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scription III is consistent with a flat Z p cross
section which is roughly equal to the Z p cross
section; the other two prescriptions seem to imply
a slowly rising Z p cross section roughly —,

' in mag-
nitude of the Z'p cross section in the same momen-
tum range. The only data consist of a few events
at very low energy" and do not really confront the
sum rules. Flat baryon-baryon cross sections are
predicted by exchange-degeneracy models"; and

perhaps one intuitively feels that isospin would

lead to Z p and Z'p cross sections nearly equal
at high energies. But a true test must await the

hyperon-beam experiments. It is clear that even

rough data on the Z p cross section would provide
a test of prescription III versus I and II.
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Assuming the chiral SW(3) model, exact inequalities for the K&& scalar form factor D(t)
and its derivatives have been studied. We can sharpen our inequalities considerably if we
take into account the soft-pion theorem. These inequalities are stringent enough to test the
validity of the chiral SW(3) theory.

I. INTRODUCTION AND SUMMARY OF
PRINCIPAL RESULTS

The purpose of this paper is to study further
applications of the exact inequality which was
proved elsewhere' for the K» problem, assuming
the validity of the chiral SW(3) modei2 of Gell-
Mann, Oakes, and Renner and of Glashow and
Weinberg (hereafter referred to as GMORGW). ln
particular, we estimate upper bounds for higher-
order derivatives of the K„scalar form factor
D(t) (see below) and we discuss in some detail con-
sequences of the soft-pion theorem. We find that

our inequality is stringent enough to be barely sat-
isfied by the present experimental data, and we
suggest a simple form for D(t).

As usual, we define the standard E» form factor
f, (t) by

( '(P')I ~' ')(o)If''(P)&

=- (4p,p,'~') ' ' (-')' '[(p+ p')„f, (t)

+(p- p')„f (t)1,

t=- (p- p')'. (l.l)
We are especially interested in the scalar form
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factor D(t) given by

D(t) = (m»'- m, '}f, (t)+ tf (t) . (1.2)

standard vector and axial-vector currents. Then,
by means of the Kamefuchi-Umezawa-Lehmann-
Kallen representation (hereafter KULK), we have

Moreover, let us set
As3 = k m' f.'+ 5.

2
A4~ =

» m» f» + 5» ~

(1.13)

f»/f, f, (0) =1.28 . (1.5)

In particular, this inequality independent of the
value of p gives

f f.
1.3

A = m, 'D'(0)/D(0) =««., + f, m, '(m ' —m, ') ',
p= —,m, 'D "(0)/D(0) =&, + ««. $m, '(m»' —m, ') '

Then, we can prove the following inequality:

iA, —0.018i'+
i
86.5 p- 3.55A, +0.011''

&([3.13 —0 67/f~(.0}] —Ijx1.32 x10

(1.4)

where the numerical estimate of the right-hand
side depends on the experimental value

where 5, and 5~ are the non-negative contributions
of multimeson intermediate states to A» and A4„
respectively.

Ordinarily, we neglect 6„and 5E. However, for
our purpose it is enough to assume a weaker an-
satz

(1.14)

Then, for the GMORGW model, we can prove

0 & V„&—,'(m»f» —m, f,)' .
Equation (1.15) is our only essential assumption.
Our method is based on a considerationof the Hil-
bert space 0' which consists of all analytic func-
tions inside the unit circle ~» ~

& 1 with a suitable
definition of the inner product.

-0.09S «]+ 12.3x, «0.54 (1.6) II. INEQUALITY FOR Kl s PARAMETERS

D(5) f»
(0)

=
(0)

[1+o(m..')],
& =m~' —m,

In that case, we obtain a stringent bound

(1.7}

for f, (0} in the range f, (0}& 1.0. We can improve
this estimate considerably if we assume the valid-
ity of the soft-pion theorem'

Before going into details, it is convenient to
state some mathematical preliminaries. Let D(])
be a real analytic function of the complex variable
$ with a cut on the real axis at t, «$ «~. Suppose
moreover that for a non-negative weight function
k(g) defined on the cut t, & (&~, the integral

(2.1)
0.062 «g+ 12.3 A. «0.234 . (1 8)

is given. The reality condition for D(F) implies
These bounds are barely satisfied at the lower end
by the present world average value:

]+12.3A., =- 0.29+0.24 .
On the basis of this analysis, we suggest a simple
approximate form of D(t) given by

D(t)= const[1+(t, t)' '(t, t,)-' ']— —

(1.10}
where to and t, are

t, =(m, + m. )', t, =(m, -m.)'
The only essential assumption used in the deriva-

tion of our inequality Eq. (1.4) is the following:
Let us set

A~a=i d x 0 (8&A&+ x, 8„A,~ 0 + 0
(1.12)

