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We present a treatment of low-energy E p reactions which includes nonrelativistic electro-
magnetic mass-difference effects and the effect of the Coulomb potential. We show how the
corrections to the charge-independent parameters can be calculated in a first-order per-
turbation treatment. Our work extends the usual K-matrix treatment of these corrections
by including both inner and outer corrections. Furthermore, we include these effects in the
reaction channels as well as in the elastic channel.

I. INTRODUCTION

Data on the low-energy KN scattering and absorp-
tion processes have been the subject of many cou-
pled-channel analyses' which aim to extract infor-
mation on the charge-independent nuclear interac-
tions of the KN, mZ, and mA systems. It was soon
realized that such analyses should include some
allowance for electromagnetic effects, both via the
attractive K p Coulomb interaction and via the rel-
atively large mass difference between the K p and
K'n systems. The effects of these terms outside
the range of the nuclear interaction have been taken
into account via a zero-range K-matrix formalism
by Jackson and Wyld' and via a more general K-
matrix treatment by Dalitz and Tuan, ' the fcrmulas
of the latter paper being used directly in most
analyses.

Recently we have considered the problem of the
Coulomb interaction and mass-difference ef fects
for the coupled m p, 7i'n systems' and now we ex-
tend these methods to the coupled KN, mZ, a~d mA

systems. We use a nonrelativistic coupled-channel
Schrodinger equation to construct the full S matrix
in terms of charge-independent parameters, the
physically measured scattering and absorption
cross sections being directly obtained from these
S-matrix elements.

Our results represent an extension of the treat-
ments given in Refs. 2 and 3: We include the effects
of the Coulomb interaction in the w Z' and m'Z

channels as well as in the K p channel, and we take
into account mass differences between the m Z',
m'Z, and w Z' systems as well as between the
K p and K'n systems. The Coulomb parameter for
the m'Z' channels is considerably smaller than that
for the K p channel, so the additional Coulomb ef-
fects may not be significant. However, the mass

differences between the 7tZ systems are comparable
to those between the KN systems, and it is not
clear that their effects can be safely neglected. In
addition, our treatment of the Coulomb and mass-
difference effects covers the nuclear-interaction
region where these effects were previously ne-
glected. In mN scattering these inner Coulomb cor-
rections are comparable to the outer corrections'
and if a similar situation holds for the KN, 7lZ, and
mA systems, then the previous formalism will give
misleading results due to their neglect.

It is generally accepted that the bulk of low-ener-
gy charge-dependent corrections are due to Cou-
lomb-potential and mass-difference effects. This
neglects finer details such as the y processes of
radiative capture and of bremsstrahlung. One also
assumes that the interaction can be described by
the sum of a charge-independent nuclear potential
plus a Coulomb potential. This ignores charge-
dependent corrections to the nuclear interaction
which occur via the electromagnetic interactions
of the exchanged particles. In nucleon-nucleon
scattering, for example, such corrections occur
due to 7f'-p' mass differences.

A basic difficulty of any nonrelativistic treatment
of the mass-difference problem is that there is no
Galilean-invariant theory which can describe a
scattering process where the sum of the rest
masses in the initial state is not equal to the sum
of the rest masses in the final state. This can
easily be seen by observing that conservation of
total 3-momentum is always covariant under Lor-
entz transformations, but is only covariant under
Galilean transformations in the special case where
the sum of the rest masses of the initial state is
equal to the sum of the rest masses of the final
state. Thus, we are faced with the problem that
our nonrelativistic treatment is restricted to a
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special frame which we choose to be the center-of-
momentum frame.

This problem is already present in the treatment
of mN mass differences in Ref. 4, but in this case
it is less worrying since the mass differences are
assumed to be electromagnetic in origin and so
vanish for the purely nuclear system. In the ease
of the K p system the problem is more serious
due to the "strong" mass differences between the

KN, m5, and mA channels which remain even for
purely nuclear scattering. However, these mass
differences are small compared to the total rest
mass in any channel, and so we believe that our
nonrelativistic model is suitable for practical cal-
culations in the low-energy region. We would like
to emphasize that our aim is to improve the pre-
vious nonrelativistic treatments of Refs. 2 and 3

and that we do not claim to tackle the problem in a
relativistic manner.

In Sec. II we fix our general notation and in Sec.
III we describe the special case of purely nuclear
scattering with no electromagnetic effects. In Sec.
IV we introduce the Coulomb potential and electro-
magnetic mass differences within the nuclear-
interaction region, and in Sec. V we treat the long-
range part of these corrections. In Sec. VI we

show how these corrections can be calculated to
first order in the fine-structure constant and how

they can be included in the analysis of experimental
data. We hope later to publish a reanalysis of the
low-energy KN data using the formalism developed
here.

