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combination of 3C4 with SC, where the two g4, 's are
contracted. Then if we pick up the extra term in

this contraction, we will get

-2ib, x (b~xb, ) ~ 6, '(g, &xb&), (A16)

which cancels (A15).
Another class of extra terms could arise if two

b4's coming from two different X,'s were contract-
ed. The extra term would be b, x(b, xb~) ~ 6, '[b&

x(b&xb, )]. But there is a corresponding term in

the expansion of T(K,(x)K,(x,)X~(x~)) where the
two g4, 's in 3C4 are contracted with g4, 's in differ-
ent X,'s. It is easy to see that the extra term is
exactly equal (with opposite sign) to the above one

and therefore they cancel.
These things hold in the presence of other Wick

contractions and therefore are true to all orders.
In fact, proceeding this way, one can show that all
the unwanted terms cancel, and we do not have any

extra terms left except those required to give the
rules suggested in Eqs. (23} and (24}.
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If the interaction Lagrangian contains derivatives, or if the spins of the interacting parti-
cles ~ 1, then both the propagators and the interaction Hamiltonian contain normal-dependent
terms. Lee and Yang showed that if the noncovariant part of the propagator is dropped, then
the finite interaction Hamiltonian is modified. In addition, there appears a term that is diver-
gent, anti-Hermitian, and generally noncovariant if it does not vanish, namely, BH=2ik6 (0)
xlndetg, where g depends on the structure of the theory. For massive gauge theories we
have shown that OH=0 and that Hjnt ~jnt These theories are manifestly covariant and the
ordinary Feynman rules hold. Renormalization is not discussed.

I. INTRODUCTION

When the massive Yang-Mills field is discussed
in an arbitrary gauge, the parameters of the local
group appear as new field variables that give rise
to fictitious scalar particles after quantization. "
Although scalar particles also appear in the mass-
less case, there is a fundamental difference be-
tween the massive and massless cases: Only the
latter is locally gauge-invariant, while there ex-
ists for the massive field a privileged gauge in
which the spinless part has been completely elimi-
nated from the Lagrangian. We shall discuss the
quantization in this privileged gauge; the formal

SU(2) problem then becomes very similar to the
one that arises when a charged vector field inter-
acts with the electromagnetic field.

Lee and Yang' have investigated the electromag-
netic interaction of charged vector mesons with
arbitrary magnetic moment. They showed that
some of the propagators contain noncovariant (nor-
mal-dependent) terms, and that one may drop these
terms to obtain covariant propagators only at the
price of modifying the interaction Hamiltonian and
also adding an expression of the following type:

5H = ~ f16~(0) ln detg,

where g is a matrix defined by the structure of the
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theory. Although the propagators used to compute
the S matrix are now covariant, the new Hamilto-
nian is divergent, noncovariant, and non-Hermi-
tian. To deal with this situation, Lee and Yang in-
troduced the (-limiting process.

It has also been noticed, however, that there is
another way of making the theory manifestly covar-
iant and unitary; namely, by the addition of a di-
rect pair-pair coupling between the charged parti-
cles in the original Lagrangian. " If this pair-pair
interaction is added with such a coupling constant
that the resulting Lagrangian is symmetric in the
three fields (photon, and two charged vectors),
then one finds that detg=1 and, therefore, 5H =0.
The theory arrived at in this way is formally iden-
tical with the description of the SU(2) massive
gauge field, as Nakamura pointed out. ' The con-
nection of the massive gauge field with the theory
of charged vector mesons interacting with the elec-
tromagnetic field had been discussed in an earlier
work' and has been pursued further in more recent
inve stigations. '

Since the simplicity of this result evidently de-
pends upon the additional symmetries of the gauge
field, one would like to have a direct proof that
detg=1 for the gauge field SU(2). We shall give
such a proof here and also generalize the result to
any massive gauge field.