V„,= t d'»(0~(s„V„' «(»}, s„V„"'(0)),~0),

where Vt «(x) and A&«(») (a= 1, . . . , 8) are the

(2.3)

where h„(t) is a linear combination of D (t) given
by the form

h„(t) = Q y„„(t)(t —t)" D(t) . (2.4)

In the above, y„(t) (n ~ m) and A are calculable in
terms of the weight function k($) as follows: First,
define a function w(t«) (0 & 8 & 2v) by

(2.2)

in the cut plane; therefore, the path of i'ntegration
in Eq. (2.1) can be taken along either the upper or
the lower cut. Now, we ask whether we can give
some upper bounds for the function D(t) and its de-
rivatives below the threshold t & t, . The answer is
affirmative, as has been shown in (I). As a matter
of fact, we can prove a stronger Parseval equality
of the form
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t=t, +(t, t—)cot'(-,'e) .
(2.5)

where t, and t, are given by (1.11). The reason for
this choice is as follows. If we set

~(q*) =-,'i]I d'~e' ~-~'

Hereafter, we denote by t a fixed real point below

the cut, i.e., t &tO, unless otherwise stated. When

we set
f' 27l

b„=—' de e "' 1ngr(e)2' 0
(2.6)

for n equal to a natural non-negative integer, then
we can calculate A and y„(up to n, m =3) to be

(-g/ )

ZOO ~ +11 F10 1 ~22

y„=-4(b, +2), y„=b, +-,'(b, )',
ys2= (bx' »

y&&
= -2[2+ 2b& + (b& + 2) ],

y30 = b~+ b,b2+ z(b, )

(2.7)

b(t) =& Q (t- t,)" (t, - t.) . (2.8)

The derivation of these formulas will be given in
the Appendix.

For many physical applications, b(() has the sim-
ple form

x (ol(s„v„"-'"(»),e, v„" '"(y)), lo},

(2.13)

then the KULK representation gives us

~(q'}=~t dt (2.14}

f' (~(0) = v„, (2.16)

if we choose the form (2.12); this was first noted
by Li and Pagels. ' Hence from Eqs. (2.11) and

(2.9}, we find
N

Jib„(t)i' f'A' K', (2.17)
n=O

where the spectral weight function p(t) is expressed
as

p( q') =-,'(2&)'gi&Ole„V„"-"'(0)ln&l'5'(p„- q) .

(2.15}
Because of positivity, we can omit all intermediate
states other than v-K states in Eq. (2.15), to find
an inequality

Then, we find (see Appendix)

A = [4C(t, —t)] 'i' g (t, —t) 'i'(1+ pi)-',

b, =2 g ~,(1+p,)-'+2,

where K is given by

K=4[—'vd, (0}]'i'(1+P,) (1+P,) 'i'

P
—t &i2(f t}-&i2

(2.18)

b, =2 Qo, p,.(1+p,.) '+-,', (2.9)

b, =-', P a,.(1+3P,')(1+ P, ) '+-,',
where Pj is defined by

P, = (f, —t,)'"(t,—t) '" . (2.10)

In actual applications, we use only the weaker
Bessel inequality

Q ia„(t)i'(f*A' (2.11)
n=O

b($)=(3/64»)g '(g- to)' '($ —t,)' ', (2.12)

where N is an arbitrary non-negative integer.
Equation (2.11) is obviously a special case of
Eq. (2.3). As noted before, ' the case fq =0 gives
immediately the result obtained originally by
Neiman. 4

Now, let us apply this formula to the K„problem.
We identify D(() with the scalar form factor defined
in Eq. (1.2). Furthermore, we choose

We remark that if the m-K intermediate state dom-
inates the spectral weight function p(t) of (2.15},
then we should have the equality IA =K in Eq.
(2.17).

Now we evaluate d, (0) in the following model-in-
dependent way. In the GMORGW model, we must
have an inequality, '

[&(0)]'"=(v )"(I(A )'"-(A )'"I (219)

as was noted in (1}. Hence, if we express A„and
A«as in Eq. (1.13) and if we assume the validity
of Eq. (1.14), we find

[d, (0}]'i' ( (m» f»- m, f,)J~ (2.20)

independently of the explicit values of 6 and 5~.
Notice that the inequality 5 ) 5~ has been suggested
by Olshansky and Kangv and by Acharya' from the
consideration of asymptotic symmetry. At any
rate, we expect both 5, and 5~ to be relatively
small, ~ and Eq. (2.20) will be approximately valid
even if the above arguments should fail.