The formalism is developed in such a way that
the method can be easily applied to any other
strongly interacting multichannel system where
mixing between states of the same total isospin is
already present in the charge-independent descrip-
tion and where electromagnetic effects change this
mixing as well as introducing further mixing be-
tween states of different total isospin.

II. GENERAL NOTATION

We will be concerned with pK scattering both in
the elastic channel and in va.rious reaction chan-
nels. Charge conservation requires that they have
the same third component of isospin, I, = 0. This re-
mains true even when electromagnetic interactions
are introduced, and so we always work in this sub-
spaee of isospin space, and we suppress I, in our
notation. Since the applicability of our nonrelativ-
istic potential model is restricted to low energies,
we consider only the lowest-mass states, i.e.,
pK, nK', g'p, Z'm', Z m, and Am', and we ne-
glect all other channels.

Using the Dirac bra and ket notation, we intro-
duce a notation to deal with the six possible final

I=2; gm, I=1; NK, I=1 Zm

I = 1' Am

If we write

I =0; NK, I=o; Z~,

16).

li&&il j),
$=1

then the unitary transformation matrix is given by'

0 1/iv 2

o

0 0 1j~2

0 0 -1/R2

1/v2 0 0

o

0 0 0 -1,VS

0 —1//v2 0 0

0 1 0

The inverse transformation matrix (jli) is given by
the transpose of (1).

We will be dealing with the matrix elements of
operators (e.g. , 0) in isospin space which we write
as (i lO l j) or (i lOl j) depending on the basis used.
The matrix elements in the two bases are easily
rela, ted, e.g. ,

6

(iloli) = Q (ill&(ulol f) &ilj). (2)

A general state in isospin space is written as
8 6

lR) =pR, li& =gR, l j),
i=1 j=l

where R, and R, are the components of lR) in the
charge and isospin bases. They are also easily
related, e.g. ,

R; =Z(ilj)R, . (3)

states in isospin space by writing the physical
states as

pK, nK', Z'm, Z'm', Z m', Am',

12), 13), 14&,

where we have written the ket symbol below the

corresponding physical 2-particle state. The basis
consisting of the li), i = 1, . . . , 6, we call the charge
basis of isospin space.

The physical Z7) states are linear superpositions
of I =0, 1, 2 states, the physical XK states are lin-
ear superpositions of I = 0, 1 states, and the physi-
cal A~' state is a pure I =1 state. We can also in-
troduce the isospin basis of isospin space with kets
li), i = 1, . .., 6, where we use
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We will work in the c.m. system and consider the

model where the particles obey the nonrelativistic
Schrodinger equation. References 2 and 3 al.so
made this nonrelativistic assumption and for that
reason both their corrections and the new correc-
tions which we will derive are only expectec to be
valid in the sense discussed in the Introduction.
For the channel corresponding to the charge-basis
state

I i) we introduce m, , the reduced mas, e.g. ,

-N -N -iN
V~ = V3 =V6 = V3)

-N -N
V2 =V5 =V~)

k4 =k6,

V4 =V6.

(6a)

or in the isospin basis

We also define the operator D" with matrix ele-
ments in the charge basis

mp ml(—
mg

m&+m~-
'

k;, the relative momentum (we use units h = c = 1

throughout), and v, =k, /m, , the relative velccity.
The mass operator m is defined so that the matrix
elements are given by

(4)

We also define an operator D with matrix elements

Note that in general m and D are only diagonal in

the charge basis.

(6b)

Finally, since we describe the interaction by a
potential, we introduce the charge-independent nu-

clear potential operator U which has nonzero ma-
trix elements (iI UI j) only between states with the

same total isospin [e.g. , (1I UI2) =0, (2I UIS)» 0].
To simplify our treatment of the Coulomb correc-
tions, we assume that U =0 for r ~ rN. Also for
simplicity wp consider only the case of s-wave
scattering, the results for general l being obtained

by a trivial generalization of our s-wave results.
With this notation the purely nuclear Schrodinger

equation in the s-wave case has the form

III. THE PURELY NUCLEAR PROBLEM
=0 r ~YN

For the purely nuclear problem, we neglect elec-
tromagnetic mass differences and define the
masses as

mg mg m g m Q mQ mj(t

mff my y mN mp

where the masses on the right-hand sides of these
equations are the physical masses. The corre-
sponding reduced mass for

