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The scalar-dominance hypothesis, incorporating €(700)-€’(1060) mixing, is applied to a
large class of elastic, single-particle matrix elements of the energy-momentum trace oper-

ator.

I. INTRODUCTION

Among the diverse applications of scaling to
particle physics is the concept of a scale-invariant
world. This symmetry limit corresponds to the
vanishing of all matrix elements of the energy-
momentum trace operator 6=6,". A recent study’
of renormalizable field theories has displayed the
existence of a scale current D* defined in terms of
the symmetric energy-momentum tensor 6",

DH(x)=x, 6™ (x), (1)

with divergence

3,DH(x) = 6(x) (2)
and charge
D(x°) =f x, 6% (x)d%x. (3)

Thus, scale invariance can be described in terms
of the vanishing of a current divergence. The idea
of associating a symmetry with 6 is clearly of
interest. Taken together with studies of chiral in-
variance, it constitutes an important probe of the
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hadronic energy density.

Gell-Mann has conjectured? that the =0 limit
is correlated with the existence of a massless
scalar particle, the € meson. This is in analogy
with the proposed Goldstone relization of SU(2)
xSU(2), where the pion mass vanishes, .or of
SU(3)xSU(3), where the entire pseudoscalar octet
has zero mass. The analogy suggests use of €
pole dominance of 6 in the same way that the pion
pole is used to dominate the axial-vector current
divergence, i.e., the partial conservation of axial-
vector current (PCAC). In practice, we generalize
this to e-¢’ dominance, because these states are
mixed. Even if the analogy between scale and

J

M2
and of 6,

1/2
(B9 "™ (0, x180)1p,17)= Fiovata, nup, 10,

where k=p —q, t=k% P=3(p+q), Mis the nucleon
mass, G,(0)=1, G,(0)=0, and F(0)=M. In order
to obtain explicit models for the form factors in
Eq. (4a), we use pole contributions of the €, €’,
and f mesons, and for generality, a subtraction
constant in each form factor. The coupling con-
stants appearing in the pole contributions are de-
fined from

(2w,)"7(0]6"(0) [e(k)) = ~3F.(k"R" - g"k?), (5a)
(20,)"/%¢0] 67(0) |’ (k)) = —3 F,. (k*k” —g*’k?), (5b)
(20,)"7€0]6(0) | flk, X)) = frh*"(k, ), (6)

where the spin-two polarization vector obeys
W (k, X) ="Mk, X), k¥ (R, 2)=0, h(k,1)=0, and
finally

£ =g ynNNe +g.yyNNe'

g v"a 8o fwsd"B”
21 L2/ uw
”2Mf“"( 2 ) mz N N

M

We then find the following expression for the form
factors:

1 frg ,
Gi(0)=r ri—:a‘_—ﬁci, i=1,2

(=M Feggm F'ge»m 1 ,Zzg;
3() 3 2

mE -t m® -t m? m? -t

SO R

(E E) " (4, 1670)|p, A"y =T(g, 1) (Gl(t)fy-;gﬂ G 40,0

chiral symmetry is not valid, €-€’ pole dominance
of 6 might still be a useful approximation. In this
case, pole dominance would be a consequence of

a dynamical suppression of the cut contributions.
Success of the p- and A ,-dominance hypotheses
presumably depends on this feature.

To clarify and emphasize the relation between €
dominance and the limit of scale invariance, we
examine now a simple model. The following calcu-
lation also serves to introduce certain parameters
which appear throughout the paper. Consider the
matrix element, taken between single nucleon
states, ® of ",

kERY _kzg#'/ ’
T Jue), (42)

(4b)

—

where G,, G,, and G, are subtraction constants,
and m,, m, , and m, denote the masses of the ¢,
€', and f mesons, respectively. Using the {=0
constraints for G, and G,, and requiring that F(¢)
be bounded by a constant for {— «, we find from
Eqgs. (4a) - (8a)

F(t)= _ﬁLFL.,. M.,.M (8b)

~t 2t
Let us pass to the scale-invariant limit. Setting
F(#)=0 for all {, we obtain the relations

gemFs+ge’AwFs’ "'M=0,
7’)’!612(8'61,”‘,1'-‘E —M)+m€2(g€:mF€: —M)'—'O, (9)
Mm*m *=0.

If we demand m,=0, m,.#0, and use Eq. (5b), we
find as the unique solution to Egs. (9)

M=g nF,, (10a)
F..=0. (10b)

We interpret Egs. (10a) and (10b) as implying €
pole dominance in the scale-invariant limit pro-
vided € is the only particle whose mass vanishes.*
Suppression of cut contributions is indicated by
F. =0. If we were to enlarge our calculation by
including several scalar poles in order to better
approximate the cut contribution, we would find a
solution with the same qualitative properties: The
single scalar meson which becomes massless in
the scale-invariant limit must have couplings as
in Eq. (10a), and all the other scalar mesons de-
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couple [as in Eq. (10b)].

