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served amplitude for KID 2y; therefore, the resulting
fractional change in the lower bound (1) is expected to be
of a similarly small magnitude.

6See the review talk by J. Steinberger in Topi cal Con-
ference on 8'eak Interactions, CERN, Geneva, Szuitzer-
land, 2969 (CERN, Geneva, 1969), p. 291.

~M. Banner, J. W. Cronin, J. K. Liu, and J. E. Pilcher,

Phys. Rev. 188, 2033 (1969).
B. D. Hyams et al. , Phys. Letters 29B, 521 (1969).

~Apart from a misprint that gives the factor 2 as 2, the
inequality (27) is the same as the inequality (4.1) in the
paper by Martin et al. (Ref. 5). Martin et al. also dis-
cussed modifications to this inequality due to other on-
mass-shell intermediate states.
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Unitarity is found to give a reliable, model-independent lower bound on the branching ratio
[rate(A ny)/rate(A all)] & 8.5& 10 4. This value is nearly as large as the experimentally
determined branching ratio for the decay Z py. Dispersion-theoretic techniques supple-
mented with current algebra, PCAC, and pole models are then used to determine the real as
well as imaginary parts of the amplitudes for the radiative decays of the A and Z+ hyperons.
Input consists of the experimental nonleptonic decay amplitudes and pion-nucleon phase shifts.
The theoretical predictions are very sensitive to the hyperon magnetic moments, and until
these are better known, these results for the radiative decays can only be qualitatively com-
pared with experiment.

I. INTRODUCTION

The radiative hyperon decays, Z+ -Py, Z' —ny,
A-ny, - -Z y, = -Z y, and ™D-Ay,are inter-
esting because they can provide insight into the na-
ture of the nonleptonic weak interactions. They are
presumed to result from the combined effect of
electromagnetic and weak interactions, so that
working to lowest order in the electromagnetic
interaction one has in them a probe of the nonlep-
tonic weak interaction. Given the scarcity of ex-
perimentally accessible nonleptonic processes,
each source of information on them is particularly
precious. At present only Z'- Py has been seen,
with a branching ratio'

(Z+ —py)/(Z
' - all) = (1.43 + 0.26) x 10

The experiment of Gershwin et al. ' to determine
the asymmetry parameter of the decay Z'- py has
added impetus to theoretical efforts to account for
these processes. The asymmetry parameter n is
determined from the correlation between the final
proton momentum and the polarization of the initial
Z'. It is a measure of the relative magnitudes of
the s--and p-wave amplitudes. Gershwin et al.

+ '52found a to be -1.03",'4,'. Since most theoretical
models predict that n is approximately zero, this
measurement is very challenging to theorists. For
a summary of the predictions which various tech-
niques have given when applied to the radiative hy-

peron decays, see the review article by Tanaka. '
The principal new result to b'e presented here is

in fact virtually model-independent. Unitarity can
be used particularly effectively because the only
purely-hadronic intermediate state that is energet-
ically accessible is the Nn state. Knowing experi-
mentally the photoproduction and A - Nm ampli-
tudes enables us to give the unitarity lower limit":

branching ratio (A - ny)/(A - all) a 8.5 x 10-~ .

This is quite a stunning result, being only a factor
of 2 smaller than the experimental branching ratio
for Z' -Py given above. The corresponding uni-
tarity lower limit for Z'-Py turns out to be "un-
naturally" small, as we shall see, leading to

branching ratio (Z' -py)/(Z' - all) a 6.9x 10 '.
With the incentive of a possibly large rate for

A —ny, we proceed to make a model-dependent
estimate of the real part of the amplitudes. For
this we exploit our knowledge of the imaginary
parts by assuming the amplitudes A - ny and Z -py
obey unsubtracted dispersion relations in the mass
squared of the initial particle. In the dispersion
integral, however, we need the absorptive part of
the amplitude as a function of the initial hyperon
mass. Approximating the full absorptive part at
all energies by the contribution of the nucleon-
pion intermediate state alone, even at masses for
which other hadronic intermediate states are ener-
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getically allowed, enables us to write the imaginary
part as a product of photoproduction and nonleptonic
decay amplitudes. The latter is only measurable
at the physical value of the hyperon mass, but we
assume it obeys a once-subtracted dispersion rela-
tion, thereby defining its off-mass-shell behavior.