I i) is m,"and with our
choice of the pure nuclear masses we have m, =m,"
=m„m,"=m4 =m", =m„andm, =m, . In this case m

is diagonal both in the charge and in the isospin
bases. We correspondingly introduce operators

and v" with matrix elements

where obviously

which corresponds in the charge basis to the fol-
lowing system of six coupled 2nd-order differential
equations for the functions R;"(r):

(
2 6

, +k", ' R,"(r) =2m";g (iI UIj}R,"(r), r ~r„,dr' j=l

i=1, ..., 6

=0 r ~rN ~

(8)

R; (r)/r are the radial parts of the wave functions
in the corresponding channels. The regular solu-
tions of (8) a.re those which vanish for r = 0:

R";(0)= 0, i = 1, ..., 6 .

The system of six coupled 2nd-order differential
equations has six independent regular solutions
which we label with a subscript n:

N N
Vg =V2 =V~,

~N ~N wN aN
V3 V4 V5 V3y V6 =V6 .

Again for this purely nuclear case k and l" are
also diagonal in the isospin basis with matrix ele-
ments

where

Charge independence ensures that in the isospin
basis we have an uncoupled equation for R", , three
coupled equations for R,", R, , and R,", and two cou-
pled equations for R, and R,". For this reason it is
convenient to specify the regular solutions via the
asymptotic behavior of R"; rather than of R";

Guided by our knowledge that the S matrix can be
diagonalized by an orthogonal transformation, we
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choose our set such that

N

(V( )
rN, i =1, ..., 6.

(9)

nuclear, charge-independent case for the NK sys-
tem. This does not happen in the Nm system since
in that case only one physically realized represen-
tation exists for each value of the total isospin.

A general regular solution can be written as
The matrix t;„ then decomposes into the direct sum
of one 1-dimensional, one 3-dimensional, and one
2-dimensional submatrix. The nonvanishing ele-
ments can be chosen to be real, since the potential
is real. Each solution ~R" t„can be multiplied by
an arbitrary constant, so it is possible to fix the

t; so that the following normalization condition
holds:

gp p

6

R", =+A„R,"„, i =1, ..., 6,
a=1

where A are arbitrary constants. We see that this
has the expected asymptotic behavior of a super-
position of incoming and outgoing waves:

-ski r ik~ r
i I- Nb 1/2 / Nhl/2, E —1, ..., 6,I V.

where

We show in Sec. VI that the Wronski conditions
applied to the set of regular solutions (9) implies

6

(10)
i=1

Equation (10) shows that t,
" is a real orthogonal

matrix. Since (10) leaves some sign conventions
open, it is always possible to choose the t,. so
that they form a rotation matrix (dett"=1). We can
then write the nonvanishing matrix elements ex-
plicitly in the following form:

t22 = cos~ cosf cos8 —since sin8,

't23 -sinu cos Q cos 8 —cos(d sin8

t,4= sing cos8,
t32 cos~ cos Q sin8 + sin~ cos 8

t33 -since cos Q sin8 + cosv cos8

t34 sin Q sin8

t4, = -cosa sing,

t43 sine sin Q

t44 = cos(jb,

t65 = COSf,

t,6= -sine,

t65 = Sln&

t«= cosa.

Here 8, Q, and (d are the three mixing angles as-
sociated with the 3-channel I=1 subsystem. They
correspond to the Euler angles used in 3-dimen-
sional configuration space. The mixing angle as-
sociated with the 2-channel I =0 subsystem is e. It
should be noted that mixing between states with the
same total isospin but belonging to different repre-
sentations of the isospin group occurs in the purely

i=1, ..., 6, (12)

IV. THE INTRODUCTION OF

INNER CORRECTIONS

We now introduce the Coulomb potential operator
V with matrix elements

(tl vlj& =6;, v; (16)

and we assume that, beyond some charge radius
r„V behaves like the point-charge potential oper-
ator

(il vl j& = 6;, "' ',
5

where qi is the Coulomb parameter associated with
the channel ~i&

e'm;
i = 1, 3, 5

i

=0
7 i=2, 4, 6. (16)

We start by introducing the Coulomb potential and
mass-difference effects for r ~ r„where

6

C;= —QA„t;"e' ", i=1, . . . , 6.
n=l

The purely nuclear S matrix relates Bi and C; by
6

c; =-Z (tls" lj)R, (14)
j=l

and so, substituting (12) and (13) into (14), we ob-
tain

6

(ilS'I j) = 2 t,"„6.,e"' (t."-')„.. (15)
n, 8=1

One sees from (15) that e" " are the eigenvalues
of the 8 matrix in the purely nuclear case, 5"„being
the eigenphases. These six eigenphases, together
with the four mixing angles, are the charge-inde-
pendent parameters by which K p scattering at low
energies can be expressed.
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r, = max(r „,r,} .

