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It is argued that the short bursts of gravitational radiation which Weber reports most prob-
ably arise from the gravitational collapse of a body of stellar mass or the capture of one col-
lapsed object by another. In both cases the bulk of the energy would be emitted in a burst
lasting about a millisecond, during which the Riemann tensor would change sign from one to
three times. The signal-to-noise problem for the detection of such bursts is discussed, and
it is shown that by observing fluctuations in the phase or amplitude of the Brownian oscilla-
tions of a quadrupole antenna one can detect bursts which impart to the system an energy of
a small fraction of kT. Applied to Weber's antenna, this method could improve the sensitivi-
ty for reliable detection by a factor of about 12. However, by using an antenna of the same
physical dimensions but with a much tighter electromechanical coupling, one could obtain an
improvement by a factor of up to 250. The tighter coupling would also enable one to deter-
mine the time of arrival of the bursts to within a millisecond. Such time resolution would
make it possible to verify that the radiation was propagating with the velocity of light and to
determine the direction of the source.

I. INTRODUCTION

In this paper we discuss the problem of detect-
ing short bursts of gravitational radiation. This is
rather different from the detection of continuous
radiation, to which most attention has been given. '
Such bursts have been reported by Weber, ' 4 who

uses detectors at Maryland and Chicago in coinci-
dence. Analysis of the time of arrival of these
bursts suggests that they may be coming from the
direction of the galactic center. We shall argue
that the only events which are likely to produce
bursts of waves strong enough for Weber to detect
and at the rate -1 per day (reported by Weber} are
the collapse of bodies of stellar mass M or the cap-
ture of one collapsed object by another. In both
these cases we would expect most of the energy of
the gravitational radiation to be emitted in a time
7 of the order of 10 'M/Mo sec, during which time
the sign of the Riemann tensor components of the
radiation field would reverse only a few times. In
other words, we expect something like a double or
triple pulse rather than a long oscillating signal.
We shall analyze the response of a gravitational-
wave detector to such a burst.

We show that by observing fluctuations of the
phase or amplitude of the Brownian motion of the
antenna, one can detect bursts of gravitational
waves that would probably not have been detected
if one had merely observed the rms amplitude of
the detector as Weber does. Applied to a detector

like Weber's, mhich has a very low electromechan-
ical coupling, this method would improve the sen-
sitivity for reliable detection by a factor of about
12. However, by using a detector consisting of
two metal bars connected by a piezoelectric trans-
ducer, one could possibly improve the sensitivity
by as much as 250. This way of obtaining improved
sensitivity would seem to be much easier and
cheaper than cooling the detector to very low tem-
peratures as has been proposed by a number of
workers.

In Sec. II we consider possible sources for the
bursts that Weber reports and discuss the nature
of the signals they would produce. The response
to such a burst of a simple quadrupole detector is
considered in Sec. III. In Sec. IV we treat the
signal/noise ratio of the detector by a method of
fluctuations. An alternative treatment, which gives
the same answers, is given in Sec. V in terms of
an equivalent circuit for the detector.

II ~ THE EXPECTED SIGNALS

Gravitational radiation is produced whenever
massive bodies accelerate under gravitational or
nongravitational forces. However, because of the
weakness of the gravitational constant, the rate of
energy radiated is normally very small. For ex-
ample, the earth revolving around the sun radiates
about 1 kW at a frequency of 3 cycles per year.
The weakness of the gravitational constant also
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means that gravitational-wave detectors are very
inefficient: A flow of 2 x 10~ erg/cm' sec for a
duration of 10 sec in a bandwidth of 0.016 Hz at
1660 Hz is needed to excite Weber's detectors to
an amplitude of the same order as that of the
Brownian motion of the apparatus. Weber observes
the amplitude of his detectors rising above thresh-
old within 0.5 sec of one another. If the duration
of the bursts were much longer than 0.5 sec, the
amplitudes of the two detectors would rise slowly
and would probably not cross the threshold within
0.5 sec of each other as the initial Brownian mo-
tion of the two detectors would be different. This
would be inconsistent with Weber's report that
shortening the coincidence time did not significantly
affect the rate of coincidences. A burst of duration
less than 0.5 sec must have a bandwidth of at least
0.3 Hz and so each burst must carry an energy of
at least 4 x 10' erg/cm'. If one allowed for an

