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The possibility of consistently quantizing a spin-2 field in the presence of a coupling to a
scalar and a spinor field is considered. It is found that, contrary to a recent assertion, the
anticommutators of the various Fermi-Dirac fields are not positive definite. Inasmuch as this
inconsistency is found to be present for the case in which the 2 field participates only linearly
in the interaction, such a result demonstrates that the difficulties discovered by Johnson and
Sudarshan for an electromagnetic coupling can be expected to occur for a considerably more
general class of interactions.

I. INTRODUCTION

One of the most disturbing of the difficulties
which currently plague quantum field theory is the
absence of a consistent set of rules for the quanti-
zation of fields with spin greater than unity. Vfhile
the existence of divergences in perturbation-theory
calculations is doubtless of more immediate con-
cern to practitioners of field theory than the
higher-spin problem, it is clearly recognized that
the divergence difficulty involves intrinsically dy-
namical questions which present calculational tech-
niques are ill-equipped to handle. On the other
hand, although the quantization of Fermi-Dirac
fields is known to require explicit reference to the
dynamics, the manner in which the form of the in-
teraction appears is not subject to computational
ambiguity (i.e., perturbation techniques are not re-
quired). Thus an inability to quantize higher-spin
theories for all possible interaction terms must
be interpreted as representing a somewhat myste-
rious but nonetheless fundamental incompatibility
of higher spin with the basic ingredients of relativ-
istic field theory. '

As has been shown by Johnson and Sudarshan, '
the basic problem in the quantization of Fermi-
Dirac fields of spin greater than —,

' is that one re-
quires the existence of secondary constraints on
the fields, and thus the dynamics must necessarily
enter into consideration. These authors have, fur-
thermore, shown that for the case of spin —,', a
coupling to an external electromagnetic field ren-
ders the anticommutators indefinite and thereby

inconsistent with a positive definite metric. Even
more disturbing perhaps is the demonstration by
Velo and Zwanziger' that the corresponding classi-
cal wave equation possesses noncausal modes of
propagation. Both of these calculations, not sur-
prisingly, find the same threshold value for the
external field at which such difficulties occur.

Recently, however, a somewhat different cou-
pling of a spin--,' field has been considered4 which
differs from the Johnson-Sudarshan approach pri-
marily in that the interaction term involves only
a linear coupling of the spin--, field. The assertion
of that work to the effect that no inconsistency oc-
curs in the quantization, if correct, could well
provide the insight necessary to define quite pre-
cisely the conditions which must be imposed on the
dynamics of higher-spin theories. In the present
paper this contention is examined. It is shown that
the (positive definite) anticommutators given in
Ref. 4 are, contrary to the claim of that work, in-
compatible with the action principle and that the
correct antieommutation relations for the spin--,'
components have a form which is remarkably simi-
lar to that found by Johnson and Sudarshan for the
ease of a coupling to an external electromagnetic
field.

In Sec. II a brief review and slight reformulation
is given of the theory discussed by Nath et al. Sec.
III presents the derivation of the commutation rela-
tions as well as a demonstration of their incompat-
ibility with a positive definite metric. Finally,
some concluding remarks are given to indicate the
connection of this work to Ref. 2.

II. THE COUPLED SPIN- 2 FIELD

The spin--,' field is most conveniently denoted by the 16-component Rarita-Schwinger' vector spinor g,
which, for the case of no interaction, is well known to be consistently described by the Lagrangian'

,'i+/(g~8y" —+W(5„"y8+ 6&y„) —~z(3W +2W+1)y„y" y&] 8„$ +H.c.——,'mPP[g„z+(3W'+3W+1)y~y&] P
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Under the point transformation

4.'= 4.+-:p ~.r'4&,

the matrices which occur in g are found to have the same structure except that 8' is replaced by

W' = W(1 —p, ) ——,'p .

(2.1)

Inasmuch as the transformation (2.1) merely mixes the spin- —,
' components while leaving the —,

' components

invariant, the parameter W is without physical significance and can be chosen at will.
Following Ref. 4, one now desires to couple the Rarita-Schwinger field to a spin--, field $ and the deriva-

tive of a spin-0 field Q. By taking the free Lagrangian for these fields to be

L =-.f(fly", s, 4) .mP-W+ 'l0-" s, 4-4s„4"l+ .0"-4„.}-.'-0',

one notes that such a coupling can be effected by taking an interaction term of the form

&& =xi"0,+-:a'i "i „,
where

I„=--,'tq', Pe„,yl

and

ev. =-ru. —~~„~. .

The somewhat unconventional structure of (2.2), while implying the same equations of motion as

&r =-ai" ~pl»

(2.2)

has been utilized in order to avoid the explicit appearance of derivative terms in the interaction. While
this has no effect upon our general conclusions, it does serve to make the theory more amenable to treat-
ment by the action-principle formalism.

