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New experiments which probe the behavior of products of electromagnetic currents at short
and lightlike distances are investigated. They require the detection of a massive p, pair in
electron-positron annihilation or in electroproduction. The former reaction is studied in

detail and the (considerable) background is discussed. It is shown that, in suitable kinematic
regions, one can approach both the Bjorken-Johnson-Low limit and the scaling limit, and

put to severe test many recent ideas regarding products of currents. In the Bjorken-Johnson-
Low limit one can test models of equal-time commutation relations and measure the spectral
functions of an axial-vector current. In the scaling region one can measure the matrix
elements of the bilocal operators appearing in the light-cone expansion of the product of
electromagnetic currents, and test the tensorial structure of this expansion which emerges
from quark models. Finally, in the inclusive reaction, where a massive p, pair is produced
in addition to any number of hadrons, the large hadronic mass limit of the cross section is
completely determined in terms of a commutator of bilocal operators.

I. INTRODUCTION

Recent experimental and theoretical advances
have led to increased interest in the properties of
products of local current operators separated by
short or lightlike distances. Much of the interest
arises from the remarkable regularities discov-
ered in the SLAC-MIT' experiments on deep-in-
elastic electron-nucleon scattering. In the so-called
scaling region one is probing the commutator of
two electromagnetic currents in the vicinity of the
light cone; the scaling behavior observed for the
structure functions has important implications for
the light-cone structure of the commutator. The
structure is controlled by a collection of local op-
erators which appear xn the most singular terms
on the light cone; experiments of the SLAC-MIT

type provide information on these theoretically in-
teresting objects. These theoretical issues have
been discussed from a variety of points of view.
In particular, it has seemed an attractive idea to
investigate the light-cone structure in models,
with a view to abstracting general features and
then abandoning the specifics of the models. This
approach has been emphasized by Gell-Mann, ' who
considered the situation for the free-quark model;
it has been pursued also for quark models with
strong interactions mediated by SU(3) singlet me-
sons. '~ Our discussion here will be based in part
on the structure implied by the quark-vector-gluon
model. '

If current commutators have any simple features,
they are likely to show up in regions where the
currents are separated by short or lightlike dis-
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tances. We speak, respectively, of the Bjorken-
Johnson-Low' and the "scaling" regions. To probe
such regions one wants to deal with amplitudes in-
volving two virtual photons which are very far off
the mass shell, e.g., the absorptive part of for-
ward Compton scattering of "massive" photons on
nucleons (SLAC-MIT experiments). In the present
paper we consider some further examples of phys-
ical processes of this sort; in particular, we con-
sider the processes

e'+e —p. '+ p, +X +X + ~

where {X)is a system of hadrons. To lowest elec-
tromagnetic order two distinct classes of Feynman
graphs have to be considered. It is the graph of
Fig. 1(a}that will especially interest us here.
This describes coupling of the hadron system to
two virtual photons and corresponds to hadron pro-
duction in states which are even under charge con-
jugation. The graphs of Fig. 1(b) describe coupling
of the hadron system to a single virtual photon,
corresponding to hadron production in states which
are odd under charge conjugation. Insofar as we
restrict ourselves to hadron channels {X)which
are even under charge conjugation ({X)= system of
neutral pions}, only the graph of Fig. 1(a}need be
considered. But we shall also w'ant to contemplate
the situation where one sums over aQ channels of
given invariant mass. In this case the two classes
of graphs contribute incoherently to the cross sec-
tion, aQ interference effects between them cancel-
ing out. It is evident that the contribution to the
cross section coming from the graphs of Fig. 1(b)
can be computed in terms of the cross section for
e'+ e--{X), something which itself is the subject
of considerable experimental and theoretical in-
terest. So, in principle, the contribution from the
graphs of Fig. 1(b) can be isolated experimentally.
We are under no illusion that this will be a simple
experimental task. Nevertheless, we focus here

exclusively on the cross section associated with

Fig. 1(a), leaving the contributions from Fig. 1(b)
to a future occasion. If the experiments are hard,
at any rate the theoretical issues are worth dis-
cussing.