For comparison, we mention an estimate for
a(0) given elsewhere. "
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[A(0}j' ' =1.01m.j., f,(0}= 0.85 . (2.21} used the simplifying notation:

Q lb„(t)l'- R',
n=0

where A is given by

(2.22)

R =4[(6/v)(l+ p, )] '~'(I+ p2)'(m f -m, f, ) .

This value is one-half smaller than that of Eq.
(2.20). However, since several calculations"" "
have already been completed on the basis of Eq.
(2.21), we will not consider this estimate unless
otherwise so stated. At any rate, we believe that
Eq. (2. 20) is likely to give an over-estimate for
A(0).

From Eqs. (2.17) and (2.20), we find

X=-.'m. '(m + m,)-',
C, = b, X=0.018,

C~ = (2p, + 2)(1+p, ) X =0.011,

b, = 1+(1+P,) '=1.55 .

(2.30)

Inserting numerical values of Qy Q2 and X,
Eq. (2.29) reduces to Eq. (1.4) of the Introduction.
Similarly, for values of f, (0) ~ 1.0, we find from
Eq. (2.28)

-0.008 & Ao & 0.044 (2.31)

which gives the estimate Eq. (1.6). The best world
average value" for A, is given by

(2.23)
Ao = -0.024 *0.02 (2.32}

We remark that in deriving Eq. (2.22} we made use
of several estimates, various contributions being
dropped in each step. First, we omitted contribu-
tions top„ltt„(t)l' for n~ N+1 (see Eq. 2.3}; sec-
ond, we used the inequality IA ~ K (see Eq. 2.16);
finally, we exploited K ~R (see Eq. 2.20). There-
fore, there is ample reason to believe that the
upper bound R' in Eq. (2.22) is an over-estimate.
Nevertheless, we shall see shortly that Eq. (2.22)
gives a very stringent inequality.

First, let us consider the case N=0 and set t= 0.
Then Eq. (2.22) gives us

so that our inequality Eq. (2.31) is roughly satis-
fied, near the lower bound. We may remark that,
if we had used the stronger estimate Eq. (2.21),
we would have obtained

0.014 & Ao & 0.022 (2.33}

which is outside the experimental error of
Eq. (2.32). At any rate, these considerations, to-
gether with another estimate to be given in Sec.
III, strongly suggest A, =0. Then Eq. (2.29) leads
to

ff,(o}l ~ M, (2.24) -3.5x10 4 ~ p~0.5x10-4 . (2.34)

p, =(4m»m, )'t'(m»+ m,) ' . (2.25}

Using the experimental value f»/f, f,(0) = 1.28, we
find the numerical estimate

where ~is computed to be

Af =16[(6/v)(1+ p, )]
't (m»' —m, ) '(m»f» —m, f ),

-0.41 ~ $ ~ 0.21,
-0.060 &y g &-0.055 .

(2.35)

Chien et g/. "find A.,=0.026+ 0.006 and o.,=0.0045
~0.0015 from K„analysis. If these values are
accepted, then Eq. (2.34) together with A, =0 gives
us

M =3.13f,(0}-0.67, (2.26}
For $ =-0.4, this gives a very large value for A. :

0.15 & A, & 0.14 .
where we assumed f,(0) & 0 in conformity with the
SU(3) limit value of f,(0)=1. Then, Eqs. (2.24) and
(2.26) give the lower bound

f,(0}o 0. 31, (2.27)

which is not so good since the Ademollo-Gatto the-
orem" leads us to expect f,(0) = 1.

Next, let us consider the cases X=I and N=2.
Setting t =0, Eq. (2.22) gives us

I Aa —c, I- x[(M!f,(o)}»—I]'t', (2.28)

IA, —C, I'+ l(p/X) —(2+ b,)A, +C, I'

& x'[(le/f, (0)}'-1],
(2.29)

where A, and p are defined by Eq. (1.3) and we have

So far we have investigated the case I;=0. Now,
we shall proceed to a consideration of the inequal-
ities for tg0. First, at the soft-pion point t=5
= m»' —m, ', Eq. (2.22) with N=O is easily seen'
to be satisfied by Eq. (2.27), and we will not dis-
cuss it further. Since the left-hand side of
Eq. (2.22) is a quadratic form in D "i(t) [see
Eq. (2.4)], we can minimize the expression with
respect to unwanted variables. For example, con-
sider the case N= 2 and take the minimum over
variation of D'(t). In this way, we find

