
PHYSICA L REVIEW D VOLUME 4, NUMBER 7 1 OCTOBER 1971

Parton Model with Variable Intermediate-State Parton Mass
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The parton model is modified by allowing the parton mass to change after absorbing the
spacelike photon. Each prescription for the intermediate-state parton mass leads to a model
with a definite scaling variable and to a scale-invariance-breaking factor which describes the
approach to scaling. The model with Bloom et al. 's variable co has the required linear zero
in v+ as Q -0 for fixed ~, and has a scale-invariance-breaking factor which agrees with
experiment for 1&~'~ 12. The prescription that the parton mass must vanish after absorb-
ing the photon leads to the scaling variable cu, which also occurs in the light-cone-singularity
dominance model. Models which allow agreement of the sum rule for the mean squared charge
per parton with experiment are given, as are models which have diffractive behavior for
Q2 near zero.

I. INTRODUCTION

The parton model of Feynman' and of Bjorken
and Paschos' has the virtue of providing a simple
intuitive picture of deep-inelastic electron scat-
tering in which scaling is valid, but the disadvan-
tages of being ad hoc, as well as (1) leading to sum
rules which disagree with experiment, (2) not giv-
ing the required kinematic zero at Q' = 0 in vW„
(3) therefore being exactly scale-invariant with no
statement about the approach to scale invariance,
(4) not giving modified scaling variables' in terms
of which scaling occurs at lower Q', and (5) requir-
ing a rather large contribution from configurations
with large numbers of partons. The ad hoc nature
of the parton model raises the question: Is it worth
while to try to remedy the defects which we have
just listed'' We believe that it is, provided that the
remedy is simple. An improved version of the
model will be useful phenomenologically to sum-
marize the data, and the changes in the model can
provide clues which may be helpful in other, more
fundamental approaches to inelastic electron scat-
tering. The parton model has been modified by in-
creasing the minimum number of partons from
three to four, ' and by introducing transverse mo-
menta. ' We propose to change the model in a dif-
ferent way by altering the model for electron-
parton scattering. We retain the assumption that
the parton scatters like a point object; the intro-
duction of parton structure functions would make
the model too arbitrary. We alter the assumption
that the parton mass before and after the collision
is small (or does not significantly change). This
alteration allows us to remedy the defects listed
above in a simple way. The change is consistent
with the physical picture behind the model. Ac-
cording to the model, the parton mass squared

ranges from zero to the proton mass squared.
Since no particles with such a continuous mass
distribution are known, we view the mass squared
which occurs in the model as an effective mass
squared for excitations (partons) in the nucleon,
rather than as the mass squared of a free, on-shell
particle. With this view, we can allow the mass
squared of the parton to change after absorbing the
virtual photon, so that a parton with fraction x; of
the proton energy-momentum P (in the infinite-
momentum frame) need not retain its mass squared
x M', but can have a mass squared

(x;P+ q)' = x M'+ 2x; Mv —Q',

where Mv =P ~ q, and q'= -Q' is the square of the
momentum transfer carried by the photon, pre-
scribed in some different way. Since the matrix
element relevant to inelastic electron scattering
has real intermediate states and is an integral
over absorptive electron-parton scattering matrix
elements, we prefer the parton intermediate states
to have positive energy (i.e., to have positive or
zero mass squared). However, in view of the fact
that we consider partons to be excitations in the
nucleon, we will also allow the parton mass
squared to be negative in intermediate states.

The experimental plot' of lines of constant vW,
("vW, contours, " for short) indicates three regimes
in deep-inelastic electron scattering: (1) a regime
for 1 «u & 5 (u& = 2Mv/Q') in which the vW, contours
intercept the 2Mv axis at about -M' and the appro-
priate scaling variable is

&u' = (2Mv+M')/Q' or &u = M[(v'+ Q')' '+ v]/Q',

(2) a plateau for 5 & ~ &10 in which vW, is a con-
stant, and (3) a regime for 10 & &u in which the vW,
contours are almost parallel to the 2Mv axis and
intercept it, if at all, at large negative values of
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the order of -20M'. This last regime can be con-
sidered almost a diffractive regime, since there
the vW,