Let l, and l be the momenta of e'and e, k, and
k the momenta of p. 'and p, , and P the total mo-
mentum of the hadron system {X). Further, define

l=l, +l, r. =l.-l, P=s,
k=k, +k, K=k, —k, Q=~(l+k),

and observe that

P=l -k.
In computing the amplitude corresponding to the

graph of Fig. 1(a), we encounter the matrix ele-
ment

where J„ is the electromagnetic current. Other
factors contributing to the over-a11 amplitude are
standard, so our theoretical attention focuses on

M„„. This matrix element depends on the four-
vector Q and on the various hadron variables, in
particular, the net hadron momentum P. W'e shall
be discussing the properties of M„„ for two differ-
ent asymptotic regions: the Bjorken- Johnson-Low
(BJL) limit, and the scaling limit. The important
point is that both limits can be achieved physically.
These two regions are discussed, respectively, in
Secs. II and III.

Although the processes under discussion here are
physically accessible, in principle, the cross sec-
tions will of course be small; the contributions of
interest have, moreover, to be obtained by sub-
tracting other contributions, which can be sepa-
rately determined in principle. Another kind of
process which we could consider and which bears
on the issues under discussion here is

e+P- e+ p, '+ p. +X. (4}

e-' e'

(b}

Fig. 1. Diagrams for the reaction e++ e —p+ + p, + X.

This involves an incident spacelike (virtual) photon
and an outgoing timelike photon. It can again be
shown here that there is a physically achievable
kinematic region which serves to probe the light
cone. We are of course interested here in contri-
butions from a graph analogous to Fig. 1(a). The
analogs of Fig. 1(b) form an uninteresting "back-
ground. " But unfortunately, for this reaction the
two classes of graphs are coherent even when one
sums over all channels. For this reason we do not
pursue the above reaction any further here.

It is worth emphasizing that the amplitudes for
these reactions, (1) and (4), involve two currents,
in contrast to the SLAC-MIT type of experiment
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where it is the cross section that, via the optical
theorem, is related to a two-current amplitude.
Because of this, one can measure, in such experi-
ments, the matrix elements of the local and bilocal
operators that appear in the expansion of the pro-
duct of electromagnetic currents at short or light-
like distances. Furthermore, via the optical theo-
rem, one can measure matrix elements of the
commutators of these local or bilocal operators,
which are otherwise inaccessible since these oper-
ators do not couple directly to leptons. So, while
these experiments are very difficult they are per-

haps the only way of directly probing the full struc-
ture of the products of currents at short and light-
like distances.

II. BJORKEN- JOHNSON -LOW LIMIT

Here we contemplate the limit

Q, —~, Q and all hadron momenta fixed. (5)

The limiting behavior of the matrix element M„„ is
determined by equal-time current commutators,
according to the BJL expansion'

f r~

M„„(polynomial in Qo) ——
J

d'x e 'o' "(X([J„(~x),Z„(-~x)])0)„
Qo~ 0

+ 2, d'x e 'O' "(X~([S,J,(-,'x), Z, (--,x)] —[J'„(-,'x), a,J„(--,'x)])~0)„

The polynomial term can arise if the covariant
T* product differs from the (not necessarily co-
variant) time-ordered product, to which the BJL
theorem applies. If the equal-time current com-
mutators contain operator Schwinger terms (deriv-
atives of 5 functions) the T' and T products differ,
by so-called seagull terms. ' For example, if the
Schwinger term is of the form

[J (2x), J„(—2x)],o-o = (g 08p, +Zp'og;)e'[S(x)~(x)]

then the T* and T products differ by

(Z„.g..-Z„.)S(0)5(x),

and the polynomial term is just

&4 „og.o
—Z.„)&XIS(0) I o) .

It is customary to assume that the Schwinger terms
are c numbers, in which case the polynomial does
not appear. This is certainly consistent with the
approach we have taken elsewhere' to determine
the short-distance behavior of current commuta. -
tors in interacting quark models, where, formally,
the Schwinger terms are divergent c numbers, as
in the free-quark model. Of course the absence of
the polynomial term is subject to experimental test
for the processes under discussion. For the rest
of the present discussion, however, we shall pre-
sume the absence of such terms.

