Determination of $f - \omega - \omega$ Coupling Constants from a Veneziano Model and the $f \rightarrow \omega + \gamma$ Decay

Naomi Levy*

Deutsches Elektronen-Synchrotron, DESY, Hamburg, Germany

and

Paul Singer[†] Department of Physics, Technion-Israel Institute of Technology, Haifa, Israel (Received 20 May 1971)

A Veneziano model, previously constructed, relates the coupling of f to two vector mesons in terms of the couplings of the particle exchanged in the crossed channels. It is here used to calculate explicitly the coupling of the f meson to two ω mesons, as well as its radiative decay into $\omega + \gamma$.

In a recent paper¹ (hereafter called I), we investigated the scattering process $V_1 + \pi_{\alpha} \rightarrow V_2 + \pi_{\beta}$ in the frame of a Veneziano model. The model presented in I was constructed for isoscalar vector mesons V_1 , V_2 of arbitrary mass, including photons. For the latter case, the amplitude fulfills gauge invariance in the limit $m_i \rightarrow 0$. The dual character of the model, supplemented by the requirement of absence of daughters, enabled us to relate the general coupling of f to two vector mesons in terms of the couplings of the particle exchanged in the crossed channels [see Eqs. (5.3) and (5.14)-(5.16) in I].

In this note we make use of this property tc calculate explicitly the coupling constants of the f meson to two ω mesons, as well as its radiative decay into $\omega + \gamma$.

The contribution of the *f* exchange in the *s* channel of the scattering process $V_1 + V_2 \rightarrow f \rightarrow \pi_{\alpha} + \pi_{\beta}$ [Eq. (4.4) of I] is given by

$$T_{f}^{\lambda_{1}\lambda_{2}} = \frac{1}{4} G_{\mathbf{v}_{1}\mathbf{v}_{2}} \Delta_{\mu} \Delta_{\nu} D^{\mu\nu\rho\sigma} \left\{ \alpha \epsilon_{\rho}^{\lambda_{1}}(k) \epsilon_{\sigma}^{\lambda_{2}}(p) + \beta_{1} \left[\epsilon^{\lambda_{1}}(k) \cdot p \right] \epsilon_{\rho}^{\lambda_{2}}(p) k_{\sigma} + \beta_{2} \left[\epsilon^{\lambda_{2}}(p) \cdot k \right] \epsilon_{\rho}^{\lambda_{1}}(k) p_{\sigma} + \gamma \left[\epsilon^{\lambda_{1}}(k) \cdot \epsilon^{\lambda_{2}}(p) \right] k_{\rho} p_{\sigma} + \delta \epsilon_{\rho}^{\alpha\beta\gamma} \epsilon_{\sigma}^{\lambda_{1}}(k) k_{\beta} L_{\gamma} \epsilon_{\sigma}^{\sigma'\beta'\gamma'} \epsilon_{\alpha'}^{\lambda_{2}}(p) p_{\beta'} L_{\gamma'} \right\},$$

$$(1)$$

where q_1, q_2, k, p are the momenta of the pions and vector mesons, respectively, $\Delta_{\mu} = (q_1 - q_2)_{\mu}$, $L_{\mu} = (q_1 + q_2)_{\mu}$, and $\epsilon^{\lambda_1}(k)$, $\epsilon^{\lambda_2}(p)$ are the polarization vectors of the vector mesons. $\alpha, \beta_1, \beta_2, \gamma, \delta$ are proportional to the five general coupling constants of a tensor to two vector mesons. $D^{\mu\nu\rho\sigma}$ is the tensor meson propagator given by

$$D_{\mu\nu\rho\sigma} = \left[\frac{1}{2}(g_{\mu\rho} - L_{\mu}L_{\rho}/L^{2})(g_{\nu\sigma} - L_{\nu}L_{\sigma}/L^{2}) + \frac{1}{2}(g_{\mu\sigma} - L_{\mu}L_{\sigma}/L^{2})(g_{\nu\rho} - L_{\nu}L_{\rho}/L^{2}) - \frac{1}{3}(g_{\mu\nu} - L_{\mu}L_{\nu}/L^{2})(g_{\rho\sigma} - L_{\rho}L_{\sigma}/L^{2})\right](s - M_{f}^{2})^{-1}$$
(2)

and

$$G_{v_1v_2} = 4g_{f\,\pi\pi}g_{fv_1v_2} \,. \tag{3}$$

On the other hand, $G_{V_1V_2}$ is related by duality to the coupling constants of the ρ meson, exchanged in the t and u channels, as follows:

$$G_{\mathbf{v}_{1}\mathbf{v}_{2}} = g_{\mathbf{v}_{1}\pi\rho}g_{\mathbf{v}_{2}\pi\rho}/\mu^{2}, \tag{4}$$

where μ is the pion mass and the coupling constants $g_{\mathbf{v}_i \pi \rho}$ are defined through the vertex function

$$T_{\mathbf{v}_{i}\pi\rho} = g_{\mathbf{v}_{i}\pi\rho} \epsilon_{\alpha\beta\gamma\delta} \epsilon_{(\rho)} p_{(\rho)} \epsilon_{(\mathbf{v}_{i})} p_{(\mathbf{v}_{i})}.$$

$$\tag{5}$$

 $g_{f\pi\pi}$ is defined in the $f \rightarrow \pi + \pi$ transition amplitude $T_{f \rightarrow \pi\pi}$ by

$$T_{f \to \pi\pi} = g_{f \pi\pi} \tau^{\mu\nu} \Delta_{\mu} \Delta_{\nu} , \qquad (6)$$

and finally the transition amplitude $T_{f \rightarrow V_1 V_2}$ is

~ . B

$$T_{f \to \mathbf{v}_{1}\mathbf{v}_{2}} = g_{f\mathbf{v}_{1}\mathbf{v}_{2}}\tau^{\mu\nu} \left[\alpha \epsilon_{\mu}^{\mathbf{v}_{1}} \epsilon_{\nu}^{\mathbf{v}_{2}} + \beta_{1}(\epsilon^{\mathbf{v}_{1}} \cdot p) \epsilon_{\mu}^{\mathbf{v}_{2}} k_{\nu} + \beta_{2}(\epsilon^{\mathbf{v}_{2}} \cdot k) \epsilon_{\mu}^{\mathbf{v}_{1}} p_{\nu} + \gamma(\epsilon^{\mathbf{v}_{1}} \cdot \epsilon^{\mathbf{v}_{2}}) p_{\mu} k_{\nu} + \delta \epsilon_{\mu}^{\alpha\beta\gamma} \epsilon_{\alpha}^{\mathbf{v}_{1}} k_{\beta} L_{\gamma} \epsilon_{\nu}^{\alpha'\beta'\gamma'} \epsilon_{\alpha'}^{\mathbf{v}_{2}} p_{\beta'} L_{\gamma'} \right],$$

$$(7)$$

where $\tau_{\mu\nu}$ in (6) and (7) is the polarization tensor of the *f* meson.

The partial decay width for f decaying into particles x and y is

$$\Gamma_{f \to xy} = \frac{(2\pi)^4}{5 \times 8M_f E_x E_y} \int \sum_{\lambda_f, \lambda_x, \lambda_y} |T_{f \to xy}|^2 \delta(M_f - E_x E_y) \delta^3(\vec{\mathbf{p}}_x + \vec{\mathbf{p}}_y) \frac{d^3 p_x d^3 p_y}{(2\pi)^6}$$
$$= \frac{|p|}{40\pi M_f^2} \sum_{\lambda_x, \lambda_y} |T_{f \to xy}|^2.$$
(8)

Using the experimental value² $\Gamma_{f \to 2\pi}$ = 151 MeV, one obtains from (6) and (8)

$$g_{f\pi\pi^2/4\pi} = 4/M_f^2$$
. (9)

Inserting this value into (3) and (4), one has

$$(g_{fV,V_2}M_f)^2 = 8(\mu G_{V_1V_2})^2.$$
(10)

In order to calculate $G_{\omega\omega}$ and $G_{\omega\gamma}$ from (4), we use $g_{\omega\rho\pi}^2/4\pi = 0.6$, which corresponds to a width for $\omega \to 3\pi$ of 11 MeV, and $g_{\rho\pi\gamma}^2/4\pi = \frac{1}{9}g_{\omega\pi\gamma}^2/4\pi = 0.02\alpha$ (which corresponds to a width for $\rho \to \pi\gamma$ of 0.13 MeV), where α is the fine-structure constant. In Table I we list the different coupling constants of f to two vector mesons in the general case as well as for the two particular cases discussed here.

For the decay $f \rightarrow \omega + \gamma$ one has

$$\sum_{\lambda_{f},\lambda_{\gamma},\lambda_{\omega}} |T_{f \to \omega\gamma}|^{2} = g_{f\omega\gamma}^{2} \left\{ 3\alpha'^{2} + (k^{2}/m^{2}) [\alpha' + \frac{1}{2}\beta'(M+m)^{2}] \left[\alpha' + \frac{1}{2}\beta'(M-m)^{2} \right] + \frac{1}{3}(\gamma' - \alpha')^{2} \right\},$$
(11)

where

$$\alpha' \equiv \alpha - \delta(Mk)^2, \quad \beta' \equiv \beta_2 + \frac{1}{2}\delta(M^2 + m^2), \quad \gamma' \equiv \gamma - \delta M^2,$$

and

 $M \equiv M_f$, $m \equiv m_\omega$.