' contours are almost lines of constant Q'.
In See. II, we calculate the structure functions

for scattering of electrons off point partons in
lowest order allowing change of mass of the parton
after absorbing the virtual photon, and recalculate
the parton-model structure functions in this con-
text. In Sec. III, we modify the parton model to
generate Bloom et al. 's scaling variable' ~', and
then consider the case in which the mass squared
of the parton goes to zero after absorbing the vir-
tual photon. We find a new scaling variable ~
which interpolates between the Bjorken-Paschos
variable (for (d = u- ~) and Bloom et al. 's variable
(for (d=(d'=I). In both cases, the structure func-
tions are no longer exactly scale-invariant and vW,

has a zero at Q'=0. Scaling holds about equally
well in terms of (d and (O'. The model using co'

gives a good description of the approach to scaling.
The sum rules for the scaling-limit structure func-
tions for these cases are the same as in the origi-
nal model. We point out that the light-cone-singu-
larity dominance model leads to the scaling vari-
able ~. The models of Sec. III are relevant for the
small-v regime 1 ~+&5. In Sec. IV, we consider
other constraints on the mass squared of the par-
tons, and find examples in which the sum rules
can be altered to give better agreement with exper-
irnent, and contours of constant vW, ean be chosen
to agree with data in the large-cu regime 10 & (d.
We conclude, in Sec. V, with some comments.

II. PARTON MODEL WITH VARIABLE
PARTON MASS SQUARED

To compute the electron-point parton scattering
structure functions, we consider the absorptive
part of the forward Compton scattering amplitude
in lowest order for the process

y+parton - parton' - y+parton

(see Fig. I). In order to calculate the relevant ma-
trix element,

(parton
~ j„~parton') (parton'

~ j„~parton),

we need a conserved current which produces tran-
sitions between partons of different masses. We
expect the leading terms in the transition current
to have the form i4*8ug —2e4*A "Q+ H. c. for
spin-0 partons and 4y" P+H.c. for spin--,' partons,
where P (@) is a free spin-0 field for the parton
(parton'} satisfying

q2 Q2 q2 Q2

(xtP+q)2= M

(xP) =x; M (xP) =x; M

FIG. 1. Kinematics of electron-parton scattering.

For SR+ m, these leading terms are not conserved.
The standard prescription for constructing the cur-
rent from the free-field equations augmented by
minimal electromagnetic coupling leads to

ju (x) = tC) *(x)&a(t) (x) —2e(I) *(x)A "(x)(t) (x)
—(I' —m')a"f 8(*—,v)4 *(y )( (y)d 'y ~ H.c.

for the spin-0 case, and

j"(x) = e(x)z"(t)(x) —t(II —m) 5,"

x D x —y 4 y P y d'y+H. c.

for the spin--, case, where OD(x) = 5(x). These
currents are exa.ctly conserved, ~u ju =0, but the
terms proportional to SR —m violate spacelike com-
mutativity, since local polynomials in ordinary
free fields ean have at most a finite order of differ-
entiation, which is not the case for the terms with
D.' To discuss gauge invariance, consider the La-
grangian density

o ma&&ef + ~0 EM + ej"Au+ eJ"Au y (5)

W, (v, Q') =0,

W, (v, Q') = 2M 5(M'+ 2Mv —Q' -II2);
for spin- & partons,

(6a)

(6b)

with 2, ,„„the free Lagrangian for the fields Q
and 4 for spin 0 or g and 4 for spin 2, and J"
equal to ip*b" p+i4*8uC for spin 0 or py"if+0 y"0
for spin —,'. Under combined gauge transformations
of the first and second kind, g(x) is not invariant,
because of the nonlocal terms in j"; however,
JZ(x)d'x is invariant, because j" is conserved,
and thus the theory is gauge-invariant. The cal-
culation of the contribution of the transition cur-
rent to the structure functions in lowest order is
straightforward. For spin-0 partons whose mass
changes from M to SR,

(a+m')y =O, (V+ 6R')C =0,
and )t (4 }is a free spin- —, field satisfying

W, (v, Q') = v5(M'+ 2Mv —Q' —II'),
W2(v, Q') =2M5(M +2Mv —Q'-5)I').