In this paper, we present a detailed study of the
scalar-meson pole-dominance hypothesis applied
to single-particle, elastic matrix elements of 6.°
The real world is not scale-invariant, so correc-
tions to Egs. (10a) and (10b) are necessary. For
reasons of simplicity, we employ as corrections
only the use of physical masses, and the phenom-
enon of e-¢’ mixing. This approach is also moti-
vated by our feeling that relations like Eq. (10a)
constitute a significant method for determining
parameters like F, and F,,, and thus deserve a
comprehensive study which employs consistent
approximations. It is worth remembering that
similar relations do not occur for the axial -vector
currents and the associated limit of chiral sym-
metry.

II. DERIVATIONS

We plan to apply the scalar-dominance hypothesis
to a number of meson and baryon states. Included
among these are high-spin particles. Therefore,
we must define the coupling constants which are
to be used in the arbitrary-spin problem, and also
derive the appropriate scalar-dominance formulas.

A. Mesons

Consider the matrix elements of 9 taken between
single-particle states of a spin-s meson. The
spin-s polarization vector is denoted by Dy,
where g is the momentum, and A is the helicity.
It obeys the following constraints®:

(@ -m*)¢, ...,,(@, 1) =0, (11a)
By (@)= Guy (050, (11b)
8H0.. ey (g, 1) =0, (11c)
q...p...(q,1)=0. (11d)

J

(4w,w,)'2(0]6(0) |pA"; ) = - 'fd‘x eiTEGI (G, ) (2w,) ([T, +m?)(0|[60), T,

Upon inserting the o intermediate states, and using
Eqgs. (13), (14), and a relation analogous to Egs.
(5a) and (5b), we obtain

IME(8) =m 2F g ,mo(m2 ~1) . (17)

Thus, in a model with €-€’ dominance and no sub-
tractions, we find E(0)=F g+ Fe'8crss - Alterna-
tively, from the vanishing of the self-stress, we
have

2w,0,1]6(0)[0, 1) =2m2¢H1" % T(0, ) ¢, ..., (0, 1) .
(18)

cus@5 2,
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In Eq. (1la), m is the mass of the meson. The
general form of the matrix element of 6, taken
between the spin-s meson states, is

(4w,w,)*(q, x| 6(0)| p, ")

- ¢“1---Ms*(q, )\)rﬂl”'l‘s- - GV s (b)),

(12)
where | AT v contains (s +1) terms, each
a form factor multlphed by a kinematic coefficient.
The only quantities available for constructing the
kinematic coefficients in T, veiig vyeeevs ATE q*, p*,
and g'. The constraints (1 lb) —(114d) imply that,
at zero momentum transfer [¢= (p —-q)?>=0],
| ATRTTRRTIIA consists of just one nonvanishing
term,

rpl HgUy®* us(p q gm"lgﬂgvz g;.lsusE(t)lt-o ’

(13)
where E(t) is a Lorentz-invariant form factor.
Next, we determine the pole contribution to E(¢) of
a scalar particle o (e.g., 0 =¢, €’), which we treat
in the narrow-resonance approximation. In general,
the scalar meson ¢ couples to a pair of spin-s
mesons in more than one way. The only such cou-
pling relevant to our calculation is defined by

LX) =g g5s TH "M (X)T ..., ()0 (x) , (14)

where g, has the dimension of energy. The
quantity Tur--us(") displays the configuration-
space dependence of the spin-s meson, and is re-
lated to ¢, ..., (q,}) by

Typeenps(®) =kZ;)\(2w,,)'”2 [¢’u1---us(k’ Ma, e **+H.c.].

(15)

The starting point for the calculation of the o-pole
contribution to E(#) is the reduction formula

W16 =x) A7) (16)

Our result, for the case of an arbitrary-spin meson,
is the scalar-dominance formula

2m2=F€gess+E’ge'ss' (19)

B. Baryons

The derivation for the case of an arbitrary-spin
baryon is similar to that just given for an arbitrary-
spin meson. Hence, we shall be brief. The spin-s
baryon is described in momentum space by a
quantity, ,..., (q,\), where s=n+3. The con-
straints on “ul-"u,.(q’)‘) are those of Egs. (11a) -
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—(11d) except for the replacement of (11c) and
(11d) by®