Both the radiative and nonleptonic hyperon decay
amplitudes have poles at the nucleon mass squared,
whose residues depend on matrix elements of the
weak Hamiltonian. These are determined by using
current algebra and experimental values of the non-
leptonic amplitudes.

Even in the absence of inaccuracies in the proce-
dure outlined above, the prediction of the theory
for the real parts is very uncertain due to the sen-
sitivity of the poles of the radiative amplitudes to
the hyperon magnetic moments. This is reflected
in the large uncertainties quoted in Eq. (22). Never
theless it can be seen that the theory gives order of
magnitude agreement with the Z -py branching ratio
(tending to underestimate it) and is capable of pro-
ducing large, positive or negative, values of the
asymmetry parameter. The A- ny predictions are
less sensitive to the magnetic moments and indicate
a branching ratio of about 2 x 10 ' and a positive
asymmetry parameter.

The unitarity calculation is in Sec. II; the disper-
sion relations are in Sec. III; the determination of
the matrix elements of the weak Hamiltonian is in
Sec. IV; the poles of the radiative amplitudes are
in Sec. V; and the numerical evaluation and con-
clusions are in Sec. VI. Throughout we use the
Bjorken-Drell metric (a b=a, b, -a.5) and y-
matrix conventions.

II. UNITARITY CALCULATION

Unitarity determines the imaginary part of the
decay amplitude in terms of a sum over physical,
experimentally measurable, amplitudes for inter-
mediate states. In the case at hand one may re-
place the sum over intermediate states by the con-
tribution of the Nm intermediate state only. This
should be an excellent approximation since all other
states energetically allowed involved leptons or
photons with their much smaller amplitudes. Thus
we have the imaginary part of the unknown ampli-
tude in terms of known photoproduction and hyperon
nonleptonic decay amplitudes, enabling us to ob-
tain the following expression:

4 d P d g
fl 2 ( )

g (2 )3 (2 )3

x 6 (P-P'-q) — A Am
pp 2q fn nk '

Here n refers to the Nm state, P' is the momentum

Ar» y
= X» [A 33 (7 ' (k x f ) +A.2v ' f ]Xr. (3)

Throughout, M with no subscripts is the mass of
the initial hyperon, m is the nucleon mass, p. is
the pion mass, and A or Z refers either to the par-
ticular hyperon or its mass. In terms of these am-
plitudes, the rate for radiative decay is

and the asymmetry parameter, defined by

d~
"(I+o'& P),

where Z is the polarization of the hyperon and p
is the direction of the final nucleon, is

(4)

2Re(A,*A,) (-1& c2 &I) .

For the amplitudes A„,and A&, we take the stan-
dard definitions,

=iX»(Bi+B2o ')I)Xr~

A y»» „=X» [2Fi( o ' f ) + F2( o ' q) (7 ' (k x f )

+ 3 F3( 0' ' k)()I ' f ) +3F4( (7 ' g)(tg ' f )]X» .

Equation (1) is then

ImAi= -if'(M' B' + M 8 )

Im A, = -[j II(E' ' B' '+E' ' B' ') (6)

where I, and ED, are the photoproduction multi-
poles given in Berends, Donnachie, and Weaver'
(BDW), the superscripts refer to the Nm isospin
state, and ~j~ is the intermediate pion momentum:
()I (

= 186.7 MeV/c for Z decay and ~q ~

= 102.9 MeV/c
for A decay. The values of these multipoles at a
center-of-mass energy equal to the Z or A mass
are given in Table I. The necessary nonleptonic
decay amplitudes are given in Table II.

Numerically evaluating Eq. (6) we find

of the intermediate nucleon, q is the momentum of
the intermediate pion, and P is the initial hyperon
(Y) momentum. The most general gauge-invariant
expression for the radiative decay amplitude for
the process in which a hyperon of momentum P de-
cays into a nucleon of momentum P and a photon of
momentum k [Y(P)-N(P)+y(k)] is

A„„y= u»(p)[(-i)(a, +a2y3)o„,k'e" ]u„(P),

where c is the photon polarization: e'=-1, e ~ 4=0.
It will prove convenient to define the Pauli-space
version of Eq, . (2):
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TABLE I. Photoproduction multipole amplitudes taken from Berends, Donnachie, and %'eaver (Ref. 3) . The numbers
are to be multiplied by 10 and have the units MeV ~. Their signs are determined by the convention selected in cal-
culating the photoproduction Born terms.