(7a)

(Vb)

(fg- m)/=0, (if( K)4 =0. - The contribution to the nucleon structure functions
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from a parton of spin 0 or spin & with charge Q;
and fractional linear momentum x; before scatter-
ing is obtained from Eqs. (6) and (7) by multiplying

by Q and replacing M by x;M. The nucleon struc-
ture function vW,

' is the same for spin-0 and spin-&
partons,

1

}X(,Q')=gP(N) QQ f dxf (*)2xM 2(*'M' 2 M —Q'-M(');
E s ~ 0

(8)

S', vanishes for spin-0 partons, and for spin-& partons,

1

W)(v, Q ) =gP(N) gQ dx fff(x)vf)(x'M'y2xMv —Q'-%'),
i N 0

where P(N) is the probability that there are N par-
tons in the nucleon g„P(N) =1, f„(x„..., x„) is the
probability of finding partons with fractional linear
momenta x, , ..., x„ in the N-parton configuration,

0
I

~ ~ ~ ~
~
~

~
~ ~ I t I ~ ~ j ~

~~ t

1 N

dx, dx 2 Q*, —1)f ( , . . ., **),=1,

and

N

f (x}= d*, , . . ., d*„d *~ P*;—1)f„(*x,, . . ., x„),,
0 2

with

1

f„(x)dx = 1 .
0

Note that we require that only the transition cur-
rent contribute to the structure functions, and we
impose ad Roc the change in mass of the partons,
without giving a dynamical basis for it.

The usual sum rule for the mean squared charge
per parton, '

t F,(x)dx=+P(X) (~2Q} )",
0

where

E,(x)=,™vW'Q(v, Q ), x=Q'/2Mv=1/(2)
Q ~ 2)o 2g fixed

follows from the symmetry and normalization of
f„(x„..., x„). For a different scaling variable this
sum rule can be modified.

In Secs. III and IV, we will consider various pre-
scriptions for Sg'.

III. MODELS WITH SPACELIKE AND LIGHTLIKE
INTERMEDIATE - STATE PARTONS

Bloom et al.' have pointed out that scaling occurs
at lower Q' using a scaling variable (d',

2Mv+M' s M' 2Mv= 1+
QQ

--(u+

than it does using the Bjorken-Paschos variable ~.
If we replace the usual mass constraint by the con-

straint

x"M' + 2x'Mv —Q' = Xx"M',

and determine A. by the condition that it generate
the scaling variable (d'= 1/x', we find i.= -s/Q'& 0.
Thus the scaling variable of Bloom et al. requires
spacelike intermediate-state partons. Nonetheless,
the model with the scaling variable ~' has some
interesting properties. The structure function
vR', is

(11)
with x' = 1/(2) ' = Q'/(2Mv+ MQ). The scale-invari-
ance-breaking factor

Q (o' —M~ v

Q(d +M v+M

in (11) approaches unity for large Q' and fixed v'.
In Fig. 2 we compare v%', and B 'vS', vs Q' for six
ranges of u&' using SLAC data. "We find that
B 'vS', is less Q'-dependent in each range, and al-
most Q'-independent for au' ~ 12. Thus B gives the
observed scale-invariance breaking for ~' ~ 12.
Note that

QQ- 0, (2) fixed; (12)

so in this model, vW, (v, Q') has the required linear
zero as Q'- 0 for fixed e, but not in general. For
Q'- ~ at fixed x, the usual parton-model result
for vW' is recovered.

The closest we can come with positive-energy
intermediate-state partons to the variable co' is to
choose Sg'=0, i.e.,

x'M'+ 2xMv —Q' = 0 .
This choice leads to x= [(v'+ Q')' ' —v]/M, and the
scaling variable'
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Fig. 2. (Continued on follouing page. )

(d= = 2[(V +Q ) +V].
x (13)

Thus, vW, is not exactly scale-invariant in this
model and, assuming

Lines of constant 1 &(d «are straight lines in the
2MV-Q' plane which interpolate between lines of
constant (d' and constant v as + varies from one to
infinity (see Fig. 3). In this model,

lim lim vS', &0
Q) ~ 00 Q2~ co

has a (Q')' ' zero as Q'- 0 for fixed (v, but becomes
scale-invariant in the Q'- ~ limit. The approach
to scaling in terms of the variable e is from below;
however, quantitatively, the nonscaling factor is
effectively equal to unity in the deep-inelastic re-
gion. Plots of vW, vs (d, &', and (d for all of the
deep-inelastic SLAC data show that scaling is com-
parably good in ~ and ~', and better in either co or
(d' than in (d.