In many applications of the BJL theorem, e.g.,
to deep-inelastic lepton scattering, the Q, -~ limit
is in itself unphysical. Physical implications (sum
rules) are extracted through use of dispersion re-
lations. But for the processes under present dis-
cussion, the Q, —~ limit is directly physical and
one is in a direct position to test various models

of current commutators. That is, let E be the en-
ergy of the electron (or positron) in the center-of-
mass frame of the electron pair. Hold all hadron
momenta fixed and pass to the limit E-~. In this
limit

Q 2E

Q = --,'P, fixed.
(10)

lim QODiscM, „=O.
Qo~

(12)

In fact, if the BJL expansion exists up to terms
which vanish faster than Q, ", we have

lim Qo" DiscM„„=O;
~0

and therefore, to order Q, ", the phase of M„„ is
determined solely by final-state hadron interac-
tions.

One might well expect that the BJL expansion is
at best an asymptotic one, and that it must break
down beyond some order in inverse powers of Qo.
Indeed, perturbation-theory calculations indicate
that the expansion generally breaks down already

The BJL theorem involves an expansion in in-
verse powers of Q, and makes sense only insofar
as the equal-time commutators appearing in the
expansion have finite matrix elements. Now sup-
pose that the first term, at least, indeed exists in
this sense. Then it follows that M„„has a discon-
tinuity with respect to Q, which must vanish more
rapidly than Q, '. For if M» behaves like Qo

' as
Q, -~, we see from the dispersion relation

I, ),Disc&„„(Q,')
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J„(x)= y(x)Q y„y(x),

with

(14)

(2 0 0)
Q=-, l

0 -1
E, O O -I)'

at the first stage. ' On the other hand, evidence
from the SLAC-MIT experiments on deep-inelastic
electron scattering suggests a more optimistic
possibility. These experiments probe the light-
cone behavior of the current comrnutators rather
than the short-distance behavior. However, the
existence of a finite scaling limit for the structure
functions implies that the nucleon matrix elements
are finite, at least for certain parts of the equal-
time commutators [Bo"J„,J„]; namely, the highest-
spin components of the commutators. Let us re-
call what this means. In a previous paper' we
have introduced the term "twist" (7) to denote the
dimension of a local operator (calculated naively)
minus the highest spin contained in the operator;
e.g., $y„g has (mass) dimension three and spin
one, hence twist two. The light-cone behavior of
current commutators receives dominant contribu-
tions from operators with the smallest twist; and
the scaling behavior observed in the SLAC-MIT
experiments implies that these dominant operators
are of twist two. That is, the scaling results imply
that the 8JL limit is valid at least for the tseist-
tuo components of the equal-time commutators.
Of course the BJL limit is sensitive also to oper-
ators of higher twist; i.e., it is sensitive to di-
mension rather than twist. It is an open question
then whether, and to what order, the BJL expan-
sion is valid; it is this question that represents
one of the points of interest for the processes un-
der discussion. For the present, we shall suppose
that the expansion makes sense at least to the
orders Qp RIll Qo

The equal-time commutators [80"J„,J„]are of
course model-dependent. We shall adopt here the
quark-gluon mode1, where the currents are con-
structed out of quark fields and the strong inter-
actions of quarks are mediated by some combina-
tion of SU(3)-singlet mesons (vector, scalar,
pseudoscalar, with fields denoted by B„,c, P). The
electromagnetic current is

shall also want the second commutator [8,J,, J, ] in

the BJL expansion. With respect to the indices i
and j this has both a symmetric and an antisym-
metric part. The latter, however, is an axial-
vector operator and therefore does not contribute
to the 2m matrix element. So we record only the
symmetric part:

a[8t,~j(~ax), ~)( ax)-]., .+ =(f I)-
= —,'[e,, (O)+ e, ,(O) —2O, ,e„(0)+2a,S(0)]O(x),

(18)
where

e,, =pQ'(iy, 8~ —. iy, &, —2gy, B&)g, .

8= $Q3(M+gsc —fg~sg)g.

Here M is the quark mass, and we observe that S
is a twist-four operator.

(i) For a first application, let us consider the
inclusive reaction e'+ e- - p.'+ p +X, summed over
all hadron channels [X] of specified four-momen-
tum P. Let s =l' be the barycentric energy vari-
able and consider the leading term in the limit
s- ~, P„ finite. This leading behavior is deter-
mined by the first term in BJL expansion, which
gives

M, , -—,e,, t"Q, (X~Ao ~0),

where Q2- s in the limit. In computing the inclu-
sive cross section we encounter the tensor

(20)

(2v)s g &0 )
A'.