[I+(b. +»']ID(t)l" I8(t. —t)'D "(t)+r.OD(t)I'-
I'a'[I+ (b, + 2)'],

b, (b, + 2). (2.36—)



2024 S. OKUBO AND I. SHIH

From Eq. (2.36}we can estimate

-0.011 & m, D"(0) &0.037

for f,(0) =0.9, while we find

-0.012 & m D "(0) & 0.042

for f,(0) =1.0 .
Also, from Eq. (2.37), we estimate

m, 'Ma ID"(t)I-O.LL5 or 0.132,
ltl «t 1

m, 'MaxlD "(t)l 0.375 or 0.430

(2.38a)

(2.38b)

(2.39)

for values of f,(0)=0.9 and 1.0, respectively.
Writing

D(t) =D(o)+D'(o)t+ ~, ,

we have of course

1~ii - (1/2t) Max ID "(t)t 'I

(2.40)

Therefore, the error in neglecting the quadratic
term e, is bounded by

Ie, l/D(0) &0.27 for ltl &t, ,

lf)l/D(0) 2.64 for It I
& 5

(2.41)

for values of f,(0) =0.9-1.0. This implies that the
neglect of the quadratic terms even in the physical
region ng,

' ~t «t, could cause a maximum error
of 2'F/&. But, for the test of the soft-pion theorem
at t= 5, the linear approximation could cause a
very large error of more than 200%. The possible
importance of the quadratic term in testing the
soft-pion theorem Eq. (1.7) has been emphasized
by many authors. ""'4'6

Similarly we can estimate the third-order de-
rivative. Setting

&1=&11&22 &33

K.=(r»r»} +(r»r») +(r»r» r.mrmi), -(2.42}

Furthermore, we can minimize the left-hand side
of this expression by varying D(t); we thus obtain

8(t, —t)'ID"(t)l-fA[L+(k, +2}'+(r„)']'".

(2.37)

0.021, Itl- t,m. 'M~ID"(t)I= 0.108, ltl-5 .
The bound Eq. (2.44) for D"(0) can be quite re-
strictive as is the case in the model of Mathur and
Yang. " Expanding

(2.45)

D(t) =D(o)+D (o)t+ ,'D--(o)t'+ ~, ,
we calculate

le, l/D(0) & 11% for

I~, I/D(o) -3oo% «r

(2.46)

(2.47)

t = —k' . (2.48)

Then, the standard positivity argument gives us
for t& t,

p' (t) ~ (1/128 v')t (t- to) '(t- t, )' If,(t)l
(2.49}

when we consider only z-K intermediate-state con-
tributions to ph~(t).

Now, we identify D($) with f,($) and choose k(t')
to be

Then, we find

1f' =- dt k(t)lf, (g)l'
7l CO

where a„ is given by

(2.51)

Hence we conclude that even the inclusion of the
quadratic term will not improve the error at all if
we neglect the effects of third- and higher-order
terms. This strongly suggests that the perturba-
tion expansion of D(t) in terms of t is a very
slowly converging one, at least near the soft-pion
point t=6.

Up to now, we have considered only the spin-
zero part D(t). We shall briefly consider the spin-
one part f,(t). First, let us set

[5„„+(1/t)k„k, ]p"'(t)+ (1/t)k„k„p~ ~(t)

= 2(2v)'Q(olv „' '~(0)ln)(nlv, '"'~(0)lo) 5'(p„—k),

+3 Yll +22 Y30 ~11~32 Y20 Y22 Y10 731 Y32 721 Ylp

np(1) (~)
tp

(2.52)

we obtain

K,ID(t)l'+ IZ;(t. —t)'D "(t)+K~(t)l*- K, f'A*,

(to- t) I KJ I D "'(t)I & [Km+ (K }] '™IA .
From these, we find for f,(0}=0.9

-0.0016 & m 'D"'(0) & 0.0046

as well as

(2.43)

(2.44)

Unfortunately, we have no exact inequality for ~„.
We take the view that the ~-dominance approxi-
mation for L„will be reasonable although it may
not be a good one for three-point vertex functions.
Then, if we set

(olv„" "&(0}IK+'(q))= (2q,v)-"' vFg~, ~„(q),
(2.53)

we estimate
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a„~g,n*(mzn) '" .