The sum rules for vW, in the scaling limit are
the same for both models in this section as in the
usual case.

The assumption that the leading operator-product

P(P)(Q(( ) f ( )—
Q -0 at fixed (d

Q'-~ at fixed (d.

'(P.(" (P)=I P((()(I ((;*) f(—.
)

. ((4).
S
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FIG. 2. Approach to scaling: Q dependence of v%2 (left) andB vg& (right) for (a) 3~~™4,(b) 4~~' ~6, (c) 8 ~w'
~ ]2, (d) ].2 & (c)' ~ ].8, (e) 16 & co' & 24, and (f) 24~(d' ~ 36. SLAC data from Ref. 8 and the first article of Ref. 3
were used. B = (Q co'-M )/(Q co'+M ) from the model using the scaling variable of Bloom ef al. Note the suppressed
zeros for both axes of these graphs.

light-cone singularity dominates deep-inelastic
electron scattering leads to scaling. ' We point out
here that the proper scaling variable which follows
from light-cone dominance is e rather than e. We
show this for a simple example using the light-
cone-dominance assumptions, without giving the
specific details relevant to the structure functions
W, and t/%'„since these details are given in the
references cited. Consider an amplitude

(17)

with P'= M'. Working in the nucleon rest frame,
P = (MI 6), introducing"

E(x', p x)=(x') "P (x', P x),

and using (v'+ Q') '"= v + M/&3,

I(c2 p) t p p2 I/2 ~ p2 I/2
M(P ~ q, Q')= . , „, dccdP ' I

expc v —+, -a +-
cx „M )if

(I*
)

* M(I' (18)
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Q2ik
IC LIMIT

IV. OTHER MODELS

Q2
i

GENERIC co

2Mv

IC LIMIT

The variables &u' and &u approach &u for Q' —~
with co fixed. The associated non-scale-invariant
factors approach unity in the same limit, and the
sum rules of the usual parton model are unmodified.
This situation is general: Whenever a scaling vari-
able co- ~, and the nonscaling factor approaches
unity, in the usual scaling limit, the sum rules will
remain the same. To change these two limiting be-
haviors requires a mass-squared constraint in
which 3)I' grows when 2Mv or Q'- ~.

A. Model with Modified Sum Rules

GENERIC ~' Let 3g =nQ +x M . Then the new scaling vari-
able is

(b)

2Mv

ASTIC LIMIT

1 1
Ca)= = (d-

x 1+a

The sum rule (10) becomes

1 (j+a) '
F,(x)dx = (1+n) F,(x)dx

0 0

(20)

GENERIC ~

2Mv

(c)

FIG. 3. Lines of constant (a) ~ (b) ~', and (c) &
in the 2M'-Q' plane.

which is still exact. The light-cone-dominance
technique for the limit v-~, ~ fixed, avoids the
expansion of (v'+Q')'" that is necessary using fixed

For v-~, ro fixed, and assuming light-cone
dominance, i.e., dominance of the a " singularity,
we have the following replacements: F(n, P)
—F(0, P), the first exponential oscillates to zero,
the second exponential approaches -exp[i(vnm/2P
—P/(o)], and

const v" '
M(p @2) const v

d F(0~ p) gBgy
( „g)

v+M co

(19)
Thus v' "M is v~/(M +v&o) times a function of ~
only plus terms of order v ', and the scale-invari-
ance-breaking factor which occurs here is similar
to the factor [Eq. (14)] that occurs in the 3g' = 0 ver-
sion of the parton model.

=~F(~)(~~'& . (21)
N

The loss of the interval (1+n) '& x& 1 does not de-
crease the sum rule significantly, since F,(x) is
small for x- 1. Thus choice of a & 0 allows the sum
rule to be increased. Using data in the deep-inelas-
tic region, we estimate that n =1.7 produces the
quark-model value —,

' for the sum rule, and z =0.33
gives the infinite quark-antiquark sea value ~2.