Multipole
Nx final state

283
283

-9.902
-0.567

-7.771
—4.623

+12.571
+3.046

-0.628
-3.325

@fn
0+ +17.057

+2.465
not needed
not needed

1.273
-1.183

Pr
-19.990
—3.885

ImA, (Z) = -32.1 (MeV sec) 'i',

ImA, (Z) = -17.7 (MeV sec) '~',

ImA, (A) =+14.8 (MeV sec) '~',

ImA, (A) =+279.8 (MeV sec) '~'.

The contributions of these imaginary parts to the
branching ratios give the lower limits quoted in
Sec. I.'

This unitarity lower limit on the A - ny branch-
ing ratio is itself substantial, in contrast to the
Z' -Py case. Examining Tables I and II shows
that the Z-Py imaginary part would be much
larger if it were not for the fact that the large
photoproduction amplitude is multiplied by a very
small nonleptonic decay amplitude. Thus while we
cannot make similar unitarity calculations for the
imaginary parts of the other radiative hyperon de-
cays, we might expect the A - ny imaginary part
to be tylncai of their order of magnitude.

As stressed earlier, this determination of the
A - ny lower limit, which is virtually model-inde-
pendent, should be reliable. The fact that the low-
er limit is so large is encouraging. It leads us, in
the following sections, to use models to estimate
the magnitude of the real parts of the amplitudes.

variant amplitude a, or g„weneed to assume it is
an analytic function of the hyperon mass squared.
However, a function has a unique analytic contin-
uation only when it is defined on a dense set of
points and the amplitude for a decay is only speci-
fied by nature at one point: the physical mass.
Taken seriously, this analysis prevents one from
using dispersion techniques for a decay amplitude
at all. What we do, rather than give up the method
entirely, is make an ansatz regarding the "best"
choice of analytic continuation, guided by experi-
ence in scattering problems. Thus our choice of
analytic continuation, for both the radiative and
nonleptonic amplitudes, is defined by the disper-
sion relation we write for them. The validity of
the particular continuation is justifiable only by its
"reasonableness" and the success of the final pre-
dictions.

One expects the invariant amplitudes g, and a, to
be analytic functions of the hyperon mass squared
with a pole at the nucleon mass squared and a cut
beginning at the Nm threshold. Assuming that it
obeys an unsubtracted dispersion relation gives

R|,, P t" ~, Ima&, 2(s')
M' —m' w J(~+uP s' —M'

III. DISPERSION RELATION

In order to write a dispersion relation for the in-
In this expression, R, , is the residue of a, or g2

at the pole and the threshold has been taken to be

TABLE II. Nonleptonic decay amplitudes taken from a, review by Filthuth (Ref. 4), All the numbers are to be multi-
plied by 103 and the unite are (MeV sec) ~ . Our definition of B2 has the opposite sign from the corresponding amplitude
used by Filthuth, and our convention on the phases of the Z and 7t isotriplets lead to Zo amplitudes of the opposite sign.
The EI= ~ rule was used to determine Aoo from Ao,

+12.93+0.17
-9.15

-15.85
0.17+0.34

—13.23 k 1.21
-9.94+ 1.55

7.50
-1Q.90

-97.91+ 2.78
62.27

1Q7.69
-165.51+3.04
—99.90 + 16.04

-133.20 + 12.14
192.75
13.97

12.92
-9.14

-15.83
0.17

—13.16

7.46
-10.84

-4.80
+3.40
+5.88

-16,22
-9.79

18.84
1.37



WEAK RADIATIVE DECAY OF THE Z AND A HYPERONS

at the Nm intermediate state because we have al-
ready agreed to neglect nonhadronic intermediate
states. Neglecting all but the Nm state in unitarity
even at values of s' where other hadronic states
are accessible, we see that Rea, ,(M') depends on
the nonleptonic decay amplitude at nonphysical
values of the hyperon mass squared, s'.