Recently, Eq. (1.1) has also turned up in the in-
vestigation of the perturbation theory for effective
Lagrangians that are chirally invariant. Just as
in the Lee-Yang case it has been shown" that the
noncovariant part of the propagators may be
dropped if one modifies the Hamiltonian and adds
a 5H that is again given by (1.1). It has also been
shown that there is a particular choice of pertur-
bation theory that permits use of the simple Feyn-
man rules and at the same time preserves the gen-
eral current-algebra theorems order by order. ' "
This particular choice again corresponds to the
condition detg=1. It also happens that the gauge
theories and the chiral theories are described not
only by Eq. (1.1) but by related Lagrangians as
well.

over all paths.
If f,

' differs from t by b, t, then~

(q't+at~tqt)= R—e' ~"" (2.2)

where q is written for the complete set of general-
ized coordinates, and R is the normalization de-
termined by the condition

lim (q't+d, t~qt)=5(q'-q).
ht ~0

Assume now that

I=-,',Pg.„q.q„- V(q„. . . )

(2.3}

(2.4)

or

L = kg G .Q Q. —V(Qg, ), (2.5)

where

Q =QC„„q„ (2.6)

and the matrices G and g are connected by

G =C~gC. (2.7)

Now choose C so that G is diagonal and detC =1.
Then

and

L = 2+ G„Q,' —V(Q, , . . . },
f

detg = detG = g G,
1

(2 6)

(2 9)

exp —LLt = exp — G, " —V~t

In order that (2.3) hold, R must be

f
R(t) =g R„(f),

r= 1
(2.11)

where

then

l im exp —I-&t = 1im exp — G„
i . i (aQ, )'

zt-o

(2.10)

II. THE ORIGIN OF 5H R,(f}=[G„(t)/2vihat]' ' (2.118)

(q,' ~ q»t'~ q, ~ q»t)=JR»e' » ",
E~l

(2.1)

where the q, ~
q» are f generalized coordinates, S»

is the action computed for the path (P}, R» is the
weight or normalization, and [p] indicates a sum

Before connecting with the work of Lee and Yang,
we shall first establish Eq. (1.1) in a very elemen-
tary and general way with the aid of Feynman's
representation of the transition matrix, namely,

and the product is extended over all f degrees of
freedom. By the unitary composition law, (2.1)
may be expressed in terms of (2.2) in such a way
that the functional integration over paths may be
written as the limit of a finite number of ordinary
integr ation s:

where
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(q't'lqt)„= ~ ~ I(q't'lq„, t„,)dq

&«q, t, , lqg Qtg 2& dq, (q, t, lqt)

(2.12)

and the time I,'- t has been broken into N equal
subintervals. The separate integrations are asso-
ciated with these intermediate times.

To apply this formula to the field case we may
imagine space-time divided into cells dxdt. Let
the independent field components be P . Then

(t)„(x, t) are the generalized coordinates associated
with the cell (x, t), and (q't'lq„, t„,) in (2.12)
becomes

(2 «t) ' n p „—s(x, t ,)„)G"*(, , & -,),
(&,x)

where the product runs over all spatial cells at
one time as well as over all field components in

each cell. Here S(t„,) is the total action between

t„x and t
Therefore,

(2.13)

The complete integrand is by (2.S)

exp —S' = exp —g S(x, t) II [g(x, t)]"',
(x, t)

(2.14)

where g(x, t) is the subproduct belonging just to the
index o. and localized at (x, t). Here g is detg.
Therefore,

S'= g S(x, t) —~if g lng(x, t}

where g is defined by the structure of the Lagran-
gian according to (2.17). In other words the signi-
ficant part of the Lagrangian density consists of
those terms that contain two time derivatives and
therefore dominate as ht —0.

One expects 5L may be noncovariant if it does
not vanish, since it is obtained by a noncovariant
procedure. It will be shown, however, that 5I-
does vanish for the massive gauge field.

III. THE MASSIVE GAUGE FIELD
(x, t ) (x, t )

=g(((.)-l, )m(, 0)~' ~,
b, x~

(2.15)

The Lagrangian is

L= TrP,P~"- m'TrP P~

where

(3 1)

where L(x~) is the Lagrangian density, x = (x, t),
b, 4x =Exit, and k refers to the discrete cells. If
we now go to the limit, we find

p„=(s„+p„)p —(s +p )P„. (3 2)

The P„are anti-Hermitian fields with the matrix
expansions

S' = I.'d4X,

L'=L —2ik6 (0)lng,

as = --,'NS4{0) lng.