Since increasing a decreases the range of integra-
tion, the left-hand side of (21) cannot be made arbi-
trarily large. We find that the left-hand side of
(21) attains a maximum value of 0.356 for n =5.7.
Similar estimates using deep-inelastic neutron data
lead to n =O.S2 for the quark-model value ~2 for the
sum rule. The maximum value is 0.32 for e a 9.
The quark-model values for the sum rules for pro-
ton and neutron can be fit fairly well simultaneously
with n =1.26 which gives 0.31 and 0.25 for the pro-
ton and neutron sum rules to be compared with the
quark-model values 3 and ~, respectively.

B. Models with Special Behavior near Q2 = 0

Here we give models for the third regime men-
tioned in the Introduction: (1) a model in which the
vW, contours are parallel to the 2Mv axis; and (2)
a model with vW, contours whose intercepts on the
2Mv axis go to minus infinity for Q'- 0. We will
see that these two models allow nonzero vW, for
large ~ without contributions from N-parton distri-
butions for large N.
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1. Model saith v@z Contours Dependent on Q
Only for Small Q

with x given by (28). The limits of interest are

Let %' = (a,x+a2)Q +x2Mv+(x'+yx)M'. Then
the new scaling variable is

1 aiQ'+ yM'
x (1 +a, )Q

(22) 2(p(f (0»
x~0 N j N

(31)

Choose y(0, e, + 0. The structure function

w, =Q p(N((I «')

„2(1+a2)Q'Mv (I +a, )Q'

I,(('+YM'I' " lu, Q'+~M'I)

has the following limits:
(23}

F.( l=g&*(~l( IQ, ') f,(( () (

(24)

limF, (x) diverges . (25)

Thus the zero in F, at &=0 has been removed and
even converted to a divergence without requiring
contributions from large ¹ Associated with this
divergence is the divergence of

lim vS~ .
Q2 f1xed

The zero at Q =0 is present, since

lim vW, (v, Q ) = 0 .
Q ~0;xfixed

(26)

(27)

2. Model uith vs Contours Parallel to the
ZMv Axis in the Limit Q -0

Let 3}I'=aQ'+(px~+x)2Mv+(X +yx}M'. Then

Mx = —— —— [(yM')' —4p(1+ a )2Mv Q']'" .
2P 2Mv 2P 2Mv

(28)
The intercept of the vW, contours on the 2Mv axis
is (-yM*}/(px)--~, x-0, if y/p)0. The variable
x~ 0 if p(1+a)&0. Thus, to satisfy these two con-
ditions, and increase the sum rule (21}, we require
y(0, P(0, and a &0. The structure function is

vW2(v, Q')= g P(N) P Q,2( 2xMv
N

x [(yM } —4p(1+a)2MvQ ]
i' f„(x),

(29)

which again can be nonvanishing, but in this case
finite, without contributions from large N. The
limit v- ~, Q2 fixed of vW2(v, Q') is also finite and
nonvanishing without contributions from large N.
Again the zero at Q'=0 is present.

V. COMMENTS

The models using Bloom et al. 's scaling variable
~ ' and the ' = 0 scaling variable (d (Sec. III) im-
prove the usual parton model in the region 1 & co & 5
giving a zero in vW, at Q = 0 and vW, contours in
agreement with experiment. The model with (d has
some theoretical justification from the light-cone-
singularity analysis; the model with (d' leads to a
good description of the approach to scaling. The
model (which we can call asymptotically diffrac-
tive) with contours asymptotically parallel to the
2Mv axis for Q'-0 (Sec. IVB 2) allows improve-
ment of the sum rule for the mean squared parton
charge, gives the kinematic zero in vR', at Q'=0,
and avoids the necessity of contributions from N-
parton configurations for large N in order to pro-
duce a nonvanishing small-x limit of F,(x)

These explorations with the parton model suggest,
in general, that the precise choice of scaling vari-
able can have a far-reaching effect on the predic-
tions of the model, affecting the five properties we
listed in the Introduction, and, in particular, that
the light-cone-singularity analysis is most relevant
in the domain 1 s (d & 5 where the variable (d gives
vR', contours which agree with experiment, and an
asymptotically diffractive model is more relevant
for the large-co domain. It remains to explore
these suggestions in the context of more basic ap-
proaches to inelastic electron scattering, in par-
ticular, to justify the empirically verified scale-
invariance breaking associated with the variable
~l
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