(4‘}’ _M)upl-n-p"(q, A) = 0’
YHit, .y (@, ) =0,

(11¢”)
(11d”)

where M is the baryon mass. The general form of
the trace matrix element taken between the spin-s
baryon states is

172
)" (4,3 160)1p, )

TN ey WD)

(20)
At t=0, it follows from Egs. (11b), (11c¢’), and
(11d’) that I, ..., ...y, has the form given in
Eq. (13) for the meson vertex function I},
We define the o-baryon-baryon coupling relevant
to our calculation by

LX) =fopad ™ XN ey (K0 (2) (1)

where ..., (x) describes the spin-s baryon in
configuration space. Aside from the condition

(0,1[6(0)[0,A")=M@"*"n (0,2)uy..., 0, 1"),

which follows from the vanishing of the self-stress,
the rest of the derivation parallels the meson case.
We find that €-€e’ dominance takes the form

M=f ppFc+ferppFe - (22)
III. APPLICATIONS

This section consists of applications of Egs. (19)
and (22) to all cases for which sufficient data are
available. The main restriction in the use of these
equations involves the coupling constants g,
Zerss s femn, and fopp. Except for the 3* baryon and
0~ meson systems, we have no knowledge of any of
these quantities. One way to partially overcome
this difficulty is to apply Eqs. (19) and (22)
to particles lying within given SU(3) multiplets.
Upon using SU(3) symmetry to approximate the
coupling constants, we réduce the number of un-
knowns. We defer discussion of the assumption
that the SU(3) couplings provide reasonable esti-
mates until Sec. IV.

With the introduction of SU(3) into our calcula-
tions, we consider the €-¢’ mixing in more detail.
We define an €-€’ mixing angle ¢ from®

€=0,C08¢ —0,8ing, 23)
€'=0,sin¢ +o04cos¢ ,
where o, transforms as a unitary singlet, and o,
transforms as the eighth component of an octet.
Also, it is convenient to define coupling strengths
Fo, Fy,

s llg, U1ttt Ug "

F.=F,c08¢ - Fgsing, (24)

F. =F,sin¢ + Fgcos¢.
Notice that F, and F, have the dimension of energy.
From Egs. (23) and (24), we see that if ¢ — 0 in the
limit of SU(3) invariance, the quantities €, €', F.,
F.., are to be identified, respectively, with the
quantities 0y, 04, F,, Fg. The main purpose of the
calculations to follow is to obtain estimates of the
basic constants, F, and F,. We shall consider first
the baryons, then the mesons.

A. Baryons

(a) Octets. We use the obvious notation, N, A,
¥z, =, for the members of an arbitrary baryon
octet. The coupling of 0,, 0, to a baryon octet is
given in terms of dimensionless coupling constants
fo» fe» and an F/D parameter o,

£=f,BBo,+2fBlaD +(1 —a)f]B'g_, (25)

where ois the scalar-meson octet to which oy is
assigned.” Equations (22), (24), and (25) imply

_ 3(My -M,)
3(ME—M/\)-2(M5_MN) ’
Notice that in this model, the value of o depends

only upon the baryon masses. Another interesting
quantity is the ratio

a

(26)

——1:
Fy, 2a(Mg+M,)f

Fy _ V3 (Mg -M,) fo @7)

In most cases, we have no knowledge of the cou-
pling constants f, and f,. However, because it is
only the ratio of f, and f, which appears in Eq. (27),
we can proceed in our analysis by making one
further assumption — that the coupling of the €’ to
nonstrange baryons vanishes.® This assumption is
motivated by the small value of the €’ - 77 decay
width, which in terms of the quark model suggests
that the €’ consists solely of strange quarks. Other
isoscalar states believed to have this property are
the ¢ and f’ mesons. Thus, we use the canonical
value of the € -€’ mixing angle, ¢,=cot"V2 . With
this assumption, we can deduce that

}Q= ~(G)3(3 —4a) , (28)
8
and finally, that®
Fy _ My =M, +2(M; ~M,) (29)
Fo  VE(Mp+Mp)

Values of Fy/F, for the collection of observed bar-
yon octets are presented in Table I(a).

In Ref. 5, an estimate of the magnitudes of F,
and Fg, was obtained by using a value of g,y deter-
mined from a model of low-energy 7N and NN scat-
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tering. From the value g.n%/47=10, we find F,
=128 MeV and F;=33 MeV. The nucleon “mass
radius” is given in the €-€¢’pole model by®

= 6Feg§1w 6Fe'ge’m
(7%= Mom.? + Mom.? (30)
The results of the above analysis give (7y) = 0.7
x 10" cm.