I X&&X I
A".,

) 0& 8 (P —P,)

tdxe' '&0( [A, (x), A, '(0)])0&

= p, (P ') (P,P, —P 'g„.) + p, (P ')P,P ~,

(21)

where p, and p, are, respectively, the spin-one
and spin-zero weight functions in the propagator
of our unusual axial-vector current A.Q .

In the center-of-mass frame of the electron-pos-
itron pair we write P„=(P„P)and denote by 8 the
angle between P and the momentum vector of the
positron. In the limit s-~, P' and p fixed, we
find

the charge matrix of quarks. For the first (space-
space) equal-time commutator we then have the
formal result

do'-
4 W(P2, p, 8) dP'dpdQ, —

0

where u is the fine-structure constant and

(22)

[J,(-,'x), J,(--,'x)]„,= -2ie„.,„A" o'(0)5(x), (16)
Q2 ~where A~ is an axial-vector current

A', (x) = g(x)r, r„Q'P(x), Q' ='-, +,'Q.

In connection with production of 2w states, we

W= p, [4P'+ p'(1 ~ cos'8)]+p+'(I+cos'8) . (23)

In principle, the weight functions p, (P') and po(P')
can be separately determined at any P' by study of
the cross section in its dependence on the variables
p and cos 6). These weight functions are objects of
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considerable theoretical interest and deserve sev-
eral comments here.

First, notice from Eq. (17), and from the rela-
tion Q=I, +-,'Y, that A has an isovector part and

an isoscalar part, where the latter is a combina-
tion of axial hypercharge and baryon currents. The
spectral function po(P') has a discrete contribution
coming from the one-pion state at P' =m, '; and of
course only the isovector part of A~ contributes
to this, with coefficient fixed by the PCAC (par-
tially conserved axial-vector current) constant f,':

po = ( —,
'f,)'5(P 2 —m, ') + continuum. (24)

Thus, for the reaction e'e - p, '+ p, +~ we have

p, (P')/p™(P') = (Q )/(Q') = -', (28)

where the equality corresponds to the usual assign-
ment of quark charges.

(ii) As we have already noted, the amplitude
M„„ for the particular reaction

e++e - p.++ p. +2m (27)

receives no contribution from the first term in the

do(e'+ e - p. '+ p, +no)- 4 (—,'f, )' —(1+cos'8)dpdQ
0

(25)
in the limit s -~, p finite.

Returning to the inclusive reaction, we next ob-
serve that the continuum of p, and p0 begins at
P' = (3m, )', corresponding to production of 3v
systems; since A~ is an axial-vector operator,
the 2m system does not contribute to leading order
as s- ~. From G-parity considerations we see
that for systems composed of an odd number of

2
pions only the isovector part of A~ makes a con-
tribution; for systems composed of an even num-
ber (&4) of pions, only the isoscalar part of Ao

contributes. Although the BJL limit corresponds
to P' «s and P' «s, we can in principle contem-
plate experimental determination of the weight
functions p, and p0 for P' very large compared to
typical hadron masses. But for P'- ~ these
weight functions are determined by the vacuum ex-
pectation value of the commutator [Ao'(x), Ao'(0)]
near the light cone, x2 =0. In the quark-gluon mod-
el, as we have discussed elsewhere, ' this quantity
is exactly the same as in the free-quark model,
and, as i.f A~ were a conserved current, we then ex-
pect that p0-0 as P'- ~. Moreover, in this limit
we expect that p, (P') should bear a simple relation
to the corresponding weight function p', (P') that
arises for the propagator of the electromagnetic
current. The latter weight function is of course
measured by the cross section for the inclusive
reaction e'+ e -X. In terms of expectation values
of quark charges Q, we have

~ =P, -P2, P =P~+P2.