Upon performing the transformation (2.1), one readily establishes that A. has the form

X = —,'W(1+4Z) + Z,

with Z an unspecified parameter which is to be fixed by the requirement that secondary constraints appear
in the theory. This is seen most simply by choosing W = -1 and noting that the temporal component of the
field equations for g" may be written as

y j—(y p}(y 4}-p j=g( ,' z)~-'y(-y'+xi')+g(-. Z)y qa, y. (2.3)

One can now define that part of f„which transforms as a spin--, object under spatial rotations by the rela-
tion,

0~" = (~~~ + 3 4&r )4r

in terms of which (2.3) assumes the form

(m ——', w p)( y ~ g) —p 7/P" =g(-,' —Z)y'g(p'+gj')+g ( +Z~)y'p ps.

In writing (2.4) it is important to note that we have retained the canonical variables P and P, but have
eliminated P~ by means of the constraint equation

0'=-~&4 -eo.

(2.4)

It is clearly seen from (2.4} that for g= 0 one has a secondary constraint relating y ~ $ and P',"at equal
times. However, the general theorem of Johnson and Sudarshan requires that for a consistent quantization
to be possible, this must continue to be a constraint between these same variables for nonvanishing cou-
pling. This can be the case only if P' does not occur on the right-hand side of (2.4). Since, however,

3 = -(Z —a)[4 Pkl+(Z+ a)lk 'Y 0l&

one clearly must take Z = —,
' for there to be any hope of a consistent quantization. ' The secondary constraint

thus assumes the simple form

(m ——, 1 p)'Y. p -p ~ p'" = gy'p~, Q,

a result which is now to be incorporated into the derivation of the commutation relations of the theory.

(2.5)
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III. THE COMMUTATION RELATIONS

In accord with the general formalism of the action principle, ' the commutation relations of the theory
described in Sec. II are to be determined from

[X(x), G] = -'i5X(x) (3.1)

where X(x) represents any one of the field operators P", P, or P. The generator G is obtained from the

time-derivative terms in g and has the form'

d'-& &4~ &~i+3&~&f)~4~+&34'"&&i4i+&{I'&4+&'&0—4&4" .

As a consequence of (2.5) the variations which appear in the generator are not independent, but satisfy the
condition,

(~ —-'x p) r ~{]I -p &g"'-ar. &(4&4)=0, (3.2)

thereby considerably complicating the task of inferring the canonical commutation relations.
The most convenient way to handle the rather complex constraint (3.2) is by the technique of Lagrange

multipliers. Thus, for the choice }i(x)= Q(x}, one writes (3.1}as

l e'x'{[y(x), ,'{y'(x—')5$(x')—y(x')5y'(x')} +-,'1'$(x')5$(x')+ iib'"(x') 5P'"(x')+-,'ig(x') y5y y(x')]

——,'i 5@(x')5(x-x'} ,'iA-(x-, x'}[(m —-,'y p)y ' 5{{I(x')-p 5t}t'"(x')- gy 5(P(x'}Vg(x')}D= 0

and considers all variations as being independent. Thus one infers

[y(x), y(x )]=0,

[p(x), P (x')J = i5(x —x')+igV' ~ [A(x, x') yP(x')],

[P(x) P(x')]=-gA(x x')y VP(x'),

[P(x) y P(x')]=-'A(x x')(m+-'y p')

[V( },Cl"( ')]=&,'A(, x')(5„.* y, y, )-,

(3.4)

where A(x, x ) is to be determined such that (2.5) is satisfied. The result of this latter calculation gives
A(x, x') = 0 and thus implies the equal-time commutation relations

[P (x) y(x'}]= 5(x-x')

[4 ( ), 0( ')] = [y( ), &( ')] = [e{x),t},(x')] = 0.
A less trivial result is found for the choice y(x) = Q'(x) . Here the commutation relations are found to be

[y'(x), y(x')] = —.5(x -x'},

[y'{x),y'(x')] =ig V' [A(x, x') yq{x')],

[y'(x), q(x') J
= -gA (x, x') y Vy(x'),

[Q'(x), y g(x')] =-,'A(x, x')(m +-', y p'),

[~'( ), ~'."(.-)J=p;A(, }(5„-.'...,),
(3.6)

where all operator products on the right-hand side are understood to be symmetrized. A straightforward
calculation of A(x, x') in this case yields

[0'(x), 0'(x')
J

= kg'» y &, 2 .(~~).[4, 0J y &5(x -x'),—.a (&0)

[y'(x), y(x') J = --", ig' y Vp ( y .VQ )5(x —% '),~n' ——',g'(V{I})'

[p'(x), y g{x')]=igy Vg. . . , (m ——,
'

y p)5(x-x'),m' ——,'g'(Vy)'

[0'(x), 0',"(x')]= --,'gy Vy. . . , v, (5„+—,'y, y, )5(x —x') .2 2g2 gy)2 I kl 3

(3.7)
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The calculational technique having now been displayed, it is sufficient merely to present the results one
obtains for the remaining commutators. Taking II(x) =p(x) there follows

[(})(x),4'(x'))=-3ig'(Y V4), Z 2 )2PY V6(x-x'),m' ——,g V(())

1 I4(X}r4(X }} 1 2(g2/ 2}(Vy)2 6(

(g(x), y $(x')}=g(Y VQ) (m ——y ~ P)6(x —x'),m' ——,'g'(Vy }'

(3.8)