A higher symmetry whose content overlaps some
of the results found in this section is SU(6). Let us
assign the 3*, 3* baryons to 56, and the unmixed
scalar-meson states ¢, 0, to 1, 35, respectively.
Recall how well the SU(6) F/D parameter for the
coupling of the pseudoscalar-meson octet to the 3*
baryon octet agrees with both experimental esti-
mates and bootstrap calculations. The scalar-
meson case is much less impressive — the SU(6)
prediction of @=0.0 compares poorly with the value
a=-0.44 exhibited in Table I(a).

(b) Decuplets. Denoting the decuplet baryons by
A,Y,=Z*, Q, we write the SU(3) couplings of o, and
g4 to a baryon decuplet as

L(x)=fL0,(BA+ T Y +E*¥E* +0Q)
+f10,(BA = EXE* - 20Q), (31)

where f(, f; are dimensionless. Equations (22) and
(31) imply

Fo My-Myfo
Fo, My fg

The decoupling of €’ from nonstrange particles

(32)

TABLE I. Baryon mass analysis. The mass values (in
MeV) are taken from Ref, 15. For those cases in (a) for
which the S=-2, 7= baryon mass is not given by Ref.
15, we use the Gell-Mann—-Okubo relation to calculate it.
The spin parity (JF) of each SU(3) multiplet is given in
the first column. The symbol a refers to the F /D pa-
rameter defined in Eq. (26).

(a) Octets
JP N A z E o Fg/F,
3 938.9 1115.6 1193.1 1318.0 —0.44 0.26
™ 1520 1670 1670 1820 0.00 0.13
3~ 1550 1670 1750 1830 -0.75 0.13
g+ 1688 1820 1905 1994 -0.71  0.13
2~ 1680 1835 1765 1955 0.28  0.094

(b) Decuplets

J? A Y Fy/F,
o 1236 1385 0.15
3 1930 2030 0.07

4
implies
f—,°= -cotg,=-V2 (33)
fa
from which

F, My

Numerical values are given in Table I(b).

B. Mesons

Before examining individual cases, we define
several tri-meson coupling constants. The SU(3)-
invariant interaction of the scalar noret (S), 0,, 0,
with some different meson nonet (M), ¢,, ¢, de-
pends on four constants, g,, g,, &, and g;,°'*° de-
fined by

Lyus =806P0 +g1°oQ2 + */?gzdmds%% +8;¢00° ¢
(35)

For the self-interactions of the scalar nonet,® we
need three constants, k, k,, and %,:

Lsss =00’ +7040° +V8 hyd; 00,0, . (36)

All seven of the coupling constants just defined
have the dimension of energy. With these defini-
tions, we proceed to analyze the meson spectrum.

(a) JP=0". If we use Eq. (19) to obtain pion and
kaon mass relations, and solve these for F, and
Fg, we find

_ myE+2myk

= Z(mwz —ml(z)
3g,

3g,

The pseudoscalar mesons are unique in being the
only system for which couplings to scalar mesons
can be determined directly from decay widths. In
Ref. 5, a value g,=-0.97 GeV is inferred from the
decay width I'(my — 71m) =50 MeV of the scalar me-
son m,(980). The negative sign of g, is consistent
with taking F, and F, positive. An estimate for g,
comes from the relation

F, , Fg (37)

Bert +8ermr =817 +8; (38)
The coupling constant g, is not known accurately.
However, it is probably safe to deduce from the
tentative data on decay widths that gy 12> g/ py 12
Therefore, to a good approximation, g2 (g .2
-8,2)%. We find g,=1.12 GeV upon using the
width I'(en7)=300 MeV as input. From Eq. (37),
it follows that F =152 MeV and F,=156 MeV. This
result is in obvious disagreement with solutions
derived from the baryon data.

The failure of the mass relation, Eq. (19), to
adequately describe the pseudoscalar octet has
already been noted in several places.®'!! However,
we wish to direct attention to the quite reasonable
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value of F,=152 MeV. This solution is consistent
with the baryon analysis, especially in view of the
substantial uncertainties in the data to which these
calculations are subject. Unless the value of F
determined from the pseudoscalar analysis is a
complete accident, it seems fair to conclude that
the large ratio of F,/F, found there arises from
the abnormally large value of F;. We shall return
to this point in the Conclusion.

An estimate of the coupling constant g, follows
from the mass relation'?

m,?=Fyg, . (39)
From Eq. (37), we find
3m,’g
Zo= ~Zn o1 (40)

m2+2mg?