equal energy in the other polarization which Weber
does not observe, the total energy would be at
least 8 x 106 erg/cm'. It is not reasonable to
suppose that there is gravitational radiation only
in a very narrow bandwidth centered on the fre-
quency of Weber's detector. Therefore we pre-
sume that either each burst has a much larger
bandwidth, say of the order of 1000 Hz, and so
carries an energy of the order of 1.2 x 10"
erg/cm' per polarization, or that each burst has
a narrow bandwidth but that there are something
like a thousand bursts at other frequencies for
every one that Weber observes. In either case
the energy flux is at least 10'0 erg/cm' per day.

A source emitting at 1660 Hz, the frequency at
which Weber observes, must presumably be under-
going collective dynamical motions at that frequen-
cy. This would seem to imply that its size was
less than 100 km, which is the distance light would
travel in half a cycle. Possible sources of this
size might be a neutron star, a star undergoing
gravitational collapse, or the capture of one col-
lapsed object by another. A neutron star would
have an available nuclear and gravitational energy
equal to about 1% of its rest mass, i.e., about 2
& 10~ erg. Therefore to produce a gravitational-
wave burst of 1.2 x 10'o erg/cm' it would have to
be within a distance of 3 x 10"cm, i.e., 100 par-
secs (pc). A distance of 100 pc includes about one
part in 10' of the galactic disk. If, therefore,
sources are distributed uniformly throughout the
galactic disk, ten thousand of them are using up
all their available energy every day, a number
which seems unreasonably high. This number is
not changed if one supposes that the neutron stars
emit in a narrower bandwidth; for although the
sources that Weber observes can be further away,
there will be a corresponding number at other

2

+ ff,~,(u) du erg/cm' sec,

where the wave is taken to be traveling in the
three directions and the Riemann tensor compo-
nents Pypyp and pyplpp represent the two states of po-
larization of the wave. From this formula it can
be seen that for a burst of finite energy the time
integrals of the Riemann tensor components over
the duration of the burst must be zero. This means
that the sign of the Riemann tensor components
must reverse during the burst.

In the linearized theory one has the relation

G 1 d
3c' r dt' (2)

where D ~ is the quadrupole moment of the source
and r is the distance from the source.

From this formula it follows that if the quadru-
pole is initially and finally time-independent (as
one would expect for a gravitational collapse}, then
not only is the time integral of the components of
the Riemann tensor zero but the second and third
integrals as well, i.e., '

frequencies which he does not observe. The only
reasonable way in which neutron stars might be
responsible for the bursts that Weber observes is
if we happen to be untypically near a neutron star
that was undergoing violent eruptions: A neutron
star at 1 pc would have enough energy to produce
a burst of 4 x 10' erg/cm' once a day for about
150000 years.

Gravitational collapse, or the capture of one col-
lapsed object by another, would have the advantage
over neutron stars as a source of gravitational ra-
diation that a much greater fraction of the rest-
mass energy might be released. This makes the

energy problem easier but the amount is still em-
barrassingly high. '-' A source at the galactic cen-
ter needs an energy of about 1.4 x 10"erg (VOTO}
to produce a burst of 1.2 x 10"erg/cm' at the
earth.

In a collapse or a capture most of the energy
would not be released until matter has fallen to
near the Schwarzchild radius or one collapsed ob-
ject was near to the Schwarzchild radius of the
other one. Thus one would expect most of the en-
ergy of the gravitational radiation to be in a period
7 of the order of the dynamical time at this stage,
i.e., ~-GMc '-10 'NM. ' sec.

The energy flux in the gravitational wave at the
observer is

t
F(t) —= c'(4vG) ' R„„(u)du



THEORY OF THE DETECTION OF SHORT BURSTS. . . 2193

dt dt 8 ~0~0 t dt
0 - 0 0

This implies that the components of the Riemann
tensor must change sign at least three times dur-
ing the burst. For gravitational capture, on the
other hand, the quadrupole moment will initially
be a quadratic function of the time and so only the
first time integral of the components of the Rie-
mann tensor will be zero, and the components of
the Riemann tensor need change sign only once
during the burst.