In order to determine B', for any s', we use dis-
persion techniques on 5, , the corresponding in-
variant amplitude. To the extent that the PTER inter-
mediate state saturates the unitarity relation for
Z,A-Nv, b'((s) has the same phase as the corre-
sponding vN partial-wave amplitude (Fermi-Wat-
son theorem). This knowledge of the phase of
bl((s) for s greater than (m + p, )', along with its ana-
lyticity properties and its value at s= M', is suffi-
cient for determining f)', (s) up to a polynomial in s.
We can either guess the solution and verify the re-
quired properties or construct it by the N/D or

Qmnes-Muskhelishvili method. Here we do the
former.

For both the Z' - Nm and the A -¹ amplitudes
the only pole in s (the variable hyperon mass
squared) is at the nucleon mass squared. Both
nonleptonic decay amplitudes have a right-hand cut
only, beginning at (m + p)'. Now consider an ampli-
tude for a final state of definite orbital angular mo-
mentum and isospin, e.g. , 5', ~, the amplitude for
an s-wave, I= —,

' final state. Along the cut below
the inelastic threshold it has the phase of s-wave,
I =-,', 7(N scattering: 6», . (The subscript S refers
to s wave, the 3 to isospin —,', and the 1 to total
angular momentum —,'.) We will assume in fact that
even above the inelastic threshold it continues to
have the phase of elastic mN scattering, Then the
nonleptonic decay amplitude 5', as a function of
the variable hyperon mass squared, s, must be

O'S'(s) s'i' -— axp — Xs' "' ' a(pi (M )ax'p —*— Xs', s", . )sp(s)1 1 1 " 5 &s'& l " 6 (s')
'lT gg 8 m s, s'-M -ie

& exp —— ds

with r', ' the residue of the nucleon pole in P~'(s).
P(s) is a polynomial in s which is zero at s = M2.

It is simple to verify that Eq. (9) has the re-
quired behavior. In order not to introduce addi-
tional parameters we make the assumption that
P(s) is zero. This is equivalent to. the assumption
that b', (s) needs only one subtraction and the inte-
grals over the phase shifts converge.

In order to evaluate Eq. (9) one must know the
residues of the poles in the nonleptonic decay am-
plitude, shown in Fig. 1. These depend on the ma-
trix elements of the weak Hamiltonian between hy-
peron and nucleon states:

{n(H~ (A') -=-u„(X,+X,y, )uA .

Treating the pole terms as Feynman diagrams
gives a definite result for the diagrams of Fig. 1.
However, the Feynman diagrams make sense only
for physical external particles. In particular,
when continuing in the external mass squared, it
is unclear how the residue of the pole should be ex-
tracted from, e.g, the expression

i „()(p, X,sp, ) ( a)s. p

This is in contrast to the usual case in a scatter-
ing process where the external particles can have

their physical mass and yet the total momentum
squared can be varied.

In this case, the residue of the pole is

evaluated at P' = m . However, we are unable to
evaluate it at P'= m' since g u~(P) is only defined
when P'= I . If one knew that this Feynman dia-
gram behaved purely as a pole as a function of
P', the residue could be evaluated anywhere (in
particular at P'= M), giving for the residue the
constant

7r/
/

A fl / 0
/

7I+
/

/
+ /

X @ p / n

H~

FIG. 1. Pole contributions to the nonleptonic decay
S.mplitudes.

Unfortunately, it is impossible to verify that the
Feynman diagram does behave as a pole only,
since that would require knowing the meaning of
g uA(P) off the mass shell. Put differently, if one
regards i'.,(M —m) as the value at P' = M' of the
function which at P' = ng' is the residue, how does
one know whether M is a constant or ~P', the lat-
ter leading to a vanishing residue.
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r ,''(A'} =W3gh. ,(A —m), (1la)

The prescription we give, corresponding to tak-
ing the Feynman diagram to be purely a pole in
P', is to treat the P' in the denominator as the
variable and take u„(P')PuA(P) to be fixed at its
value for physical external particles. With this,
prescription we obtain the residues

t,' '(A') = V3-gA, (A. + m ),
r,'~ 2(z') = W&go, (z —m),

r,'~'(z') = -)) 3 gv, (z + m ),
rP(z'}=0,
r '"(z') = o

(lib)