This relation should give a reliable estimate of
g,/8, because it depends on the value of F, and not
Fg. Numerically, Eq. (40) gives g,=6.34 GeV. The
ratio g,: g,:8,::6.34:1.12: -0.97, obtained from
the mass relations, differs appreciably with the
corresponding SU(3) xSU(3)-symmetry prediction,
-2:1:=V2,

(b) JP=1-,1*,2". Our analysis of the 1~, 1*, 2*
nonets resembles the treatment of the baryon
multiplets given earlier. Denoting the members
of an arbitrary meson octet as 7, K, and 1, we
can write down, but cannot numerically solve,
equations like (37) because we do not know g, and
8, in general. However, decoupling the €’ from
nonstrange particles and using canonical mixing,
we can deduce that

Fy _ 22 (my* -m,?)

F, 2my® +m,> (41)

Numerical solutions of Eq. (41) are given in Table
II. Applying Eq. (41) to the 0~ mesons, we find the
anomalously large ratio Fy/F,=1.26. This is in
rough agreement with the values of F; and F, esti-
mated in the preceding section from 0*-0-0" decay
data.

(c) JP=0*. Our knowledge of the scalar mesons
is deficient relative to other meson systems of
comparable mass. Existence of the €(700), €’(1060),
and 7,(980) mesons is generally accepted, although

TABLE II. Meson mass analysis. The mass
values (in MeV) are taken from Ref. 15.

JP ™ K Fg/F,
1- 765 892.1 0.27
1 1070 1247 0.27
2t 1300 1413 0.15
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in each case there is need for further experimental
work. The tendency of mesons to occur in nonets
leads one to wonder about the existence of the «
meson. An accurate determination of the x mass,
m,, is important to our work because, given the
other scalar masses as well, we can calculate the
€-€¢’ mixing angle, ¢. We list in Table III this de-
pendence of ¢ upon m,. Our assumption that the
nonstrange members of the scalar nonet are in-
deed €(700), €’(1060), and m,(980) places fairly
sharp restrictions on 7 ,. Current data imply that
the €-¢’ mixing angle lies in the interval 20°< ¢
<40°, If so, the mass of the « is restricted to
940<m <1010 MeV.

The scalar-nonet mass relations have the im-
portant property of depending on just three cou-
pling parameters, k,, k,, and &, [see Eq. (36)].
This happens because the mesons which dominate
the trace, 6, belong to the very multiplet whose
matrix elements are being considered. Upon writ-
ing the mass relations, Eq. (19), in terms of the
SU(3) coupling constants, we find

2m2 = 21, F - 3h,F,,
m,er =h,Fo+3h,F,,
mg = 3h,Fycos?p +h Fsin?d

(42)
-2h,Fg sing cos¢ — 3h,F, sin®¢,

Me:? = 3hoFysin®¢ + b, F,cos?¢p
+2h,Fysing cos¢— 3h,F,cos?e.

The equations in (42) express the full content of the
scalar-meson mass relations. Because there are
four mass relations in terms of just three tri-
meson coupling constants, we can solve for F,/F,
without making any assumption as to the value of
the mixing angle, ¢. We find

TABLE III. Analysis of the scalar nonet. The notation
used is: m, is the mass of the k meson, ¢ is the e-€’
mixing angle, and &, hy, h, are coupling constants de-
fined in Eq. (36). The mass values (in MeV) are taken
from Ref. 15.

m, (MeV) ¢ (deg) Fy/F, ho/hy ho/hy
790 79.3 0.16 0.50 0.77
820 68.3 0.28 0.45 1.5
850 60.6 0.34 0.40 2.1
880 53.7 0.36 0.36 2.6
910 47.1 0.36 0.32 3.4
940 40.4 0.34 0.28 5.1
960 35.6 0.32 0.25 8.7
980 30.5 0.29 0.23 w

1000 24.7 0.24 0.20 -5.5
1020 17.4 0.18 0.18 -1.8
1040 2.9 0.03 0.16 -0.19
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Fy_ 3m? — (4m* —m, *) +sin’p[2(4m, > = m, 2) —3(m *+m,*)] . (43)
F, sin2¢(m, * +2m?)

It is also interesting to solve for the ratios
hy 3m +m.*) +m, * —dm,* @a)
B, 30m, 2 +2m,*) ’

and
h, 3 3m,.? -‘lrm,(z+m,,}’2+sin2<1>[2(4m,(2 -my ?) -3(m.? +m,?)] i
h, 2sin2¢ a2 =, (45)

The ratios (43)-(45) depend only on the masses of
the nine scalar mesons. In view of our present
uncertainty regarding the x meson, we have listed
in Table III the ratios Fy/F,, hy/h,, and h,/h, for a
range of allowed values for m,.

The ratios ky/h, and h,/h, given in Table III may
be compared with their SU(3) xSU(3)-symmetric
counterparts, -2 and V2, respectively. There is
no apparent agreement between the pole-model
ratios and those predicted by chiral symmetry.