In the nonlinear theory one does not have the sim-
ple relation (2) between the source and the radia-
tion field. Thus Eq. (3) will not in general be sat-
isfied for a gravitational collapse, but one could
expect the transition from linear to nonlinear the-
ory to preserve the qualitative feature that the
sign of the components of the Riemann tensor
change sign at least three times during the burst.

One might therefore be able to distinguish ob-
servationally between collapse or capture by ex-
amining the wave form of the burst. The simplest
models for the bursts in the two cases are shown
in Fig. 1.

III. THE RESPONSE OF THE DETECTOR

A simple quadrupole gravitational-wave detector
consists basically of two masses ~ separated by a
distance l and connected by a spring to give an
oscillation angular frequency u, . The masses and
the spring need not exist separately but can be
combined in the form of a solid bar. The length of
the bar will then be determined by the speed of
sound in the material and the desired resonant fre-
quency ~,. The gravitational wave provides a rela-
tive force between the two masses which is propor-
tional to their separation. Thus the equation of
motion of the system is

R io io

(a)

R io lo

(b)

FIG. 1. Possible wave forms of the radiation field aris-
ing from (a) gravitational collapse and (b) gravitational
capture.

will normally be much less than the damping time
Qcuo '. This means that the motion of the detector
immediately after the burst will be nearly indepen-
dent of Q and will in fact be simply proportional to
the Fourier components of the burst at the resonant
frequency ~,. From the discussion in Sec. II we
expect the spectrum of the burst to have a maxi-
mum at a frequency of the order of ~, =2m~ ' and
to have a width ~(d of the same order as u, . The
energy imparted to the detector by the burst,
4 'm&a, (A(, will be a maximum if the resonant
frequency u, is chosen to be of the same order as
cg, . Then

d'x u dx
dt' Q dt

—+ ~—+ u 'x= —c'lA (4) 4 'm(u, '~A~'= 4w'Gml'$(c'T) ',

where x is the change in separation of the masses,
Q is the quality factor arising from the mechanical
damping, and we take the line of center of the two
masses to lie in the 1 direction.

The motion induced by a gravitational burst is

where g is the energy per unit area. Clearly the
energy imparted to the detector will be greater the
greater the length l, but l is limited by the speed
of sound in the material, c, , of the detector and
the desired resonant frequency ru„ l ~ c, 2wQpp

then,

x=A exp[- &uo(2Q) '+iaido] l, (u,'m(A(' - 4w' GcmSc, 'c 'T. (8)

where

t
A = —c'l(i&@,) 'J e~" 'o ft»»(u)e'+" du. (8)

0

The duration 7 of the burst we are considering

We expect that the energy g and the duration of the
burst z will both be proportional to the mass of
the emitting object; thus Eq. (8) suggests that it is
more favorable to construct long detectors and to
look for bursts of long duration arising from the
collapse of objects of large mass. On the other
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hand, very massive collapses probably occur less
frequently and it is more difficult to isolate the
effects of extraneous mechanical and electrical
disturbances if the frequency is low. We would
therefore suggest that about 1000 Hz is probably
the optimum frequency at which to look for gravita-
tional bursts. This is in fact about the frequency
at which Weber observes. At this frequency one
would be looking for bursts emitted by systems of
].00Mo

q= aCzx

The equivalent circuit of the transducer.

IV. THE SIGNAL/NOISE RATIO

Assuming that extraneous electrical and mechan-
ical disturbances can be eliminated, the main
sources of noise are the Brownian movements of
the detector masses, the Johnson noise associated
with the electrical losses in the transducer, and
the noise produced in the first stage of the ampli-
fier. We shall discuss first the Brownian move-
ments and show that their effect can be minimized
by using a detector with a fairly high Q and observ-
ing its motion with a good time resolution.