(1le)

(1ld)

(lie)

(1U)

IV. MATRIX ELEMENTS OF THE WEAK HAMILTONIAN

Both the pole terms in the nonleptonic amplitudes (Fig. 1) and those in the radiative amplitudes (Fig. 2)
depend on the matrix elements of the weak Hamiltonian. These are parametrized by quantities called A. and
o in Eg. (10). One possibility for determining the A.'s and v's is to fit the experimental nonleptonic ampli-
tudes by the pole terms only. The corresponding choice for the off-mass-shell behavior would be, instead
of Eq. (9),

b's(s)=b's(M') sxq —— ds '"' ' '~ — ds' *"' '
)

I'-m' 1 " 6 &s'& 1 " 5 &s'&

s —m' s'- M' m- &, s' —s -se (12)

However, one can obtain a better fit to the experimental nonleptonic amplitudes by using a current-algebra
approach first employed by Suzuki and Sugawara and then extended by others to cover the P-wave ampli-
tudes. ' I describe here the procedure for the second approach. Consider the amplitude of the nonleptonic
hyperon decay: Hyperon (Y) of momentum P decays into a nucleon (A)) of momentum P' and a pion with
third component of isospin i (v ) and momentum q. The LSZ (Lehmann-Symanzik-Zimmermann) reduction
technique, upon integrating by parts and dropping the surface term, gives

(Nv'~Hv(0)~ Y) =-u„i(b,+b,y,)u„
d4xie"" -q2+p, 2

~

Pf T &~ 0 y' z

[Throughout, normalization factors of (2v) . '~', 1/2a&, etc. are suppressed, since they will be common to-
all terms in the final result. ] Using the partial conservation of axial-vector current (PCAC) choice for
the pion interpolating field and again dropping an integration-by-parts surface term, this becomes, in the
limit q-0,

-'u)b'b(b ~ b s ls)s') = M, (q)- —(bs~)Q'(0) ss (x))l y) sliss ——
qs by s —bq, (q)) . (13)

The superscript B means the Born part of the amplitude, Q,
' is the charge of the ith component of the

axial-vector current, f, is the pion decay constant (96 MeV}, and Msr ~~) is the pole contribution to the
amplitude for a hyperon to go to a nucleon and an axial-vector current whose SU(3) index is i. Each term
in the last bracket is undefined as q- 0; however, their sum is well defined in this limit. In arriving at
Eq. (13) it is assumed that the variation of the amplitude between q =0 and q physical is entirely due to the
pole. This is the PCAC assumption.

Assuming that H~ transforms like a K' under isospin and that the baryon-axial-vector-current-baryon
coupling is SU(3)-invariant, the Born terms contributing to Eg. (13) can be evaluated. This gives, e.g. ,
for the Z',

1
-u(P')i(b, + b, y, )u(P) = ——( n [[@,'"'/v 2, Hv(0)] (

Z' )

——(-ig„/v2 )uo)'} + X, — „—o,
1 2 ~l' d Z-m d Z —m

2 '~ d 5+m d 5+m

with f/(f+ d) determined from fits to hyperon P decay' to be +0.36.
In order to determine the commutation relations of the weak Hamiltonian with the axial-vector charges,

we make use of the SU(3)3SU(3) current algebra proposed by Gell-Mann and a model of H~. Two popular
models of Irt are
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a, =z),J" and II~=d„,J),J '.X.

J~ is the sum of vector and axial-vector hadronic currents, which are the Cabibbo currents in the first
case, and the SU(3)-octet current with index i or j in the second case. It is easily seen that either of the
above Hamiltonians gives

(.lie,'-",ff.)lz & =o,

& 21 lr Q'.»wi I A &
= ~2u.(}1 + X,y,)u„,

& Pl[@'„Ifll z' ) =-.',(,+,y,), .

