' (k, )y'[y"G'(t), +to."G'(t),] u' (k,),

of b:::(p, $, t
I v), . We split the invariant functions

)', [b( ~ }',] and the many-particle remainder

With the decomposition of the vertices into invari-

(50)

(51)
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and the abbreviations

F (t) =G'(t)+MG'(t),

F~5(t) = 2MGO(t), —2tG~(t), ,

me get"
2

bD,. (p. , ], t
~ v),

' = -(2m)s~' g [6(P'+ q )5(2v —~(t - p, —j)}c„",( tt)G"„(p),G 8{ $}
ff, S= 1

-e(p' —q')5(2v+ ,'(t —-p, —$)) d„",(p)G",($}G'(u),],

(52)

(53)

(54}

and a similar expression for bD,. in terms of c„', and d„", .
The invariant coefficients c, c, d, and d are given in Table I.
Inserting Eqs. (46), (47), (50), and (54) into (41)-(44) and performing the necessary differentiations and

taking the necessary limits, we obtain the sum rules (the numbers in the square brackets indicate the Low

equations from which they follow):

-(2s)"'u ~(k, }y —$[y"b'+n. "(5'+b +b~ —M(b +b3))+ P" (b'+b' —Mb )]D,&(0, t, t~ v),"-(v- -v)}u'2(k, }
a(o, t) &

+(2w) u &(k, )y'(y" [G' (0),Gt(t) —G'g(t)G' (0),] +P" [G'„(0),Gg(t)+ G8(t)G' (0),]]u 2(k, )

= &(,s)'u "(ki)y'[y" G'(t), +&"Gy(t), ] u "(k,),

(55) [41]

2(2w)"'u'~(k, ) y' y' —[t'(bI'+b')n, (0, t, t
~

v)", —(v- -v)]
a(O, t) ~

b'+ —b' ——[b'+b'+b —M(b +b )] (0, t, t~ v),"+(v v)
(o, ~) ~ I M Da~s

+&' —[(b'+O' —Mb')~, (0, t, t .
~ v),"—{v--v)]

a(0, ~) ~

8( J',( ~)
—([Mb' —b. '(0'+b'+O' -M(b'+ b'))], (0, (, ti v)", it, —(v- -v)] u (k, )

+ (2&)'u'&(k, )y' y"[G'„(0),Fq(t) —F8(t}G'„(0),] + P ' [G' (0),G8(t) + G28(t)G', (0),]

+6'x8M —[G'(0),G&(t) —G8(t)G'(0), ] u'2(k, ) =et„8~~u'&(k, )y'[y"G~(t), +6'G'(t), ]u'2(k, ),

(56) [42, 44]

(2w)"'u'&(k, )y' —([y'b'+P'(b' —b'+Mb') +b.'{b' —b' —b'+ M(b' — ')b}] n(t, 0, t ~-v),"—(v- -v)ju 2(k, )
a(0, ~) ~

(2 )' "(a,h' —,
' »'fa'Jo)F', (t) —z', (t)G', (0}t—w'(t, (0)—s , tt) — s ,(t')s(0))—''*to.)',=o.

(57) [42]

a(u, t} is determined by the pion-nucleon threshold of intermediate states in the commutator

a(u, ()= [(M+m)'-M'- —.'(y. +g —t}]. (56)

The invariant functions appearing in the relations (55)-(57) are not independent of each other. They are
connected by the divergence condition (14),

(q+ a),Fn, (q), = 0,
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which leads to the two conditions

[- t)fb'+4(p+3$ —t)(b'+b')+-'(( —tt+t)b'+ v(b'- b')1D „(v, &, tl v), =o,

[b'+~(E, —t), +t)b'+~(g+3( —t)b'+vb')D, (t)., (, tl v), =0,

with the following solutions in terms of six independent functions:

b'D„,,(t, &, tlv), =vE~ „(t, (, tlv)„b'=-E',
b 2 —vE2 b2 —vE5

(59)

(60)

(61)
b =vE +E, b =vE

b' = ME' —E' —~($ —(((+t)E —~(3)+ tt —t)Eo, b'=-E' ——.(5 —t +t)E' ——.(3h+t —t)E'.