The choice y(x) = y P(x) yields

}
Vt(6»+-'3Y(»)6(x- x ).

m ——,g V0

[y ~ t})(x), (})'(x )]=ig(m + 3 y p)y pt( )x2» },V, 6(x —x'),

pY p(x}, 4(x'}}=g(m + ', Y p)(-y ~ V(})) 2 . .(V },6(x- '),m' —~g V(t) )

6"4( } Y 0( '}}= -l ( + l Y p) . .( - l Y p) - 1 6( — '),
m —,g VQ)

(3.9)

P(x)) pk (X )} (m + 3 Y p) 2 2 2 2rpt( 6k+t3Yt Yk)6(X —X )rm ——,g VQ}

while g(x) =(})',"(x) implies

I 4 k (x)r 4' (x )J —3g ( kl + 3Yk Yl } I 2 2 2(Vy)2 Ytf l (

4'
k( }x0(x'}}=3g(6kt+3YkYl} 2 2 2 )

(Y»6(m ——,g VQ

(Ok"(x), Y g(x')}=-(6k) +3YkYt)Pt ~, :(m —l Y p)6(x -x'),
PFt —;g(VQ)

(ol'*(*),ol'*(*'))=(o.. l r )r( .o'l .o* * *, *P)(o lr ) r.(o.
m ——,g (vga

(3.10)

It is readily verified that the above sets of commutators are entirely consistent with each other (e.g., the
(y ~ (}), (})}result is consistent with that obtained for {(I),y ~ t})})and that this consequently represents the de-
sired solution of the constrained variational problem.

An examination of the form of ((})(x),tlt(x }}strongly suggests the indefinite nature of the commutation re-
lations. This can be made more precise by introducing the real function f(x) and defining

1

U=exp i Q x)f x}d'x (3.11)

which for sufficiently regular f(x) is a unitary operator. Upon considering

2 -1
(o(o(O(«)O( )) ( )=(oo) , —o,(vk-vf)* o)n( (3.12)

((*.'*(*) O(* )) =(o.. )r l.)'(o..'-'o. . . - -())(o., lr )(ro
m —,eqcr H

where II = (p —eqA) differs from the result found here primarily in that the electromagnetic coupling has

(3.13)

one trivially sees that for suitably large f the anticommutator necessarily becomes negative and conse-
quently incompatible with a positive definite metric.

This result thus contradicts the assertion of Nath et al. to the effect that the Johnson-Sudarshan effect
does not occur for a linear coupling of the spin--,' field. In fact, the result of Ref. 2 for the anticommutator
of the spin--,' components,
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an inconsistency to first order in the external field, while the present calculation (for unquantized P) en-
counters the same dilemma in second order. Such a result is, of course, intuitively quite reasonable.

The present paper thus provides an extension of the work of Johnson and Sudarshan in two main respects.
First, it weakens the coupling of the spin-~ field by considering the case in which it appears linearly in the

interaction, and secondly, the effect of a quantized boson field is included. The negative result found here
suggests that conventional techniques for the avoidance of the higher-spin difficulties appear to offer little
hope of success at the present time.

~Research supported in part by the U. S. Atomic
Energy Commission.

~One refers here, of course, to special relativity as
this remark is not valid for the case of Galilean-invari-
ant theories of arbitrary-spin particles (cf. C. R. Hagen,
Commun. Math. Phys. 21, 219 (1971)].
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Problems associated with the Lee-Zumino approach to nonpolynomial interactions are shown
to exist even after employing their special method for calculating the Fourier transforms of
Green s functions.

INTRODUCTION

In an earlier paper, ' hereafter referred to as I,
we examined a method suggested by Lee and Zu-
mino' (LZ) for treating nonpoiynomial interactions
in the context of a perturbed harmonic-oscillator
model. While the results obtained strongly sug-
gested that the method suffered certain problems,
the investigation concerned itself entirely with con-
figuration space. In that a crucial part of the LZ
technique deals with methods for evaluating Four-
ier transforms of Green's functions, our examina-
tion cannot be considered complete. In the present
paper, we attempt to remedy this defect to a limit-
ed extent. It should be noted at the outset that sub-
stantial portions of this work are essentially peda-
gogical in intent, and we shall not apologize for
taking time to reiterate the results of other au-
thors.

The paper is arranged as follows: In Sec. I, we
explain the harmonic-oscillator model and discuss

the problems which arise in going from the time
variable to frequency via Fourier transforms. In
particular, we explore the relation between the
"true" Fourier representation of certain Green's
functions, and that used by LZ. We shall see that
the "true" Fourier transform suffers from certain
anomalies which are removed by the LZ modifica-
tion. In particular, the LZ Fourier transform has
satisfactory analyticity properties. In Sec. II, we
examine certain aspects of the LZ Green's func-
tions in ~ space, and find that, unfortunately, cer-
tain disagreeable features still persist. While
none of the anomalies we shall discover are neces-
sarily fatal to the LZ method, their existence does
little to strengthen one's faith in its reasonable-
ness.

I. THREE TRANSFORM PRESCRIPTIONS

Let us consider the Hamiltonian

H =Ho+A. U,