(2.16a)

(2.16b)

(2.16c}

P„=QP„,F, , (3.3)

where the F, are the group generators satisfying
the structure relations:

This is the relation (1.1}that we wish to establish
although it is written in terms of I. rather than H.
We may also write

(F, , F, ) =if„,F, .

Therefore,

l.o+ L,

(3 4)

(3.5)

(2.&7)

where V is the part of the Lagrangian density that
does not contain two time derivatives. The forego-
ing derivation has the advantage of providing an
easy way to isolate the part of the Lagrangian that
defines the g appearing in Eq. (1.1). The result is
that the g correct for (2.16) is

L, = -,' Tr(s„P ~
—s ~P„)(a"P~ 8 "P") ——,M' TrP-„P",

(3.6a)

L, =-,' Tr[2(s„P~ —s~P„)(P",P ) (P„+,P~)(P",P )] .

(3.6b)

Now introduce the Hermitian fields V}„V„„by
writing

g= detg, (2.18) P), = tV), , P),jf
= tV~p (3.7)
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and calculate the indicated traces. Then

L = ——'Q(B„V», —B»v„,)(B"V, —B V,")

+»M'g V„, V,",
L, = » +2f„,(B„v», —B»V„,) V," V~

abc

(3.8a)

detg=det(P —nn ), (3.14)

5L = =', ik5'(0) ln detM,

where

(3.15)

where P —gn has the dimensions Nx.N. There-
fore, in a theory with a g matrix like (3.13a)

» Q f » f » V", Va V
abed

(3.8b) M =P —na (3.15a)

Introduce the 4N-component field

Q», =(BDV», —B»VD, ,M V~), a=1, . . . , N, (3.S)

where N is the number of parameters of the gauge
group. Then terms bilinear in P„, contain two
time indices. We shall assume that these terms
correspond to the "kinetic-energy" part of (2.17)
since V„may be expressed as follows:

In a gauge theory n and P are simply related.
By (3.13c)

(0, b
I
nn'I 0, c) =g( 0, bl n I Ok, m&(ok, ml n I 0, c)

=P&O, b In IOk, m&(0, cl n I ok, m)

=+f»»~f»~~V», V», /M'.

(3.16)

v„= -M-'[B"v„.+I(v", v„),].
The total Lagrangian may now be written

(3.10)
Therefore, by (3.13b) and (3.15a)

M —P —ae —I (3.17}

L =» g y», (palg II b&y»» —V. (3.11)
a,b; p, k.=o,(OA)

and

OL =0. (3.18)
Here a is the gauge index and the space-time in-
dex (p, X) is either (Ok) or 0. Then V is a remain-
der that depends only on the space indices, (kl)
and k.

The matrix that enters (1.1) or (2.16) has non-
vanishing elements

( 0, a
I g I 0, b) = 5„+ , Pf„,f—„,V„V„, (3.12a)

1

cds

(ok, algl oI, b& =5~5», , (3.12b)

&ok, alglo, b&=(o, blglok, a&= f„,v„!M.
(3.12c}

Therefore the matrix g has the following structure:

The key step has been the decomposition (3.11}ac-
cording to which the matrix g is determined by
only those components containing a time index or
by the part of the "kinetic" energy that dominates
as ht-o.

IV. THE HAMILTONIAN FORMULATION

To connect more closely with the argument of
Lee and Yang, let us write the theory in the Ham-
iltonian form. Let the momenta conjugate to {V,-„
V», ) be (II,', IID). Then

(4.1a)

(3.13a)

II'= 0 (4. lb)

where I and P are square matrices with dimen-
sions 3N && 3N and N ~N, respectively, while n is
a rectangular matrix of dimensions 3N &N.