IV. SYMMETRY BREAKING

One can interpret the calculations presented in
Sec. II in terms of two distinct kinds of symme-
tries, SU(3) and scale invariance. Within the con-
text of the pole model, the assumption of SU(3) in-
variance enables us to relate various coupling
constants. In addition, the very use of the scalar-
dominance model may be associated with the exis-
tence of a scale-invariant limit. In nature both
symmetries are broken. The implication of this is
the subject of the present section.

First, we discuss the problem of estimating the
effects of SU(3) breaking. One practical method
for accurately determining coupling constants is to
obtain precise values of decay widths. This moti-
vates us to consider the 0"~ 070~ decays. We de-
fine, in terms of the unmixed particles o, and oy,
the couplings

£0=gconncon2 +g00,,,o°1_rz+go°KKooKK ’ (46a)

£g =&nymTN " TN+Er kxTN 'I—{ZK +goannasn2
+8oymO8T +& ok k0s KK+8 ey KTK - +H.C.)
+&xn(RK N+ H.c). (46b)

If the symmetry breaking of SU(3) transforms
solely as the eighth component of an octet, we may
express the ten coupling constants of Eqs. (46a)
and (46b) in terms of six independent parameters.*
For instance, if o, 8,y are members of octets as
in Eq. (46b), we can write

r —

88N\ (88N
g(y-a+3)=ga(7"a+3)+zjv:XN <‘y0’y (a B?’)y

(47)

where g is the D-type SU(3)-invariant coupling,
the quantities in parentheses are SU(3) isoscalar
factors, and the index N goes over 1, 8,,, and 217.
A similar relation, in terms of two_corTstants, 2o
and Y, holds for the couplings of Eq. (46a). Thus
we can derive four sum rules:

2 1
7’—3'ng1(1( + ‘/':Sg‘(mr"'gxkn =8nym =0,

)

1
Egl(xﬂ +g08KK —Zgosmr —_ﬁgw,{x =0, (48)

1 2
28ckn+8ogxk * 3v3 Enykk Y 37T Exgn = 28 0gm =0,
3gaonn+goomr -2gcoKK=0'

We can also solve for the six parameters. Those
associated with SU(3) invariance are'*

8o= %(gool(x +goo1nr) )

_ 1/6 (49)
gﬂ:§(ﬁgm +gosKK -2goamr> s

whereas those associated with symmetry breaking
are'*

Ytlz = %(Zgaomr "gooxl() ’

.1 2
X27=Za Enym = 73 Enykk)s
50
.1 2 8 4 %0)
XDD_E ngﬂn+ﬁgka -§ gasfrw+§guskx )

X;=%(3g08” + Zgoaxl( +g08nn) .

Unfortunately, our current empirical knowledge, of
scalar-meson couplings allows neither verification
of the sum rules (48) nor evaluation of the param-
eters g,, ..., X,,. However, this situation is ex-
pected to improve. Accurate measurement of the
widths I'(e’nn), I'(e’KK), I'(kKw), and evaluation of
&ryxk from data pertaining to KK states near
threshold will provide sufficient information for
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Eqs. (48)-(50) to be put to use.

The relations (48)-(50) are valid for the coupling
of any even-parity meson system to 070" pairs,
e.g., 2*-070". Upon using existing data for tensor-
meson decays'® (assuming the A, is an unsplit
entity), we have found the symmetry-breaking
parameters (50) to be no larger than 10% of the
SU(3) couplings (49). The relation between SU(3)
symmetry breaking in tensor-meson and scalar-
meson decays is not known at this time. If it turns
out that they are comparable, then the SU(3) as-
sumption used in our analysis is a reasonable one.

Correction factors to a symmetry broken away
from its Goldstone limit are expected to be quali-
tatively governed by the physical mass of the as-
sociated Goldstone particle.’® We examine a “hard-
€” model here to bring out some points relevant to
this comment. We define an off-shell three-point
function,

64 T™(q, p) = f dx dy e =2 (0| TV * (x)6(0)VX(v)[0) ,
(51)

where V! is a vector current, and a,b=1,2,3, and

-

(4w, ,)"2( (g, N1 600) [Py (P, A1) = = b5 Xg,2A ()€ (a0, N (p, A g7 (m,? = 52) = p°q"]
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vacuum intermediate states are not included in (51).
The only independent Ward identity involving T" is

q,T"(q,p)=0. (52)
A useful representation for T" is given by
T™(q, p)= AV@)AY (DA (4, ) , (53)

where A%, A, are vector-current and scalar
propagators, respectively, ¢t=(p-q)?, and I',, is
a polynomial in p and ¢. Equations (52) and (53)
imply

q°T5,(q,p)=0.