From (8), (11), and the values given in Table I, we calculate the corresponding partial decay width:

 $\Gamma_{f \rightarrow \omega \gamma} = 80 \text{ keV}$

TABLE I. The values of the *f*-vector-vector coupling constants [for definition, see Eq. (7)]. Column A contains the five general independent coupling constants. In B are the values for $f - \omega - \omega$ (here, because of the identity $V_1 = V_2$, there are only four independent coupling constants, with $\beta_1 = \beta_2$). In C are the values for $f - \omega - \gamma$ (in this case there are only three independent coupling constants, since gauge invariance imposes $\beta_1 \mathbf{k} \cdot \mathbf{p} + \alpha = 0$, $\beta_2 + \gamma = 0$). The numbers pertaining to α , β_1 , β_2 , γ , and δM_f^2 listed in the table are exact only to within an order of $2\mu^2/m^2$.^a This has an effect of $\approx 5\%$ in the rate.

	А	В	С
$(g_{fV_1V_2}M_f)^2$	$8 (\mu G_{V_1V_2})^2$	432	$10.5 imes 10^{-2}$
α	$k \cdot p - 4k^2$	$0.61 M_{f}^{2}$	$-8.0 \times 10^{-2} M_{f}^{2}$
β_1	$1 - 2m_2^2 / M_f^2$	0.25	0.25
β_2	$1-2 {m_1}^2 /{M_f}^2$	0.25	1
γ	-1	-1	-1
δM_f^2	-4	-4	-4
k•p	$(M_f^2 - m_1^2 - m_2^2)$	$0.11 M_{f}^{2}$	$0.3M_f^2$
4 k ²	$\frac{[M_f^2 - (m_1 + m_2)^2] [M_f^2 - (m_1 - m_2)^2]}{M_f^2}$	$-0.5M_{f}^{2}$	$0.4 M_f^2$

^aThe origin of this inaccuracy is that the coupling constants were determined at the point $\alpha_s = 2$ [Eq.(5.14) of I], which for a degenerate $\rho - f$ trajectory with a slope $\epsilon' = [2(m_{\rho}^2 - \mu^2)]^{-1}$ corresponds to a squared mass $M_f^2 = 90\mu^2$ instead of the physical value $M_f^2 = 81\mu^2$.

2178

(12)

DETERMINATION OF $f - \omega - \omega$ COUPLING...

and

$$\Gamma_{f \to \omega} / \Gamma_{f \to 2\pi} = 5 \times 10^{-4} .$$
⁽¹³⁾

In concluding, we should like to mention that Renner has recently calculated these couplings³ by using a model based on the assumption of tensor-meson dominance for the energy-momentum tensor and vector-meson dominance for the electromagnetic current. It should be noted that, although the two calculations are based on different models, the value of the partial decay width $\Gamma_{f\to\omega\gamma}$ obtained by Renner is 0.20 MeV. In particular, the two couplings G_1 and G_3 derived from tensor-meson dominance³ are very close to the corresponding ones in our model, while for those cerived from using vector-meson dominance the agreement is not as good.

*Research supported by Stiftung Volkswagenwerk. †Research supported in part by Stiftung Volkswagenwerk.

¹N. Levy and P. Singer, Phys. Rev. D <u>3</u>, 1028 (1971).

²Particle Data Group, Phys. Letters <u>33B</u>, 1 (197)).

³B. Renner, Nucl. Phys. <u>B30</u>, 634 (1971).

N. L. wishes to acknowledge discussions with Renner on the comparison of the two models. The correspondence

between the respective coupling constants is as follows:

$$\begin{split} S_{1} &= \frac{1}{4} \gamma' g_{f V_{1} V_{2}} M_{f}, \\ S_{2} &= \frac{1}{4} \delta M_{f}^{2} g_{f V_{1} V_{2}} M_{f}, \\ S_{3} &= -\frac{1}{4} \beta'_{2} g_{f V_{1} V_{2}} M_{f}, \\ S_{4} &[-M_{f}^{2} + \alpha (k^{2} + k'^{2} - 2M_{V}^{2})] = -\frac{1}{2} \alpha' g_{f V_{1} V_{2}} M_{f}. \end{split}$$