Here

&0, al pl0, b& =(0,alglo, b)

= 5»» +Ef»»»f»». V»» V»AM'

The Hamiltonian density is (up to a perfect
divergence}

H =II,'V, ] —L

=11, (11.+BV f„,V V,)-
(4.2)

(4.3)

& 0, a I n I ok, b& = ( 0, a I g I Ok, b) =f,», V»,IM,

(Ok, a
I
n'I 0, b& =

& Ok, a
I g I o, b& = -f.». V».IM

(4.4)

where the repeated index is now summed, and

(3.13c)

In Appendix A it is shown that the determinant
of the 4Nx4N matrix g is

j.
+Pa ~ 0 tm trna

Then

H =8'+a,

(4.5)

(4.6)
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6 =II, (SVo, f„—,vobV, }—M Vo, Vo, . (4.8}

But 6 can be shown to be a perfect divergence in
view of the equations of motion:

where

H' = —,'(II, II, +H, H, )+ bM'(Va Va+ V~V~} (4.7)

Note that the fields ft} have noncovariant propaga-
tors. The result (Lemma 2, Appendix C) of Lee
and Yang now tells us that the S matrix obtained
from H, with the use of noncovariant propagators
is identical to the S matrix obtained from the fol-
lowing interaction Hamiltonian:

II=-lp j„'.(I al(hli-h)l~b} j'„-C+6H,

S„V~'+i(V„, Vo')+M' V'= 0,
including

a 11,= -M' v - i(v, , v"),

Therefore,

(4.9)

(4.10)

where now P' has covariant propagators and

5H = bik5'(0) Tr ln = bibb'(0) In det

(4.20)

(4.21)

~ =11. (av,.}+v,.(a.ii.}=e (V,.II). (4.11)

Hence one may adopt the new Hamiltonian density
(4.7) where

Since C arises from 4v„,v, it is clear that C is
identical with the part of L, depending only on

space indices.
Next note that I-h has the following structure:

V~= -M '(a II, +f,b,Vb II,). (4.12)

It then follows that the interaction Hamiltonian
is entirely contained in

I+ e o. -o.

(4.22)

b(Ha H, +M Vo, V„)
and is simply

H, =,[(f.„V,11,)'+ 2(s 11.)f„,V, 11,]

(4.13)

while g is by (3.13a) and (3.17)

+-,[(f„,Vbx V, )'+2f„,Vb xV, 6 xYr,]. (4.14)

The interacting fields (lower case) satisfy free-
field equations, so that

(4.23}

-M V0, =8'&a )

~ia Vjoa '

(4.15a)

(4.15b)
By direct multiplication we find the matrix
equation

-C= —,'[(f,b,vbxv, )'+2f,b,v, xv, sxv, ].
Introduce the 4N-component field

(4.16b)

Therefore,

Hb =fabcVoaVibVoic+(I/2M )fabcfaaaVlbVoicVia oia

(4.16a)

where

(I h)g = I . -
By (4.24) and (4.21)

5H = bib'5'(0) ln detg

and according to (2.16c) and (3.18)

OH = -eL = 0.
In addition, by (4.24),

(4.24)

(4.25)

(4.26)

4'oa [voia iMvoa] (4.17} h(I-h} '=g I. - (4.27)

as in (3.9). Then

H, = =,' p„,(iialhlhb}p~b —c,
a b;]I, =0,(k

where

(4.18)

But g -I is the part of the Lagrangian interaction
matrix depending on time indices. The rest of the
interaction matrix is contained in -C, and only
changes its sign between the Lagrangian and Ham-
iltonian. Therefore, by (4.20),

(Oi, alh l oj, b) = -(1/M') f„ fb v, v&.
=-(oi, al ~'& loj, b). (4.19b)

(O, alh l Oi, b) = f,b,v, , =(o, al a lo—i, b), (4.19a)
1

H = —L,„,(P') + ,'ih6'(0) ln —detg

= -L;.,(4').
(4.28a)

(4.28b)

Lee and Yang proved their theorem by a direct
comparison of terms in the perturbation expansion
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of the S matrix. In that context, the feature which
distinguished the P from other fields is only that
their propagators contain noncovariant 5-function
parts.