The lowest-order polynomial expansion of T, (g, p)
consistent with both the Ward identity (54) and
crossing symmetry is

Top(q, 0)=(80pq" P - 164,)X, (55)

where X is an arbitrary constant. This procedure
constitutes the “smoothness” hypothesis.' Upon
treating the p contribution to the vector-current
propagator in the narrow-resonance approximation,
and passing to the mass shell, pz,qz-mpz, we find

(54)

(56)

for the matrix element of 6 between p-meson states. The constant g, is defined by

(2w)"2(0[VE(0) |py(p, 1)) = g, € (B, 1) .

(67)

Let us examine the effect of hard-e corrections on the single-pole model. Using the known {=0 constraint,

Eq. (18), we can write Eq. (56) as

2
(4whwq)”2<pa(qa A)’G(O)lpb(p) A'» = 6ab’iﬂ2—3 €;(q1 K)En(p, }\;)[go n(mpz "%t) —Poqn] .

In general, we may write

(4w,w,) 2 (p,(q, 1) ] 6(0) py (B, X)) = b€ 5(a@, M€ (B, X )g®"F(8) +p°q"G(t)] .

(58)

(59)

Computing the € pole contribution to this matrix element for an epp coupling as defined in Eq. (14), we find

P = B Fe

m% =t

(60)

When we let t~m,? and compare with the appropriate term in Eq. (58), we obtain F_ g,,,=2m,? -m.2. Com-
pare this with the uncorrected single-pole model equation, F.g.,,=2m,% Thus, at least in this model, cor-
rections are appreciable because m, is not a small parameter. However, it is not clear that the correction
we have just calculated is really accurate. The validity of assumptions such as “smoothness” have no

a priovi justification. The model-dependent nature of corrections makes it difficult to obtain accurate re-
sults even when a small parameter, like the pion mass, is present.!®

r

V. CONCLUSION ity of scalar dominance is suspect. To our knowl-

edge, however, no other approach yet exists which

This paper consists of a comprehensive study of
the scalar-dominance hypothesis applied to elastic,
single-particle matrix elements of 4. We fully
realize that, in view of the large € mass, the valid-

can uniformly be applied to as large a class of ex-
amples as we have considered here. By incorpora-
ting e-¢’ mixing into the calculation, and using
physical values of quantities like mass throughout,
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we have, at least in part, taken symmetry-breaking
effects into account. The question we must now
answer is—what has been learned?

The basic parameters in the €-€’ pole model are
F.and F_, or equivalently, F,, F,, and the scalar
mixing angle, ¢. The role of F_ in scale invariance
is analogous to the role of F, in SU(2)XSU(2) chiral
invariance. The most secure of our results is that
F, is substantially larger than F;. We find that,
aside from the 0~ meson octet, the set of known
particle masses implies 0.10 < F,/F,<0.26. Of the
examples considered, three are of particular
interest —the 3* baryon and 0~ meson octets, and
the 0* meson nonet. The 3* baryon analysis® yields
an estimate of magnitudes, F;=128 MeV and
Fy=33 MeV. This implies F,=91 MeV, if we use
the canonical mixing angle <1>C=cot'1\/’2-. The
similarity in magnitude of F; and F, has been
noted in Ref. 5. Use of the canonical mixing angle
¢. in the baryon analysis is plausible, but neverthe-
less, very much an assumption. A significant way
to relax this assumption comes from our study of
the scalar-meson nonet. We find that if the « mass
is determined accurately, then the values of ¢ and
F,/F, follow immediately. For instance, we see in
Table III that m, =960 MeV gives ¢ =35.6°, F,/F,
=0.32, whereas m, =1000 MeV gives ¢ =24.7°,
F,/F,=0.24. The agreement between the values of
F,/F, derived from the ;' baryon octet and 0* me-
son nonet for reasonable values of m, is impres-
sive, and lends credence to our results. Theorists
have long been impatient to know what the mass of
the k is. We are too, but with something quite dif-
ferent in mind. There is little reason to expect
that « dominance of the strangeness-changing vector
current will be a particularly useful concept.
Rather, it is more likely that the « will find its
greatest use in enhancing our knowledge of the
evasive scalar nonet. For this reason, we urge
continued experimental effort on this problem.