Writing

(28)

(P, P le&, +e, ;l0& =a(P')PP, +f3(P')n, nj (28)

and

(P„P, I SI 0) =P'C(P'), (30)

we then have

~;, ——,[&(&& —
I pl'&;, )+&(&,&, —

I &I'&„)
+CP 8(~], (31)

where A, B, C depend only on the dipion invariant-
ma, ss variable P', and for P„ finite and Q0-~, we
have Q'- s. Since lepton and hadron electrornag-
netic currents are conserved, it is enough to spec-
ify, as we have done, the space-space components
of the tensor M„„. Although we can say nothing
about the functions A, B, C, the tensor structure
indicated above has a restricted form and is there-
fore in itself diagnostic of our underlying quark-
gluon model. Computation of the differential cross
section is tedious and will not be undertaken here.
We merely note that, in comparison with the cross
section of Eq. (22), the differential cross section
for the 2w channel behaves like s ' as s- ~; i.e.,
it falls more rapidly by one whole power of s.

III. THE SCALING LIMIT

The second asymptotic region that we wish to
consider for the reaction e'+ e - p, '+ p. +X is one
which is analogous to the so-called scaling limit of
deep-inelastic lepton-hadron scattering. For this

BJL expansion. The second term in the expansion
does contribute and is of great interest since it in-
volves operators which contribute to inelastic elec-
tron-nucleon scattering. The SLAC-MIT experi-
ments measure, among the rest, the diagonal nucleon
matrix elements of the twist-two operator L9,~. We
therefore have the prospect here of measuring dif-
ferent matrix elements of this operator and for
testing the tensor structure implied by Eq. (18).
Moreover, the twist-four operator S comes into

play here, whereas in the scaling limit for the
SLAC-MIT experiments it makes no contribution.
It is an important question whether it has finite
matrix elements, as we are here assuming; i.e.,
whether the BJL expansion is valid at the level of
twist-four operators. In the present situation, to
the leading order Q ', it is evident from Eq. (18)
that the two-pion system is produced only in states
of zero isotopic spin and angular momentum / =0
or 2.

In order to display the structure of the matrix
element let us denote the pion mornenta by P, and

P, and define
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discussion it will be convenient to define two new

quantities [see Eq. (2)]:
2

v = Q ~ P = z(l' —k ), (32)

In the physical region Q' and v are positive; with

neglect of lepton masses, we have the inequalities

v P2—~(d~1 ——.P' 4v' (33)

For the scaling limit, we consider

v -~, (d and P' fixed.

In this limit

((v+1)v- s,
(d —1

S (d+1

(34)

(35)

where k' is the invariant squared mass of the muon

pair, and

Pp

S (d+1 (36)

where P, is the energy of the hadron system, as
measured in Ae laboratory frame (center of mass
of the e', e pair).

Let us now consider the defining integral for
M„„, Eq. (3). For the scaling limit, we assert
that the dominant contributions in the integral come
from the light-cone region, x2=0. This is most
easily seen in the rest frame of the hadron system,
where Q, = v(~p' and

~ Q~ = Q, ——,
'

&u~p2. For large
Qp P fixed, Are

~ rec eives its main contributions
from the region

~
xo' —(x ~ Q}2

~
s (Q') ' and thus

x' = (Q') '. This resembles the situation for deep-
inelastic lepton-hadron scattering, where, in the

scaling limit, one is also probing the light-cone
structure of the product of currents. In the SLAC-
MIT experiments one measures total cross sec-
tions for (virtual} photons on hadrons and thereby,
via the optical theorem, the absorptive part of the
forward photon-nucleon elastic amplitudes. The
photons are spacelike and the scaling variable (d

is restricted to the range between 0 and 1. In the
situation under discussion in the present paper,
one is dealing with the full amplitude for a virtual
tirnelike photon to decay into a timelike photon plus
hadrons. The scaling variable (d is here restricted
to the range 1 to ~. The invariant momentum
transfer between incoming and outgoing photons is
(l —k)' = P'; it is positive and above the relevant
hadron threshold, whereas, in the inelastic lepton-
hadroa scattering situation, this momentum trans-
fer variable is zero. We thus have the opportunity
in the present case to study the light-cone struc-
ture of the same product of current operators that
arises in the SLAC-MIT experiments, but in new
kinematical regions and for new matrix elements.