These results may be substituted into Eq. (14) to obtain the final equations:

0 -1 m 2ii2 d P m
b1(A0)

2 ~1+gA~2
A 3 d gA 2ZA+m 3 j+a 2+m

o 1 A+m @ A+m
2( 0) f 2 gA 1 gAO1

(15)

(16a)

b z+ gA 2
d z-m 2 d z-m

(16c)

b.(z;)= gA ~ d Z+m 2 d Z+m
2f„ f+d Z —m v3 f+d 1A —mi '

I

(16d)

(Z+) m
2f "f+d 'Z+m
-1 d g+m

Af+d 'Z m-
(16e)

(16f)

Experimentally the 5's have been determined.
They are tabulated in Table II. Observe that
b, (Z', ) is virtually zero with small errors, allow-
ing us to require

v, &2Z+m
vS A+m

Analytically determining the best fit to the five re-
maining equations gives

(18b)

(18c)

(18d)

o -A& 2 d 0"3 f.dz-
b, (Z,') = -W2g +

2f+d g2

+d Z+m 3 +d A+m

y, = -3.22 x 10' (MeV/sec)' ',
X2 =+2.45 x 10' (MeV/sec)' ',
o, = -7.01 x 10' (MeV/sec)' ',
g2 = + 2.07 x 10' (MeV/sec)'~2 .

(17)

This fit gives back values for the b's listed in
Table III, and the over-all goodness of the fit is
not very sensitive to the choice of A. , and 0, .

As an indication of the sensitivity of the param-
eters A. and 0 to the model used for the nonleptonic
decays, one can compare these values with the re-
sults of computing them by a pole-only model of
the nonleptonic decay amplitudes. Such a model
gives, instead of Eq. (16),

A@n
Hw

{c}

3f + d 0'2

f+d Z+m '

Z@P
w

Z X+p
Hw

(b)

(18e)

n

Hw

(18a)
FIG. 2. Pole contributions to the radiative decay a.m-

plitudes [(a) and (c)] and contributions to the subtraction
constant in the dispersion relations [(b) and (d)].
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(18f)

X,' = -3.45 x 10' (MeV/sec)' '

X2' = -2.27 x 10' (MeV/sec)' ',
ai= -7.25 x 10' (MeV/sec)' ',
o2'=+0. 90x 10' (MeV/sec)i 2.

(19)

As with the other method of determining these
parameters, we find they are all of the same or-
der of magnitude. This is contrary to the perfect
SU(3) result that X2 and cr2 are identically zero,
shaking our confidence in the applicability of SU(3)
to H~ in any guise. However, with this purely pole
model we see that A. ,' has the opposite sign as ~, .
This difference leads to a substantial difference in
the results for the pole contributions to the radia-
tive decay amplitudes.

The values of the parameters given in Eq. (19)
can be substituted into Eqs. (18) in order to see
how well or poorly this pole model fits the hyperon
decay data. The results are shown in the lower
half of Table ID.

V. POLE TERMS

The variable in the dispersion relation is the
mass squared of the initial particle so that in the
processes A- ny and Z'- py pole contributions to
Eq. (8) arise from the diagrams shown in Figs.
2(a) and 2(c). The Feynman rules give, e.g., for

It can immediately be seen that these equations
are rather different, expecially in that there is no
coupling between the parity-conserving (A, and o,)
and parity-violating (A2 and o2) quantities. Using
the same input nonleptonic decay amplitudes (from
Table II), we obtain the alternate solutions for ma-
trix elements of the weak Hamiltonian which we
distinguish by primes:

Fig. 2(a),

M ~&=-e (P) v„„k"+iy„)2m

i(v, +o y2)2e" u(P), (20)

where e is the charge on the proton (e2/4m= ~2,
e) 0), and p, » p,„,pA, and p, z are the anomalous
magnetic moments of proton, neutron, A, and Z'.
The presence of the y„terms in Eq. (20) keeps

py from being gauge invariant; however, the
dispersion relation is gauge invariant so the non-
invariant part introduced here must be canceled
by a subtraction.

Drawing a cue from Feynman theory, we see
that an obvious graph contributing to the subtrac-
tion is the one shown in Fig. 2(b). Because in
quantum electrodynamics gauge invariance holds
order-by-order, the sum of Figs. 2(a) and 2(b) is
gauge-invariant at the physical mass of the Z. If
one were interested in the amplitude Z'-Py for
unphysical Z mass, one would have to use more
ingenuity to make it gauge-invariant for all values
of the external mass squared. Other sources of
contributions to the subtraction constant are shown

in Fig. 3. These are not included for lack of infor-
mation, and hopefully they are unimportant.