Next we specialize the currents to the non-Hermitian combinations:

j!,(x)(» = -(1/~~)[j,"(x)(,) +ti,"(x)(,) j,
~o (x)(» ' ~o (x)(o) ~

j",(x)(,)
= (1/~2)[ j,"(x)(,) —tj,"( )x(,)1,

j„"(x)(,) =j,"(x)(,
&

(r=1, 2, 3),
j"(x)(,&

=(-1) j"„(x)(» (n =+1, 0, -1).
The isospin decomposition of the invariant functions E' and the form factors is defined by

G'.(t)(,&

= X(6,)'T.X(5,)("(t)(»,

(62)

(63)

(64)

(65)E'.„„("),=X(5,)'Gr. ; r, j E.,(" ), +[T.; r8)E':, ( ~ ~ ~ ),)X«.)
Here &((5) are the isospin spinors of the nucleons and T„are again the isospin-lowering and -raising combi-
nations (62) of the Pauli matrices:

1 0 1 1 0-i 1 1 00
2 10' ' 2 i 0' ' 2 0-10 =— . 0 T 'T =6 "T

with

p 1 1
&[0(, 8] — &[B,n] ~ &t-i, i] t. -&.P) CP, +~]

all other components are zero.

(66)

TABLE I. The invariant coefficients in Eq. (54).

r
~ns

&ns
1
2

2

1
2

2

1
2

2

-2M
0

2P
0

-2M
2P
0
0

-2M
-M 2

2P
gpM

0
—M

0

4P

2M
1-2P
M
1-4@M

0
M
1-4P

4M
M

—4p, M1

0
M
0
1-4P
0
0

—M 2

4@M

0
0

-M
4IJt

2M
2M
1—2P
1-2 pM

0
2M
0
1

2M
1-2P
2M

-2 pM1

0
0
2M
1-2P
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From the Hermiticity property, PT —conjugation symmetry, and C -conjugation symmetry,

Cj"(x)(,)C '=))(c5)j„"(x)(*,), )) =-1, )I, =1,
(I'T) j."(x)(,)(PT) '= j".-( x)(-,),

where PT is an antiunitary operator, we find that all invariant functions and form factors are real. More-
over, the invariant functions obey the crossing relations

&",(t( &, t
l v), = ~&*',(V, (, t

l
-v), .

Inserting E(ls. (61) and (64)-(67) into the relations (55)-(57) and introducing the new energy variable

s =2v+M'+ 2(t). + $ —t}

and the new invariant functions

A(p. , g, t~ s) =E(y., t, t~ 2(s —M —2(p+ $ —t))),

(67)

(68)

we obtain the following six sum rules, valid in the common analyticity domain in t of all functions, which
contains the origin t =0:

(2)() ( ds[A'(), (t, 0, t
~ s), +As, (0, t, t ~s), ]+(2&) [xG'(0)~G'(t}+MG (0)G'(t)5 —gtG (0)G'(t), ] =+G'(t), ,

(e+ m) 2

(70) [(55)+ (57)]

-(2&)"' ds[A' +A' —M(A' +A' )]$7,(0, t, t~ s), = G'(t), , (71) [55]

&

I(2 )()3/2 ds(A' +A' )(),(0, t, t
~ s), +(2&) G'(0),F(t) = G'(t), , (72) [56]

-4(2v)3" 2
t(MA" —A" —6'[A" + A" —M(A" +A")](D,(0, t, t ~s), +(2v)'G'(0), G'(t) =0,

)2 s —M

(7~) [{55), (56)l

(2&)"~ -8— ds[MA' gt[A -+A —M(A' +A' }]jD, (0, $, tj s),
('.V+ m) 2 g=E

OO

2- 3- 5- 6- i, 3ds[A' —A' —M(A' —A' )] D, (0, t, t
i s), [ +(2v)'8MG'(0)~ G'(t) = 2G'(t),—,

(u+ m) 2

(74) [(55) +(56)]

(2)T)' ' ds[A' —A + M(A' —A )]D,(t, 0, t)s), =(2)() x 2F(0) 4M G'(t), ——G (t), —t —G (t)5
(v+ m) 2

(75) [57]

These sum rules, as they stand, are relatively useless, since it is (with the exception of the photoproduc-
tion sum rule for the nuclear magnetic moments') very difficult to connect the integrals on the left-hand
side with measurable quantities.