In a formal analysis based on canonical commu-
tation relations, the behavior of a product of two
currents near the light cone is controlled by those
local operators in the Wilson' short-distance ex-
pansion which are of lowest twist. The lowest-
twist operators determine the highest-spin corn-
ponents of the equal-time commutators of the cur-
rents. They can be collected together to give the
most singular term near the light cone in an ex-
pansion in terms of bilocal operators. Recently,
we have determined the forrnal light-cone struc-
ture in the quark-gluon model. ' For electromag-
netic currents we have

[J„(x},J„(y}],, = [V„(X,n)g„„+ V, (X, n)g„—V (X, n)g„„—ie „„~ A ~(X, a)]-',e D(6),

D(&) =2, s(&.)6(&'),1

where X=-,'(x+y), n =-,'(x-y) and where the bilocal operators V„and A„are given by

V„(X, &) = '0(x)Q'~„ex-p —ig « "B„(x) 4(y) —(»-y),

X

A„(X, &) =20(x)Q'r. r„exp —ig « "B„(s) 0(y)+(x y). -
(38}

Here B„is the [SU(3} singlet] vector-gluon field,
g the quark-vector-gluon coupling constant, and
the integral is taken along a lightlike path from y
to x. The tensor and SU(3) XSU(3) structure of the
light-cone commutator leads to a variety of pre-

dictions for the structure functions of deep-inelas-
tic lepton-hadron scattering and the nature of the
light-cone singularity precisely accords with the
existence of a scaling limit. The structure func-
tion E,(&o), for example. is related to the (spin-
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M»-e»z dxe'o'"(p~A (0, x)~0)6(x,)s D(x).lJP V/X, CK)

(4o)
We have expressed III„„in terms of the retarded
commutator of the electromagnetic currents. Now
define G(&u} =G(-&u) by

(P~A~(0, n)~0) =PzJI d~G(&u)e ' '
+

(41)

where the omitted term is proportional to ~„and
is irrelevant for the scaling limit. We then find

, G(~')
VP VII Xa v~ z

(43)

The dispersion integral runs over
~

&u~ & 1 only,
since the absorptive part of M„„vanishes outside
this region:

G((u) =0, i(ui&1.

averaged) nucleon matrix element of V„(0, n) by

P„' P(~) „.
(Pl V„(O, n)lf) =—" d~ ~" ' '"' (39)

-1

where the omitted term is proportional to ~„.
For the reactions e'+e —p, '+g +X, we will be

concerned with the matrix elements (X~ V„(0, n)
~ 0)

and (X~ A „(0,n)
~
0). As an immediate example,

consider the one-pion channel: e'+ e —p. '+ p, + m'.

We have already discussed this process in the BJL
limit. For the scaling limit, noting that only the
bilocal axial vector A „contributes, we have

ImM, „=we„„„P~Q—G(v, &u)

dxe' " P J„2x,J~ -~x 0 .2J

When v is large compared to the pion mass,
G(v, &u) has support properties expressed by

(43)

v &0& (d & -1
G(v, ur) =0

v&0, (d &1.
(44)

Moreover G(&u, u} is symmetric under crossing:
G(~, v} =G(-~, -v}. In the scaling limit v-~,
G(&u, v) —G(&u), where G(&u} is given by Eq. (41).
But we can also consider the limit v- -~, where
G approaches the same function G(~). So G(&u) is
symmetric in &u and it vanishes for

~
&u~ & 1. In the

Appendix we derive the same result more gener-
ally using the Jost-Lehmann-Dyson" representa-
tion for matrix elements of the current commuta-
tor.

Next let us turn to the inclusive reaction e'+ e- p, '+ p. +X, where we sum over all hadron chan-
nels of specified momentum P and consider the
limit v- ~, P', (d fixed. To compute the cross
section in this limit we replace the retarded com-
mutator in M„„by its leading light-cone approxi-
mation, so that

A simple argument goes as follows. " For general
v and (d, the absorptive part may be written

M*„.~.M„p5 P —P~ -=M„.~..„„
X

(45)

where the bilocal operator 6„„(0,n) multiplies 8 "D in Eq. (37). We shall now argue that the tensor struc-
ture of the quantity appearing in Eq. (45} has the same form as it would have if the sum g ran over only
two one-particle channels, scalar and pseudoscalar, each with momentum P.