In the case of the A pole term, Fig. 2(c), the
problem of gauge invariance does not arise. While
the contribution of Fig. 2(d) is not needed for
gauge invariance, it is still included in the spirit
of approximating the subtraction by "nearby" sin-
gularities in other variables.

'I

The sum of the diagrams in Fig. 2, evaluated for
physical external mass, are the "pole" contribu-
tions to radiative hyperon decays, with some of
the more important contributions to the subtrac-
tion constant included:

4 Pn PA &4/~2 PAz+~-m 2m 2~ Z-m ~+Z '

TABLE IH. The upper lines contain values of the non-
leptonic decay amplitudes corresponding to our best fit
for the weak-vertex parameters, given in Eq. (17), and

the lower lines, the nonleptonic amplitudes resulting
from the alternative pole-model fit given in Eq. (19).
All numbers are to be multiplied by 103. The units are
(MeVsec) ~i~.

g+
0

Bo|2(A) ~2 9 n P A o2/~2 p Az

A+m 2m 2A Z+m A+a

(21)
Borne-+i OI W& 9 z

Zm 2m 2Z '

Born(~+) O2 I"2 P Z

Z+m 2m 2Z

bg

b2

bg

b2

-17.57

59.55

-11.93

+56.90

-162.63

-163.13

—36.09

-96.31

—98.65

-109.66

Ko+ Kg
A g+ 7T

p

A,x Hw

7r
n

A, X Hw

FIG. 3. Contributions to the subtraction constants for
the radiative decay amplitudes which are not included.



One can immediately see from Eq. (21) how sen-
sitive these Born contributions are to the values
of the anomalous magnetic moments of the hyper-
ons. Since p, A and p, z are only poorly known, and

p, Az (the "transition moment", i.e., the coupling of
A-y-Z") is not measured at all, the prediction of
this model for the radiative amplitudes will be
very uncertain until better information is avail-
able for the magnetic moments.

VI. NUMERICAL RESULTS AND SUMMARY

Using the va.lues of the matrix elements of the
weak Hamiltonian given in Eq. (17), the dispersion
integral of Eq. (8}may be numerically evaluated
using as well Eqs. (6) and (9). Various approxima-
tions are necessary in order to use Eq. (9). First
of all, we do not know the elastic phase shifts for
s' above 4.7 GeV', so we cannot, integrate to ~.'
Even if we knew them, the neglect of inelasticity
would be a poor approximation at high values of
s'. Explicitly varying the cutoff shows that the in-
tegrals in (9) are insensitive to it. Also, analyti-
cally integrating some function which equals the
phase shift at s' = 4.7 GeV' and goes smoothly to
zero indicates that if the integrals converge then
they are fairly well approximated by the contribu-
tion of the region from s, to s'= 4.7 GeV'.

The value of the dispersion contribution to the
radiative decay amplitudes thus obtained are given
in Table IV, column 1. Since the procedure for de-
termining the residues (r', ) of the nucleon poles in
I'-i'm is ambiguous (see Sec. III), we give two al-
ternative determinations of b', (s) and their corre-
sponding dispersion contribution to Rea, 2 for com- .

parison.
One of the alternatives considered is to set the

r', to zero in Eq. (9). This is essentially the meth-
od of Papaioannou' and Contogouris and Wong, e

who never even consider the pole terms. Qne
could argue that in the absence of knowledge of the
residues, this is the best procedure, especially if
the poles are somewhat distant from the cut, since

it corresponds to assuming constant off-mass-
shell behavior modified by the final-state interac-
tion. When this procedure for obtaining b, (s) is
used, the values of the dispersion contribution to
ReA, , are those given in Table IV, column 2.