The two masses and the spring of the detector
form a simple harmonic oscillator. By the law of
equipartition of energy the oscillation will have an
average energy of oscillation of kT provided that
it is in equilibrium with its surroundings. The am-
plitude x~ of the thermal oscillations will be given
by

cillations of the detector one could detect a gravi-
tational burst that imparted to the detector in that
time an energy greater than 2mnkTQ '.' Obviously,
using a smaller value of n gives a better time res-
olution.

The most practical way to observe the motions
of the detector seems to be to use a piezoelectric
transducer' whose output is fed into a high-imped-
ance amplifier. A piezoelectric transducer can be
represented electrically as a charge generator in
parallel with a capacitance and a resistance in
series (Fig. 2). Here C, is the electrical capaci-
tance of the transducer, n is its voltage output per
unit change of separation x of the two masses of
the detector, and &, = (&uoC, )-'tan5 represents the
electrical losses in the transducer, where tan5 is
the "dissipation factor. "

The Johnson noise of the resistor produces a
mean-square voltage in a bandwidth ~(d of

m(u ~x '=4kT . (9)
Vr' = 2~ 'kTR, d&u = 2v 'kT tan5 6&v(~,C,)-'.

For re-10' g, T-300'E, and ~, -10', this gives
-4 x 10 "cm. One might think that one could de-
tect only bursts that induced an amplitude greater
than this or equivalently that imparted to the de-
tector an energy larger than kT. However, it is in
fact possible to detect much smaller bursts.

For although the average energy of the thermal
oscillation is kT in equilibrium, the noise poorer,
i.e., the rate at which energy enters and leaves the
thermal oscillations of the detector, is very small
if Q is large (we are grateful to P. Aplin for point-
ing this out). This can be seen as follows: One
can regard the thermal oscillations as arising
from a large number of small impulses applied to
the detector with random phases and amplitudes.
The oscillations induced by each small impulse
will die away in the damping time Qcu, -'. Thus at
any time the energy of the detector arises effec-
tively from the random impulses applied in the last
Q(2v) ' cycles. Since the phases of the oscillations
induced by the small impulses are uncorrelated,
it follows that the mean value of the energy of the
oscillation induced by the small impulses in one
cycle is kT2vQ-'. Thus by observing the change
over n cycles of the phase or amplitude of the os-

(10)

V~' =4n'kT(m&u, ') '. (12)

By observing fluctuations over n cycles, one can
detect against the Brownian noise a burst that im-
parts to the detector an energy greater than
2mnkTQ '. For such a burst the signal output volt-
age V~ satisfies V~'~ 2wnV~'Q '. In order to de-
tect a signal against both the transducer noise and
the Brownian noise, one needs

V~ ~ V~ +2nnQ 'VB'.

The greatest sensitivity, therefore, is obtained
by choosing the value of n for which

Vz' =2pnV~ Q

This gives

n' = Q tan6 (8w 'p) ',

This may be compared to the mean-square voltage
produced by the Brownian movements of the detec-
tor masses

V '=n'x '
B B

where xs is given by (9). Thus,
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where P =o.'C, (mao') ' represents the proportion
of elastic energy of the detector that can be ex-
tracted electrically from the transducer in one cy-
cle. Thus one can detect gravitational waves which

impart to the detector an energy of

(2 tan5)' ' (vPQ) ' 'kT .

ALUM)NUM

BAR

EN'

For Weber's detector, @=10', p=5 x 10 ', and

tan5= 5 x 10-'.' Thus the optimum value of n is
600. This would give a time resolution of about
0.4 sec (about what Weber uses) and would enable
one to detect bursts which imparted to the detector
an energy of about~»kT. For a broad spectrum
burst of the type we have considered this would

correspond to an energy flow in one polarization
S of 10' erg/cm'. If, however, instead of ob-
serving fluctuations in the phase or amplitude of
the oscillations of the detector one observes only
whether the amplitudes of these oscillations in-
crease suddenly (as Weber does), one could detect
bursts of this intensity only if the phase of the os-
cillations induced by the burst coincided with the
phase of the Brownian oscillations of the detector.
This would mean that the probability of observing
such a burst on a single detector would be about
1 in 4, and the probability of obtaining a coinci-
dence of two detectors would be about 1 in 16. If,
therefore, the bursts that Weber reports corre-
spond to an energy of ~»kT, there must be 16 of
them for each one that Weber observes, and the
total energy flow must still be greater than 10'
erg/cm' per day.