In the transition-matrix approach of Sec. II, how-
ever, the significant property of P (which deter-
mines g and 5H) is that they are velocities in some
general sense, as seen, for example, in the con-
straint equation (4.10).

We see, then, that we can identify the fields (I)

by noting either that they are "velocities" or that
they have noncovariant propagators.

U. THE PERTURBATION EXPANSION

S (p) = (-0; +m p p )(p -m +is)

Xsc

usb

b (P, q) = K~ b f(2p-q. ) 6 g

+(2a-p) g &-(p+q)&g

The complete transition matrix is

(y't'~ 4 t) = P R„e'"
histories

(5.1)
pic

where the sum over histories again stands for a
functional integration. R„ is the weight of a partic-
ular history (h) and contains the factor

u, b asd

(5 2)

of (2.14) which is usually noncovariant. If fg =1,
however, then its cofactor in+„R„ is also mani-
festly covariant.

In the perturbation expansion the phase is ex-
panded as

e'~ =e" (I +oiS,„,+ ~ ~ ~ ). (5.3)

The usual treatment of this expansion leads to the
time-ordered product denoted by T* which is com-
pletely covariant in contrast to the T product that
arises in the Hamiltonian expansion. (See Appen-
dix B.) We may then understand that this expansion
(5.3) is described by simple Feynman rules con-
structed for the L;„,(p') appearing in (4.28) as as-

= ~ 2
pupa, abed @ abs cds ~pa~up @p p~ua )

2
acs bds(~pa&up gt u&ap)

2
ads cbs pu&ap &pp&ua

FIG. 1. Feynman rules for general gauge group with
structure constants f~. Diagrams apply to Hermitian
fields with group indices a, b, c, d.

serted in the theorem of Lee and Yang. "
The Feynman rules for a general gauge group

are given in Fig. 1. Special cases of these rules
are given by Nakamura and Tzou and have been
further discussed by Barnebey for the case SU(2).
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APPENDIX A

Note that

] 0 0 ~ 0 a a ~ ~ ~
11 12

0 1 a 1 a22

0 ~ ~ ~

0 1 a21

a o ~ ~
12

a22

det
11 12

b21 b22

Cll C12 ~ ~ ~

C21 C22

= det
b» b» ~ . . c„-b»a» c» ~ ~ ~

b21 b22 C21 b 21 ll 22
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By repeating this operation we may eliminate all matrix entries in the upper-right corner without changing

the determinant. Therefore,

I A I 0
det B C

-—det B C BA

and by Laplace's expansion

det — — = det(C BA)-.
I A
B C

By (3.13a} it follows that

detg=det(43 —na ).
In the case considered by Lee and Yang and by Tzou, g is Il x 11 and P is 2x 2. One may then use the fol-
lowing notation:

R, S,

n I 21 A2

and

2
ll ~11 ~ y 12 ~12

The matrix entries given by Tzou are

e 2

p„=1+—2a +gg2 R= 1(.$,0, —a

2

p22=1+—2a + gg', S = gg, —a0 )

Px2=&61'& =P i.
One then finds immediately that M =I if &

= ~', and therefore detg=1. In the Lee and Yang case, ( =0 and
therefore detg ~1.

APPENDIX B

r t I

(q't'~qt) = ~ ~
I /de(r)dP(r) exp — dr[P Q —H(P, Q)j

T a. ,

for q = (q„. . . , qz) and q' = (q'„. . . , q~). The right-hand side of this equation denotes" as usual the limit
(N-~) of

p OO N-1 N N

II dQ(f;)IIdP(f ) exp g g«, [P(f,) Q(f;) -H(P(f, ), Q(f, ))1~ ~ j j j j j
j=1 j=l

for progressively finer partitions t= to& ~ ~ ~ & t„=t' For a simple H. amiltonian of the form H= ~P P+ V(Q),
Garrod has shown that by first integrating over the "momenta" P the transition matrix (Bl) becomes

(B2}

For completeness, the results of Lee and Yang referred to in Sec. I are rephrased here by employing the
Hamiltonian path-integral method' '" in which the transition matrix is expressed as follows:

(B3)
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as given by the Lagrangian theory of Feynman, "with the prescribed normalization factor

R(t, ) =(2vit t t,). (B4)

Consider now the more complex dynamical system of f harmonic oscillators whose Lagrangian and Ham-
iltonian are

~ ~

L = L 0 + L, = ( ~ Q —~ Q }+ ( ~ AQ + ~+ B + ~B Q + C ),
(B5)

H=HO+H~ =(2P P+ ~g Q}+[~(P—B).(I+A) '(P —B) —~P.P —C].
Here A =A, B, and C are (fxf), (1xf), and (1 x1) matrix quantities, respectively, which depend explicit-
ly on Q only. This system was studied by Lee and Yang as a nonrelativistic prototype of the field theory of
charged vector-particle electrodynamics, having an interaction term which is quadratic in the velocities.

Using the Hamiltonian path-integral method (Bl) and the Hamiltonian (B5), the perturbation series is rep-
resented by

t' t t'
(q't'Iqt) = ~ ~ ~ g dQ(r)dP(r) 1 -— d7(H )+ ~ ~ exp — d7(P ~ Q 8)-

5 4t
(B6)

Then (B6) becomes in the usual way the perturbation expansion of the S matrix. If we integrate first over
the P's before forming (B6), we find

t t'
(q't'Iqt) = ~ ~ ~ ' QR(r)dQ(r) exp — dr[L(Q, Q)] .

T e.t (B7)

By explicit calculation (see Salam and Strathdee" for a field-theoretic example), the normalizing factor R
for this system is found to differ from R of (B4) by a multiplicative factor

R =R exp(-i5H/}I), (BS)

where 5H is, as expected, the quantity discussed in Sec. II, with g =I+A. For the Lagrangian theory, then,
the perturbation series is

(q't'Iqt} = gR(r)dQ(r) 1 —— d7( L, +5-H)+ exp — dr(L, )
4 4 h„t a. t

(B9)

It remains now to determine the "propagators" appropriate to the two formulations (B6) and (B9). In both
cases, the development of the perturbation series is exactly parallel to the operator-algebra version, with
time orderings of the interaction terms (call the respective ordering operators T„and Tz) which can be re-
cast, in analogy with Wick's theorem, into the familiar normal-ordered products and (free) ground-state
expectation values. It is known"" that T~ is the T* operator; this is true because, for example,

0

,(q't'I T (Q„(t,)Q, (t, )}Iqt},=
Jl QR(7) Q„(t,)Q, (t, ) exp — dr(L, )

T ~t

d d IIR(7)+(7) Q,(t )Q.(t.) exp g d7(L.)
1 T "t

=——.(q'I'I & (Q,(t, )Q.(t,)) I qt}..
1

(BIO)

In the Hamiltonian version (B6), it is P rather than Q which appears in the interaction terms. Since the
functional-integration kernel still involves the free-action function, however, the paths which contribute
significantly to the integration lie in a tube surrounding the free classical orbit in phase space (for which
P =Q). Hence we must compare (Blo) with the properties of the Hamiltonian counterpart

.(q't'I TgP, (t,)P.(t, )) I qt), . (B11)
For this purpose, we construct the generating functional for matrix elements of time-ordered products ofP's.

tt

Z„,(F) = ~ ~ [ gdQ(r)dP(7) exp — dr[P Q H,(P, Q) —NP. F-]8„
Then (Bll) is represented by

(Bi2)
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.&q't'IT (P,(t,}P.(t ))lqt&. = ~H (F)

~t' I

g dQ(T)dP(r) P,(t, )P,(t, ) exp — d7(P Q —H, }
+t

(B13)

In order to make the desired comparison with the Lagrangian theory, we reexpress (B12) by first inte-
grating over the momenta. Notice that (B12) differs from the zeroth-order term in the perturbation series
(B6}only by the replacement Q-Q —iRF T. herefore, the result of the integration over the P's should sim-
ply be the zeroth-order term of (B9}with the same replacement. The expression (B12}is then equivalent
to

~t'

S„(F)=
~

~ ~ ~ QR(r)dQ(7'), exp —, d7[I.,(Q -NF, Q)]
~l

~ ~

gR(r)dQ(v) exp — dT[L (Q, Q) —ihQ ~ F ——'O'F F ]
T a„t

Performing the indicated functional differentiation, then, we find

.&q't'I Z' (P,(t,)P,(t,})lqt&.=,& q't'~ [T,(q„(t,)q (t,)) —ih5„5(t~ —t, )l Iqt&, .