The other possibility in the absence of knowledge
of the residue is to assume that no subtraction is
needed [i.e., b', (~) = 0] and to use the physical value
of the amplitude to determine the residue at the
pole, i.e., use Eq. (12). The resultant values of
HeA, , are shown in Table IV, column 3. Since we
cut off the integral over Ima, at a fairly low value
of s (s = 1.82 GeV'), the difference in Rea, due to
the difference between choices (2}and (3) for the
b~'s is not great. It is unfortunate that choice (1)
gives such a different result from (2) or (3).
Since method (2) and (3) are somehow more "con-
servative, " their average will be used in the final
answer ~

As pointed out in Sec. V, the Born contributions
to the radiative decay amplitudes are very sensi-
tive to the values of the hyperon anomalous mag-
netic moments. Rather than use the SU(3) predic-
tions for these moments, experimental values,
when available, are used and corresponding er-
rors are quoted S.U(3) predictions are ambiguous
since mass-splitting effects are important, e.g.,
in the SU(3) limit these are equivalent:

PAz 3 Pn
A+K 2 2m'

3
WAz= ~ P n~

whereas in the real world they are quite different.
Since no experimental data is available on p. Az,
the average of the above two procedures is used
and the error is assigned on the basis of the qual-
ity of the corresponding SU(3) predictions for p. ~
and p, z. Using the following values for the mag-
netic moments:

"=-1.91x (1.61x 10 4MeV ')
2m

TABLE IV. Dispersion integral contributions to the
real part of the radiative decay amplitudes, in units of
(MeV sec) ~~2. Various results correspond to the 8 de-
pendence of the nonleptonic decay amplitude determined
using calculated residues and a subtraction [column (1)],
ignoring the pole [column (2)], and assuming no subtrac-
tion [column (3)].

= (-0.73+ 0.16)x (1.61 x 10-' MeV-'),

""' = (1.5+ 0.35)x (1.61x 10-' MeV-'),

~~ =+1.79x (1.61x 10-' MeV '),
2m

= (1.57 ~ 0.52) x (1.61x 10-' Mev-'),

H,eA.&(AO)

Re A.2(AO)

Re A&(Z")
Re A.2(Z+)

+124.5
+382.8
+21.7

+175.8

-98.9
+181.6
+17.8

-54.5
+88.2
+6.7

one obtains for the Born contributions to the ra-
diative amplitudes

As(A) =+235+212 (MeV sec) '~',

A, (A)=+118+8 (MeVsec} 'A
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As(Z') = -247+583 (MeV sec) '~',

Asm(Z') = -131+ 20 (Me V sec) '~' .

The uncertainties reflect the uncertainties given
above for the magnetic moments.

Using for the dispersion contribution the aver-
age of Table IV columns 2 and 3, and the imaginary
parts given in Sec. II, one finally finds

branching ratio (Z -py) = (3.4 + 12.5) x 10 ~,

n(Z -Py) = +0.8-&.&,

branching ratio (A- ny) = (1.9+ 0.8) x 10 ',
n(A-ny) =+0.5+ 0.4.

The uncertainties shown should not be understood
in the same sense as statistical errors, but are
meant to give an indication of the sensitivity of the
physical quantities to the magnetic moments. The
measurements' give

branching ratio (Z —py) = (1.43+ 0.26) x 10 ',
c.(Z —Py) = -1.03"„",', .

Thus this result is a factor of 3 too small on the
Z rate, a problem common to most models (un-
less the magnetic moments are chosen most fa-
vorably), and the asymmetry parameter is so sen-
sitive to the magnetic moments that there is no

definite prediction. Nonetheless, a large negative
result for n is certainly within range of this the-
ory. This is in contrast to previous work, ' which
has n =0 by virtue of approximately incorporating
SU(3) which gives a, and A. ,=O. The parameters
in A - ny decay are less sensitive to uncertainties
in the magnetic moments.

The importance of this work is less its detailed
predictions than the following qualitative results:

(i) The unitarity contribution, and thereby the
dispersion contribution, can be substantial and
must not be casually neglected.

(ii) A theory not incorporating SU(3), instead
obtaining matrix elements of the weak Hamiltonian
from hyperon nonleptonic decay data, can give
large values of n for Z-Py decay.

(iii) There is a firm lower bound on the branch-
ing ratio for A- ny.'

branching ratio (A - ny)/(A - all) a 8.5 x 10 '
and in fact the branching ratio may be several
times this large. The asymmetry parameter of
this decay is probably nonzero and positive.
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