In order to obtain greater sensitivity one would
like to make P nearer unity. In fact, P = &'y, where

y is the fraction of the elastic energy of the detec-
tor that is actually in the piezoelectric material
and g is a piezoelectric coupling constant which
depends only on the material of the transducer.
Values of & range from 0.1 for quartz to about 0.6
for lead zirconate titanate. In order to make P
larger, one wants to use a material like lead zir-
conate titanate and make y higher. One way of
doing this would be to use the transducer as a
spring connecting two metal bars (Fig. 3). (This
configuration was suggested by P. Aplin. ) By suit-
ably choosing the cross-sectional area of the
transducer one can arrange that y is 0.2 and so ob-
tain a value of p of 0.07. Since the mechanical
losses of the piezoelectric material are likely to
be much greater than those in the metal bars, the
mechanical Q of the detector would be the mechan-
ical Q of the piezoelectric material divided by y.
One can obtain lead zirconate titanate with a Q of
about 1000 and so the effective Q might be about
5000, although it would probably be rather lower
because of mechanical losses in the cement joining
the transducers to the bar, etc. The optimum value

PIEZO- ELEGTRIG
TRANSDUGERS

FIG. 3. A possible configuration for a detector with a
high value of P, i.e., a tight electromechanical coupling.

P(z)dz =z,-'e 'i'odz, (14)

where z =~B~', z, =~B,~', and B, is the rms amplitude
of the oscillation induced in one cycle. A thresh-
old for ~B~' of 25~B,~', therefore, would be ex-
ceeded by chance less than once a year. Such a
threshold would enable one to detect sources at the
galactic center which emitted at least 5Mo in grav-
itational radiation.

V. THE EQUIVALENT CIRCUIT

One can also discuss the signal/noise ratio in
terms of an equivalent electrical circuit for the
detector. " This may be derived as follows. The
equivalent circuit of the transducer contains a
charge generator q = aC, x, where x obeys Eq. (4).
This equation is the same as that for the displaced
charge q in a series LCR circuit with a voltage
generator V if L,C, =u Q=g 'L ' 'C, ' ' and
V=-c IR,om(uC, L,) '. The remaining relation
between L, C, and R is specified by requiring that
the energy in the LCR circuit is equal to the energy
of the motion of the detector. This gives

of n for such a detector would be about unity. This
would give a time resolution of about 10 ' sec and

enable one to detect bursts which imparted in that
time to the detector an energy greater than ~», kT.
For m-10' g and an effective value of l of about
100 cm, "this would correspond to an energy flow

in one polarization of 4 x 10' erg/cm' in 1 msec at
the earth, and to a total energy emitted in one po-
larization of at least 0.2M if the source is at the
galactic center. Of course, to be sure that the ob-
served fluctuations of phase or amplitude of the
oscillations of the detector are really due to grav-
itational bursts and not simply due to larger than
average input of noise energy, one would have to
set a threshold of several times the rms noise fluc-
tuation in phase and amplitude. If

Bexp[- (uo(2Q) '+iwot]

represents the oscillations of the detector induced
by the noise energy entering in one cycle, then B
will be distributed according to
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FIG. 4. The equivalent circuit uf the detector
and transducer.

L, =(&u '
0pC, ) ',

C, = pC2,

R, =(Q&u pC )

FIG. 5. The equivalent circuit for discussing the
signal/noise ratio.

square voltage of

Vr'=(AHD ')'2kTv 'tan6(&u, C, ) ')Z, (')Z, (

= (AHD ')'2k T-w ' tan5 (&u,C, ) '(P(u, ) '

~ [~2Q-2+ -2(~2 2}2]

V=-c'IR„„(2&v,) 'm'~'(PC, ) '~'.