In terms of ground-state expectation values, if

.&& I T~(q, (t, )q, (t, ))l C &.= r'n'5„, S(t, —t, ) = —,'M„exp( i[ t,-—t, ~ ),

.& + I T,(Q„(t,)Q,(t,))l @&.= I 5,.d , d t
S(—t,- t,),

1 2

then we have

(B14)

(B15)

(B16)

(B17)

Thus T„ is the ordinary T product. These results are identical to those of Lee and Yang for the nonrelativ-
istic system (B5), and can be extended by the methods outlined in Sec. II to the field-theoretic system
which was their principal concern: electromagnetic interactions of charged vector particles. In the lan-
guage of path-integrals, however, "5H" appears to have a more natural role as part of the functional-inte-
gration measure (ensuring unitarity) than as a part of the kernel; such a (divergent) normalizing factor
arises even for the simple theory described in (83). Thus even when 5Hs0, the relation between the Ham-
iltonian and the Lagrangian path-integral theories described above seems to reflect the principal features
of what has been called "Matthew's rule": Namely, that one may replace X;„, by —2;„, in calculating S-ma-
trix elements, provided that the T product is replaced by the T* product. From this viewpoint the result
of our paper may be expressed by saying that the massive gauge theories have the same functional mea-
sure as the "simple" theories originally covered by Matthew's result.
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Behavior of Commutator Matrix Elements at Small Distances.

III. Sum Rules for Form Factors and Their Derivatives at t = 0
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From general principles of quantum field theory (especially locality and Poincare invari-
ance), the small-distance behavior of commutator matrix elements, and partial conservation
of axial-vector current (smoothness of the matrix elements in the meson masses), sum rules
between the four weak isovector form factors and their first derivatives at zero momentum
transfer are derived.

I. INTRODUCTION

In two recent publications" we started a systematic investigation of the behavior of commutator matrix
elements at small distances on the basis of general principles of quantum field theory. These investiga-
tions gain some physical significance' in connection with Gell-Mann's program of current-generated com-
mutator algebras. "

In the present article we give an application of these ideas and derive from the current-density algebras,
especially from the nonoccurrence of q-number Goto-Imamura-Schwinger terms and partial conservation
of axial-vector currents (PCAC), a sum rule between the four weak isovector form factors.

We assume the equal-time commutation relations for the current densities, '

»m&+Il j:(yt, ; It). , j8(o)~]~'&'=e( .8)'&+Jj",(o)cl4'&It(o)~

to hold for all C" functions it (x), all state vectors 4', 4 from a certain domain D of the Hilbert space of
physical states O which is stable under the Poincare group, and all symmetric 5-sequences y, (x')
=:(1/5)cp(xo/5). Here y(x') is a C" function with compact support contained in [-a, a] and normalized ac-
cording to'

dx'y(x') = 1. (2)

(The equality sign with the colon means "is by definition. ") Of course, we assume the currents to be mem-
bers of a complete local Wightman field theory. ' "

T means subtraction of the vacuum expectation value before taking the limit.

&oil . . ]lc&'=&41( ]14& —&Ol[ ] lO&&4 JI4».

A consequence of (1) and Poincare symmetry of the theory are the following two relations':

lim d x qq x' x h x (4 a„j~(x,, j8 0 „4 =0 (4)

lim d xyz x'x h x(% j (x„c),ja(0~ 4 =0 (k=1, 2, 3). (5)

In other words Eqs. (4) and (5) are necessary (but not sufficient) conditions for the absence of q-number