The situation can be improved by application of the usual philosophy of slow variation of the matrix ele-
ments in the meson mass variables, as has been done in the past with some success in current algebra""
and the vector-meson dominance model. "

In order to get functions which are sufficiently smooth in the meson-mass variables, we have to extract
from the functions A. ::(t(, $, t ~s) the pion pole in p. and the t)-meson pole in $. By means of the well-known
relation for the retarded/advanced functions

F &(qn) [m5' —[(q —t) )+ i&]'j '(m~' —[{q+a)+is]'] '[m'-(q —~)'] [m~' —(q+~)']F(), (q);,
we introduce new invariant functions A(t(, E„ t

~ s) which do not have these poles:

A(g, $, t ( s) = {m' —)), ) '(m~' —t) 'A(p, g, t f s). (77)
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Introducing these functions into Eci. (70) and developing all terms in a Taylor series in t, we obtain

n

(2v)"'g, „„ds[A~,(p, 0, &
~
s), —A~, (0, p, t

~ s),]
Bp, ~E (~ )2 t=o, P =0

g Tl g ri-1
+(21r) m m

~

„— „, G'(0) G'(t) — G'(t) +MG {0)G'(I)

t=o

n= 1, 2, 3.. . . (78)

The essential point is that in the sum on the left-hand side, no terms without derivatives with respect to
the meson-mass variables occur. Therefore we may apply the PCAC assumption.

The function [m~ —(q —6)'] [m~' —(q+6)']Fn ~
(q)~'~ is the off-mass-shell vN- pN scattering amplitude.

According to the vector-dominance model, " this expression is for fixed (q —b.)'—= g =m' a smooth function
or even a constant in the p-meson mass ( = (q +4)'. Therefore, we expect that the first few or even all de-
rivative s of

I, (m, $, I)= ds A'(m2, $, t~s),
(e+ m) 2

with respect to $ vanish. If this is true in one meson mass there is no reason that it may not be true in
the other one (that is, the pion mass p). Moreover, we know from the Goldberger-Treiman and Adler-
Weisberger relations that matrix elements of a„j"(x), apart from the one-pion pole may indeed be almost
constant in the pion- mass variable.

Therefore, it seems not unrealistic to assume that I,(p, $, t) is (almost) constant in both meson-mass
variables g and g. However, we even do not need this property for I,(p, g, t) itself but only for the part
antisymmetric in p. and

Before we write down explicitly our so-called PCAC assumption, let us add a remark on possible sub-
tractions in the dispersion relations which we have suppressed for simplicity. If we replace everywhere
the integrals I;(p. , $, t) by

Reb'(p, 4 t
~ 0);= Re[(m' —g)(m~ —(}~'(p., t, t

~ 0);],

then all relations above remain true also with subtractions.
Therefore, the only change due to subtractions is that the PCAC assumption has to be made in the real

part of the amplitudes. If no subtractions are needed, it would be sufficient to make it in the imaginary
part A'( .},itself instead of the energy integral I,( ).

PCA C assumPtion ." %e assume that the de rivative s with respect to the meson masses satisfy the follow-
ing condition for some integers 1 & n (n

n ~n OOQ(), „, dfA', tg, O(l ), —A', , tO, g, tl )1
y'= 1

'V Bp, Bg (g )2 P =0, t=o
=0. (79)

For n = oo this is equivalent to

(79')

With this assumption we get from {78) sum rules between the form factors alone:
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Introducing the usual physical form factors

F,"(I)=(2&)'[G)(f)+ MG'(f)],

F."(I)= -(»)'2, G'(I),
M

G.(t) = -(2 )'G'(f)„

F (t) = (2&)'-'G'(I), ,

we finally arrive at the sum rules (10) of Sec. I.

(81)

IV. DISCUSSION

All that remains to be done is to check the validity of the sum rule (10). For the case n=1 all terms are
rather well known. Using the dipole fits"

v t t tF (t) = 1 —(1+2'). ), 1 —,1—

K"(t)= (1 — .)(1— .) (82)

with

2

A

mv =0.84 BeV, m~ =0.8 BeV,

we find that the first line of Eq. (10) vanishes. From the remaining terms of Eq. (10) we get

K (O)=, 1-(—) O„(O). (88)

This is [up to the p-meson correction (m/mp) =0.03] the Goldberger-Treiman relation, which is in good
agreement with p, -decay experiments.

If we now assume the PCAC assumption (79) to be true for all n, then we get a relation between the four
form factors for t ~ 0:

F~(t)=, G„(t) 1 — — + ——„2 IG„(0)[F,(t)+2i), F"(I)]—(I +2i(, )G„(t)).
P — P

Since W2(f, m') 'S„jz(0), may be considered as an interpolating pion field y, (0)*, we get the following
identity'9:

F (I)
~ f KZO( KNK(t)

van m'-t '

(84)

(85)

where f, is the pion decay constant, g„, is the strong pion-nucleon coupling constant, and Kp(, (t) is normal-
ized to one for t= m'.