The equivalent circuit of the detector and trans-
ducer is therefore given by Fig. 4."

We shall assume that the output of this equivalent
circuit is fed into a high-impedance amplifier with

gain A and that the amplifier output is divided in
the ratio Z, /Z, (Fig. 5). In this figure Z, repre-
sents the impedance of the series I.,C,A, and Z,
represents the impedance of the series C,A, . The
impedances Z, and Z, are chosen as Z,
= D(Z, + Z,} ' and Z, = HZ, ', where D a.nd H are
constant with D»H. The Z„Z4 circuit "undoes"
the effect of the resonance of the detector and gives
an output signal voltage

Vs =AHD ' V

=-AHD 'c'LR, , (Z&u ) 'm' '(PC ) ' '

It is not necessary to use such an inverse circuit
but it is convenient for discussing the signal/
noise ratio. The impedances Z, and Z4 could be
realized physically by a parallel L,Cp circuit and
a parallel IA circuit respectively, though one
might need to use a superconducting inductance in
Z3 to obtain a sufficiently high Q . It would prob-
ably be more convenient to simulate the Z„Z4 cir-
cuit electronically.

Superimposed on the output signal voltage will
be the Johnson noise produced by B, which repre-
sents the Brownian noise of the detector. This
will produce at the output a flat noise spectrum
with a mean-square voltage

V~' =(AHD ') 2kTm '(QaoPC2)

per unit bandwidth. The transducer noise produced
by the resistance p, will give at the output a mean-

per unit bandwidth. This has a sharp minimum at
the resonant frequency &p The noise produced by
the amplifier will have a rather similar spectrum
at the output. Using modern techniques, it seems
possible to reduce the amplifier noise below the
transducer noise and it will be neglected.

Suppose now that the output of the circuit in Fig.
5 is fed into a filter of bandwidth ~u. If the signal
is of the form suggested in Sec. 2, i.e., a burst of
one to three cycles, its Fourier transform will
have a maximum at a frequency a, of the order of
2m7 ' and a half-width of the same order. There-
fore, if the filter pass band is centered at u„ the
amPliIude of the transmitted signal will be
Vzn, &u&u,

' and the power will be V, '(aw)'w, ' for
This behavior distinguishes short bursts

from continuous incoherent radiation where the
power is proportional to ~u. It is the reason why
it is desirable to use a fairly large value of a&,
i.e., good time resolution.

If the resonant frequency &p is chosen to be equal
to u„" the filter will transmit a Brownian noise
power approximately equal to

(AHD ') 2kTw '(Q~ pC, ) 'n, u

and a transducer noise power

(AHD ')'kT(3v) 'tan5 p 'C, '(n&u)'&u, '.
The optimum value of ~~ will be the smaller of
~p and the value for which the transmitted noise
power equals the transmitted transducer noise
power. This gives

(n(u(uo ')2=6p(Qtan5) '

which agrees almost exactly with Eq. (13). With
this value of ~~ one could detect against the noise
a short burst in which the amplitude of @,p, p was
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of the order of

4W2&u, 'kT(2p)'~'(c'ml') '(3w'tan5) '~'.

This would correspond to an energy imparted to
the detector of

2kT(2 tan5)'~'(3m'J3Q) '~',

which agrees well with the estimate in Sec. IV.

VI. CONCLUSION

We have shown that by using an antenna with
tight electromechanical coupling one could detect
sources at the center of the Galaxy which emitted
bursts carrying an energy of about 5'. This en-
ergy still seems rather high, but it is considerably
less than that needed to explain the events reported
by Weber. One could increase the sensitivity by
somewhat lowering the threshold or using several

detectors in coincidence. The short time resolu-
tion of these detectors would make it possible to
measure the difference in the time of arrival of a
burst at two stations separated by more than 300
km. A chain of four stations would enable one to
determine the direction and velocity of the signal.
This would enable one to eliminate seismic distur-
bances which travel with the velocity of sound and
would provide a test of general relativity, since
there are other theories in which gravitational
radiation travels with a different velocity from
that of electromagnetic waves. "
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