In this case the s-wave Schrodinger equation be-
comes

toi

DIR ) = 2mUIR )+ 2m V IR ),
D"IR'"}= 0,

This we rewrite as

D"IR'}=2m"UIR }+~IR'),

r&r 0

0

(19)

where Fo(q;, k;r) and G,(q;, k,r) are the s-wave reg-
ular and irregular Coulomb radial wave functions. '
Note that in the channels with g; =0

F,(q, , k;r) = sin(k;r},

G,(tt;, k, r) = cos(k;r), i = 2, 4, 6 .

where

=0
7 (20)

tt = 2m V + 2(m —m") U —(k' —k ') . (21)

As before there are six independent regular solu-
tions which we again label with subscript c~:

For r ~ ro, IR"') satisfies the same set of cou-
pled equations as IR }and so we can choose our
six independent regular solutions to match onto
IR'")„at r ro =Th.us we write

lot

(v )'"
IR'"}„=gR;:".

I t) =g R;.Ii) . r~r0, 1
y

~ ~ ~
y

6 (26)

Guided by perturbation theory, we specify these
regular solutions by the behavior of R,'" for r ~ r,
which we choose as

and fix t;"' and 5;"' by the conditions

R,.".'(r, ) =R,„(r,),

(Vf )
(22)

d
1

y ~ ~ ~ y
6 ~

(27)

We ean again choose the normalization so that,
taking into account the Wronski conditions. , we have

As before, the general regular solution is ex-
pressed as

6

R tOt g g R tot

B
~

g
1I1

(tls lj)= g t,.6„,e"' (t ')„-
a, 5=1

(23)

The 5, n = 1, ..., 6, are the new eigenphases and
the matrix t,. specifies the new mixing between
states of the same isospin and also the additional
mixing which now occurs between states of differ-
ent isospin. Values for 5 and t; can either be
obtained by solving the finite-range equations (20)
exactly or via perturbation theory as described in
Sec. VI. Proceeding exactly as in the purely nu-
clear ease, we can obtain the new 8 matrix

where the A are arbitrary constants. Using the
asymptotic form of the Coulomb radial wave func-
tions, we see that the asymptotic form of R;"' cor-
responds to a superposition of incoming and out-
going Coulomb radial waves

R,'."~ 't&, expl -t(k;r + o;, —tI; ln2k, r)]
t

+ 't&, exp[i(k;r+o;0 —t); ln2k;r)]C;
V; 1/2

i=1, ..., 6,

V. DERIVATION OF THE S MATRIX WITH

INNER AND OUTER CORRECTIONS

where
1 B 104ttot -i 6 ~

a=1
i=1, ..., 6,

We now consider the problem where the Coulomb
potentials and mass-difference effects are included
for all r. In this case the s-wave Schrodinger
equation becomes

DIR"'}=2mUIR"')+2mVIR"') r ~r,

S a=1

and where the s-wave Coulomb phases o,0 are given
by

o« = argl (1+i q, ) .

2m VIRt. t) r & r, . (24)

V is diagonal in the charge basis so we can write
a general solution for r & r, in the form

If we define Q"' and Q"'* by

(i I
Qtotl 1) t tot et ttt,

(tl Q""I» = t"'e ""
(28)

(29)
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then the S matrix, which relates 8; and C; via

c, =Q(i I

s"'Ij &It, ,
j=l

is given by

Stol qin't(qio?'i)-1

By making use of the Wronski conditions on the

R i 0t 8
one can prove that

If we now make use of the Wronskian between R,".„
and R, 8 using the isospin-basis equivalents of (8)
and (20), we obta. in

i=1 4 p id=i i

(35)

We first take the case n = p in (35), where we can
use (34) to derive the first-order perturbation re-
sult

from which the symmetry and unitarity of $"' at
once follows. Note the changed situation where the

6,'~ now form a 6@6 matrix and no longer corre-
spond to the six eigenphases of S"'.

5 =5"—~ d ~ R". R".
n a r ~ "N in jo:

4p i jn 1
m.