This is best seen in the "infinite-momentum frame" P,-~, where we take

Q„= (&uP„O, 0, 0),

P„=(P„O,O, P, -P'/3P, ).
Now consider a particular state X consisting of N hadrons, with momenta p, . We write

p,. =e,P+p~,

where

P p'. =Q.p~=0

(46)

(47)

~N
and ~, n, =1. In general, the hadrons also bear spin labels, which, however, we suppress. Near the light
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cone, we encounter matrix elements of the bilocal vector and axial-vectors, e.g.,

dxe'~ "X V~ 0, ~x 0 0 xo Spa x . (48)

(X( V(0, —,'x}(0)=P„f(x P, x p;, p, p, , o. ;, P')+E„P g "(x P, x P;, . ..)+ ~ ~ (49)

where the omitted terms can be ignored in the limit P, —~ since they depend on the components of P„only
through x P and P'. In the final sum over states, the two terms retained above do not interfere and they
make contributions with the same tensor structure. So it will be enough for us to consider the first term
alone. Writing

f(x P, x P„.. . ) =
JI d&ugdP f(u&, P;, . . . ) exp -f(u&P+P Pp, ) —,'x,

we carry out the integration in E(l. (48) and find the result

(50)

(51)

v'M, „,»-g»(~, P')e„.„.~...~„„~,P~ P~Q' Q'

1

P„(Q.—-'~P.)-. .. II ~0;f(~', P;, o';, f f»' P'}.
-1

This has the same tensor structure that we find for a single- (scalar) particle state of momentum P. Pro-
ceeding in the same way for the axial-vector bilocal operator and employing the full structure of E(l, (37),
we obtain finally

+ gz(((), P') [P„.P&.~ —(P„Q„.+ Q„P„.)+ vg, .„.] [P„P„~—(P„Q„+Q,P„)+vg»], (52)

where g~ and g» are unknown functions of P' and the scaling variable cu. We may observe here that, to
leading order in the scaling limit, v- ~, cu, P finite, the above expression is compatible with current
conservation, which requires that k„M,„=M„„l„=0.Recalling that l = Q+ —,'P, k= Q ——,'P, we see that these
requirements are indeed satisfied to leading order. For this reason, it is not necessary here to employ the
elaborate projection-operator methods which we have discussed elsewhere to enforce current conservation
in leading order. '

We may now record the differential cross section for the inclusive reaction e'+ e —p, '+ p. +X in terms
of the sealing-limit functions g, (~, P') and g~~(~, P'}. We find

16m'a4 1+cos' 8d(x-, ),[g~((u, P') g+p~((u, P')]d~dP'dQ, (53)

where (9 is the angle between I, and P, the three-momentum vectors of the incident positron and the outgoing
hadron system, as measured in the center-of-mass (laboratory) frame of the electron-positron pair.

In the scaling limit the cross section for the inclusive reaction e'+ e —p, '+ p, +X is determined by the
bilocal operators which represent the current commutator on the light cone. Using completeness, let us
rewrite E(l. (45) in the form

M, „,„„-(
) f d d d 6(*,)()(x*,')*ex*p'( p* —W *'~ '() *)-'

x(0~ [6)t „.„.(—'z, —'x'), ())» (-—'z, —'x)]~ 0) s "'D(x')e "D(x) . (54)

Evidently, what is measured in the scaling limit is some sort of spectral function for the commutator of
the bilocal operators. This resembles the situation for the BJL limit, where the inclusive reaction mea-
sures the spectral function of the local axial-vector current. Concerning the latter spectral function, we
saw in turn that the large-P' behavior is determined by the light-cone commutator of the axial-vector cur-
rents. For the scaling limit it is therefore natural to inquire whether the large P' behavior is determined
by the light-cone structure of the commutator of the bilocal operators. We are inquiring about the func-
tions gz(&u, P') and g~z(~, P') in the limit P' —~, &u fixed. We shall argue that the limit exists and that the
&o dependence of the limiting functions g~(&u) and g»(~) can be fully determined. We are concerned with the
ordered limits
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lim lim M, .u
P2 ~; 4J fixed ~' ~,P2 fixed

(55)

Let us examine the nature of this double limit. The first is achieved by letting Qu-~ along some direc-
tion, keeping P„and