Now we consider the 0™ octet. Our results here
are somewhat puzzling. It is easy for us to reject
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the anomalously large value of F,/F, found in the
0- analysis since there are convincing arguments
against applying scalar dominance (with no sub-
traction constant) to pseudoscalar matrix elements
of 4.%'!! Nevertheless, this analysis, based on
known particle masses and decay widths, implies
a value for F, which agrees very well with the
value found in the baryon analysis. The possibility
that this agreement is more than just a coincidence
warrants further investigation, and could provide
a clue as to the mechanism which appears to re-
late chiral symmetry with scale invariance.

The remaining parts of our calculation involve
higher-mass multiplets whose analysis requires
use of the canonical mixing angle, Tables I(a)-(b)
and II reveal that F,/F, exhibits a slow decrease
as the average multiplet mass increases. This is
caused by the tendency of SU(3) mass splittings to
remain roughly constant. However, relations like
Eq. (34), taken literally and applied to all conceiv-
able masses, imply something quite different —that
SU(3) mass splittings must increase in order to
keep F,/F, fixed. We interpret this as signaling
the inadequacy of either the €-¢’ pole model, or
the specific assumption of a canonical mixing angle,
as applied to too large a range of masses. It is
comforting to note that multiplets whose average
mass M lies in the range 800 <M < 1400 MeV give a
consistent picture and imply that F,/F,=5.

As a concluding remark, we wish to point out
that the sum rules, Eq. (48), although a peripheral
part of the scalar-dominance calculation, should
not be overlooked. The significance of coupling-
constant sum rules equals that of the Gell-Mann—
Okubo mass formulas. To our knowledge, only two
systems, the baryon decays 3*, 3™~ 0~3*, have been
studied so far.!* The former is in impressive
agreement with experiment, whereas the latter
still awaits more precise data. The sum rules (48)
would constitute the first practical tests of octet
dominance applied to meson decays.

*Supported in part by the National Science Foundation.
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We present a sum rule for the Z term derived from the assumptions of Bjorken limit, pre-
cocious asymptopia, and finite-mass dispersion relations. We use the commutation rela-
tions of the gluon model as input for a numerical evaluation,

I. INTRODUCTION

The successes of current algebra and partial
conservation of axial-vector current (PCAC)! have
led to the introduction of an underlying SU(3)xSU(3)
symmetry?® for the strong interactions. Mainly be-
cause the pion mass is so anomalously small, it
has been postulated that the SU(2)x SU(2) subgroup
is a much better symmetry than the subgroup SU(3).
In view of certain difficulties encountered in this
“strong PCAC” approach, Brandt and Preparata
recently proposed a “weak PCAC” scheme?® in
which SU(3) is a good symmetry, while the pion-
pole domination of matrix elements of the axial-
vector current divergence (PCAC) is merely a dy-
namical accident.

Thus arises the question of the relative accuracy
of SU(2) and SU(3). In a (3, 3*)+(3*, 3) theory* of
broken SU(3)xSU(3), such a question is decided by
the value of a single parameter ¢, which ranges
from -v2 for perfect SU(2)xSU(2) to 0 for perfect
SU(3). In this framework, the so-called “Z term”
encountered in the Ward identity for pion-nucleon
scattering is proportional to v2 +¢, and should be
very small (of the order of 10 MeV) if strong PCAC
is indeed correct. The actual value of the = term
thus provides a sensitive test for distinguishing be-
tween the two possibilities.

Earlier determinations® of this quantity were in-
conclusive. Recently Cheng and Dashen® perform-
ed an accurate evaluation of the Z term, and ob-
tained the result |Z|=110 MeV. However, their

derivation” makes use of an expansion in €,, the
SU(2)x SU(2)-breaking parameter, and this approxi-
mation might not be good if €, is large, as we now
believe.®

It has been suggested by the SLAC electroproduc-
tion experiments® that asymptotic behavior sets in
quite early (around 2.5 GeV?) for large values of
the photon mass and energy (the phenomenon of
precocious asymptopia). This motivates the use of
finite dispersion relations' in treating current cor-
relation functions. Tests of Callan-Gross sum
rules'! in these experiments favor the gluon model
of hadrons, and a formalism of Reggeized sym-
metry breaking'? has been developed which extracts
from the gluon model excellent numerical predic-
tions of experimental results.

In this paper we use these techniques to derive
and numerically evaluate a sum rule that relates
the Z term to the asymptotic behavior of the cur-
rent correlation function, which is given by cer-
tain commutators via the Bjorken limit.'* We ab-
stract the commutators from the gluon model.

The sum rule is derived in Sec. II, numerically
evaluated in Sec. III, and discussed in Sec. IV. The
Appendix is devoted to some results from the gluon
model.

. DERIVATION OF THE SUM RULE
The so-called ~ term,
16%(x) Z (%) = 8(x,) [8, A £(x), A §(0)],
appears in the Ward identity

1)