We now write

(36)

(37)
VI. PERTURBATION TREATMENT OF THE

CORRECTIONS AND THEIR INCLUSION IN THE

SCATTERING AMPLITUDES

From the isospin-basis equivalent of (8}, we have
for our regular solutions

WIR",„,R";8]„,

6

Qt; 8, =0.
i=1

If we substitute (37) into (35) and use (38), we ob

tain the perturbation result

(38)

and use (33) and (34) to obtain, to first order in 8,

+rp 6

dr+ (ilUlf)(R', „R,"8 -R,",R,'.),
40 j=l

Z inSis n8 5ns ~

where

(39)

(31)
where W is the usual Wronskian. Using (9) to eval-
uate the left-hand side of (31) then gives

tN tN
2

in i8 sin(5N 5ii)

X =1

and

h(il~lj} -~ -~
X~~ —— . , „„, drZ N Ri Rjg,

8

x dr i U j R;RB-RgR,

o. s p, (32}

og p. (40)

Using the fact that t;"~ is an orthogonal matrix then

enables us to solve (39) and obtain

where we have made use of
6

& 8
= Z '"* (X 8

- 5.8) . (41)

I N ~-N

we finally obtain

P t«t,"8=5,8. .

We can similarly obtain
6

Q t;„t;8=5 s. (34)

We now use the time-reversal-invariance condi-
tion

(ilail

j) =(jl Uli)

in (32) to obtain
6

g tN tgs=O, a~p.
i=1

If we combine this with the normalization condition
6

QP;„t; =1,

Using these results, we can now calculate the
physical S-matrix elements (i

I

S"'Ij) from the
charge- independent nuclear 8-matrix elements
(il S"Ij) in the following way. We proceed by first
using (15) to obtain the charge-independent eigen-
phases 5" and the charge-independent mixing ma-
trix t",nfrom (il S"Ij). .We parametrize R,". for
r ~r, and, knowing 5„and t;"„, adjust the parame-
ters to fit the boundary conditions at r = r, given by
(9)

We now use these values of R";„ in (36) to obtain
first-order perturbation values for 5„'" and in (40)
and (41} to obtain first-order perturbation values
for t,„. These values can then be used in (22} to
form R;'"„ for r & r„and we then use (3) to trans-
form to R; for r ~ rp. Finally from the Ri„we ob-
tain 5,"' and t „" using the boundary conditions (27}
at r =r„and from these values construct the ma-
trix Q given by (28), and hence, obtain the matrix
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elements (i
~

S"'~j) from (30).
We have shown how the physical S-matrix ele-

ments can be obtained in the s-wave case. The
corresponding general l, j = la -,' values (i

~ St,"~j& can
be obtained in a similar way simply by replacing
sin(k;r) by k;rj, (k;r), cos(k;r) by k;r-n, (k, r),
Fb(q;, k;r) by F,(q, , k;r), and G,(q;, k;r) b1
G, (q, , k;r) where appropriate. Here j, and n, are
the regular and irregular spherical Bessel. func-
tions and I', and G, are the regular and irregular
Coulomb radial wave functions.

The usual treatment of spin--,'-spin-0 scattering
in the presence of the long-range Coulomb poten-
tial' shows that the scattering amplitude for the
process (charge-basis state i) —(charge-basis
state f) is given by

F, &
——f~'+iong~',

where

k, xkj

k; and kf being the initial and final meson c.m. mo-
menta.

The partial-wave decompositions of f ' and g '

have the form

f = &yifcodomb +Z [(1+1)f,++ &f, ']P, ( cos&),
l=o

g = ~'yi gcou»mb +2 [f~i+~ -fi-]&&(cosS);
E=1

where 0 is the angle between k; and k& and where
f&' ',„»-„b and gc', „»~b are the non-spin-flip and spin-
flip amplitudes corresponding to pure electromag-
netic scattering. In our case these correspond to
the pure Coulomb amplitudes

fc',~ b
= — .

' „,
)

exP[-iq;1 nsi n'(-', 8) +2i o, ]o,.2k; sin'~-,'~

4$
g Coulomb

Magnetic-moment effects and further relativistic
corrections can be included, ' at which stage a non-
zero contribution to gc',~,~b is also obtained.

The partial-wave amplitudes f„' are given by

gfi i(a&~+ay~)(f I
S «

where v;, is the angular momentum t Coulomb
phase in the i channel and is given by

a;, = argI'(l+ 1+i@,) .

Finally, the differential cross section is given by

do'
=

I
f"I'+

I
g" I'.

dQ;
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