(d ~=P —=P n
Qu

uq2
(56)

fixed. We have defined n" = Q" /Q to be a vector with finite components in the scaling limit and we observe

that it becomes lightlike in the limit:

u' = I/Q2-0. (5'I)

In Eq. (54) we see that the dominant contributions in the scaling limit come from integration regions where

Q x and Q ~ x' are bounded. But this means that x" and x'" must be essentially proportional to n" and there-
fore x and x are essentially lightlike. In asserting this much, we are only recapitulating the argument that

the light-cone structure of the current commutators is probed in the scaling limit. If we now let P'- ~,
still keeping (d fixed, we must let P" approach an infinite vector along a direction parallel to nu, so that

~ ' =n P can remain fixed. Therefore, in this second limit the dominant contributions will come from the

region where n z=i/P', i.e., from z" essentially parallel to n". Thus, for our ordered double limit the

main contributions will come from the region in which z, x, and x are collinear points on a lightlike ray.
But in our formal treatment of the quark-gluon model, we have recently shown that it is just for this situ-
ation that the commutators of the bilocal operators close on themselves, to leading order in light-cone
singularities. Thus, consider the four space-time points x, y, z, t in the region where (x —t)" and (y —t)"
are proportional to (z —t)" and (z —t)' =0. Then we find, for example, that

[V„(-,'(x+y), —,(x —y)), V„(-,'(z+ t), —,'(z —t))] =g(x)y„y y„Q exp ig -B„(u)du" g(t)B D(y —z)

—$(z)y„y„y„Q exp ig B„(u)du"-g(y)e D(x —t).
Y

(56)

In the present situation we are interested in the vacuum expectation values of such commutators. These
are easily gotten on the basis of the formal procedures discussed in Ref. 3. We then find

lim lim
P2 ~; (D fixed P2 cu fixed

x [Tr(y„y y„yzy„y&y„.y~)& D(x)e D(z+ —,'(x+x'))s&D(x')s D(z ——,'(x+x'))

—(p-v, x- -x) —(p, '- v', x'- -x')+ (p,—v, p'- v', x--x, x'--x')].
(59)

This complicated-looking expression, it may be noticed on careful inspection, is just what one would find
for the inclusive cross section in the free-quark model, where all the hadron channels X are composed
simply of a pair of massless quarks. This is clearly a kind of parton-model result. " The integral is most
simply evaluated by standard Feynman methods, and one finds

' dz z'(I —z')
g, (~, P') = g, (~) =(Q')

P2~ 7T &d —z

' dz uP(1 —z')
gpss((u P') —g~s(&) =(Q') 2 2). ~

P2~ z (d —z

(60)

We have thus determined the complete ~ dependence of the "spectral" functions for large P'. The double
limit affords the possibility of a dramatic test of the ideas on the light-cone structure of current commut-
ators discussed in Ref. 3.

APPENDIX

In this Appendix we exhibit the Zost-Lehmann-
Dyson (JLD)" representation of the matrix element

I

M,u
in the scaling limit. In particular, we will see

that the discontinuity in Q, vanishes for the scaling
limit, with

~
&u( & l. For the matrix element to a

particular hadron state X, momentum P, the (un-
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subtracted) JLD representation is given by

d„-d~g 4.u(u A'~ P) Q~

Q
' —(Q+ u)2 —K'+ ie ' (A1)

In the scaling limit

(A4)

where the weight-function tensor f„„depends in an
unspecified way on u, K', P, and other variables
of state X; it is a polynomial in the components of
Q". We are in the hadron rest frame, P=0. The
integration domain is given by

fuf& aug',

A ~ p —( ,'P' —
I
—u

I
')'

(A2)

where p. is the smallest mass of contributing inter-
mediate states. In the scaling limit, we have

Writing

d g~p 0 ll/I

&u —2u, /v P&+is
'

2' ' =co', flu'f& 1,

we see that

1 '„,4.~(~', " )
V -1 (d —(d —2E

(A5)

(A6)

p Q2
Q,-~, = ~ ixe,fixed

and, choosing Q along the three-axis,

(AS)

This clearly establishes the result that if scaling
holds, then the functions g, (&u, P') and g»(&u, P ')
have no co discontinuities outside the interval
-1 & M & 1.
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