The Goldberger-Treiman relation implies that the form factor K„,(t) is a smooth function in t:
K„,(t) =K~, (m') =1, 0 & t & m'.

By means of the dipole fit (82) we obtain from (84) and (85)

K„„(t)=K„„(O)(l—,)(1—,
) =K„„(0)(l—,

)
or

ft dn m '"
„K„,(f) = — = (0.03)" .
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APPENDIX

We give here a very general and short proof of the fact that a retarded or advanced commutator is
Lorentz-covariant if and only if no GIS terms occur in the equal-time limit of the corresponding commuta-
tors. For special matrix elements this has been proved earlier by Schroer et al."and Dietz et al, ."

The retarded/advanced commutators (37) read, for arbitrary state vectors 4 and 4,

F.::()I&, x, 4)) = lim F:::(4,x, &i)&, 4)) = +i lim 8 (x )()I& ~[j'. .".(—'x) j.'.'. (-—'x)]]C))

With

xo 0 for x & -5a
y( ) V9 h(y) 1 f r xo)

(AI)

(A2)

8'(x') = &y 4 s(y) =
g0

1 for x'& -5a
0 for x' & 6a.

y~ is the 5 sequence introduced in part I. 8, (x) are C" functions for all 6) 0. Under Lorentz transform-
ations A the currents transform according to

U(A)i "(f)U(A ') = (A ')".j"(f }

f.(x) =f (A 'x) . -
(As)

(A4}

Lorentz covariance of the retarded/advanced functions means

Fc)D(C'& f, 4)' = FDD(%')(& f ((& 4(()'
&

A", F&D(4'& f, 4)' =F&D(4)(&f ((& 4(()'
&

with

(A5)

4~ = U(A)C. (A6)

Theorem. A necessary and sufficient condition for the Lorentz covariance of F,D and I'» is

lim d'x (x}x yz(x'}(4 j" &x, & j' -&x 4 =0,

lim d'x f(x)x'y(, (x')(0 ~[s„j"(-,x)& e,j "(-;x)]~4)
O

for all fE S, . (That means no GIS terms in the corresponding equal-time commutators. '}

(A7)

Proof.

d', d; (&if, )'&= ii&i Jd' f(*) '(*')e(%(&((j'( ), & ) (--,*)1l&)'

=+i lim &'xf(x)8, (x )(4')(~[j "(A 'x), s~j (-A~-x)]]@q)
Q~p

=+I lim d'x f, (x)8,'((A 'x)') (+)( I [j"(kx), sx j'(-2x)]
I
4'())'.

Q~p (A8)

Consider infinitesimal Lorentz transformations

A", = 5"„+(d"„, (d", = -(d), ", (&)', = 0 (no rotations), (A9)

= 8~(x') + (d', x 'y(;(x') .
Introducing (A10) into (A8), we get

(AIO}

A",F&D(4', f, 4)' =F,"I&(C d„f&„4&~)' +i&a, lim d'x f~(x)x y(;(x')(4~ ] [j"(-,'x), S~j"(-—,'x)] ~4&)(}
h~O

However, from this equation our theorem follows at once.
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The general properties of analyticity, covariance, and unitarity are studied in quantum
field theories regularized by finite-mass, indefinite-norm states. After reviewing the gener-
al status of indefinite-metric theories, a relativistic scalar model is analyzed for covariance
and analyticity. This model shows that a commonly accepted prescription for treating the neg-
ative-norm states is not covariant, and more sophisticated methods are required. The tech-
nique of shadow states developed elsewhere is reviewed and applied to this problem.

I. INTRODUCTION

The problem of constructing finite quantum field
theories has received considerable attention in
recent years. Although it was invented by Dirac'
as early as 1941 and has been the subject of care-
ful studies for the past decade, the possibility of
using quantized fields which are linear operators
in a space whose metric is not positive definite is
only gradually coming to be widely appreciated.
Some of the confusion was due to the misconception

that such a quantum field theory with indefinite
metric is the same as the recipe of regularization
introduced by Pauli and Villars in 1949.' The
conceptual framework, including the question of
probability interpretation and the need to select
out a subset of states to be the physical states, has
been reviewed by one of the present authors in his
report to the 14th Solvay Congress. '

The main conclusions of the above-mentioned
investigations are the following:

(i) Every order of perturbation theory yields