Moreover, assuming'7 the validity of the Weinberg
sum rule as well as the Kawarabayashi-Suzuki-
Riazuddin-Fayyazuddin formula, we find

Ig(e")I = p(8)

under suitable conditions. Now setting

H(z) =g(z) [F(z)]'

(3.4)

(3.5)

g, n /m, * =gp /m, =f. .21 2 21 2 2

Therefore, we obtain

( n ) (n 1) (2.54 )

On the basis of this estimate together with the gen-
eral formulas, we find

-0.039 & m, 'f, '(0) &0.115,
-0.007 & m, ' f,"(0}& 0.013

for the case n=1, while we have

-0.14 & m, f+'(0) & 0.174,
-0.013 & m„ f "(0) & 0.015

(2.55a)

(2.55b)

for n =3. Our estimate of A., given by Eq. (2.55) is
not precise enough. We note that Mathur" derived
a better bound

m. 'f, '(0) &, 0.06

by taking a more elaborate choice of k(().

III. USE OF SOFT - PION THEOREM

(2.56)

As we have seen in Sec. II, the testing of the
soft-pion theorem by means of the linear extrapola-
tion of D(f) can be very dangerous and untrust-
worthy. Here, we shall utilize the theorem as in-
put information. In principle, this is new informa-
tion, and hence it will improve the bound of Sec.
II. Mathematically, we want to find a bound for
D(t) and its derivatives using not only the integral
I but also D(6} (5 = mz' —m, ') as known quantities.
In this section, we shall report a new bound which
exploits the soft-pion theorem Eq. (1.7). Although
it may not be the best inequality we can derive, we
do find that the results become more stringent as
we expected.

To this end, it is convenient to map the cut g

plane onto the inside of a unit circle IzI&1 by the
following conformal transformation (see Appendix):

and applying the Cauchy theorems to H(z), we find

z 2" 1
H(z) —H(O) = — de, , H(e") .

2g 0 e Z

Now, choosing z to be real, we find

IH(z) —H(o)I

(3.6)

p(8) = (1+z' —2z cos 8)' '/w(e) (3 8)

for a fixed real value of z, Eq. (3.7) is rewritten
as

(3 9)Ig(.)[F(.)] g(0}[F(0)] I I.If ,

where I2 is the same quantity as that defined in
Sec. 11, i.e. (see Appendix),

=1I = — d8 n)(8)IF(e' }I'
27J p

OO

dt k(t)ID(t)I' .
7T tp

(3.10)

Again, if we choose k($} in the form of Eq. (2.8),
then we compute

1+z n. 1+z
g(z)=4C(t, t), -g(t, —t) ', + p,j=l

(3.11)
as we shall prove in the Appendix.

For the A» problem we are considering, k(t')
has the explicit form Eq. (2.12); therefore, we
have

g(z) =
1 (1+P,)G(z),

(3.12)

)2n'
de[1+ z' —2z cose] '/' p(e)(F(e")I'

2v Jn

(3.7}

where we have used Eq. (3.4}. Choosing p(8} to be

(5- t.)'"=f(f.- t)'"1 («t, ) . (3 1) p
—(t t }1/2t 1/2

In terms of this transformation, let us set

F(z) ~D(t') . (3.2)

e~e+ zg(*)=enn ) na „)p(8] .

Then, it is known" that g(z) satisfies

(3 3)

Moreover, for a non-negative function p(8)
(0 & 8 & 2v) to be determined shortly, let us set

where for simplicity we have chosen t =0. Equa-
tion (3.9) becomes then

If (0)I Il —G(z}[D($)/D(0)]zI ~/z & IzI ~/zkf

(3.13}
where M is given by Eq. (2.25). We remark that
this equation reduces to Eq. (2.24) when we set
z =-1. Now, choose g to be the soft-pion point
(=5 = ng~2- &pe, 2, so that the corresponding value
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of z is given by

p, —1 t -6'/
(3.14)

Using the soft-pion theorem Eq. (1.7) together with

Eq. (2.26) gives a lower bound for f, (0) indistin-
guishable from that given by Eq. (2.27),

a(0) =V = —'m„ f„ (4 2)

the GMORGW model, the value of A(0} is usually
found' to be less than the maximal value Eq. (4.1).
This is understandable for the following reason.
Independent of any specific Hamiltonian, we expect
to have

f,(0) ~ 0.31 . (3.15)
if we use & dominance to evaluate V«. Hence,
assuming m, =1100MeV and f„=0.3 f„, we obtain

Next, let us consider the first-order-derivative
equation [ (0)]'/ =1.70,/ (4.3)

z2 2~ 1
If(z) —H(0) —zff'(0) = — de, , a(e") .

1T o e —2

(3.16)

Then, using the same technique with t=0, we ob-
tain

which is certainly smaller than our maximal value
in Eq. (4.1). Hence, the approximate saturation of
our inequality for N=1 will still be plausible in
any model. If we believe this, then Eq. (2.3) im-
plies h„(0) =—0 for n~ 2. As we shall prove in the
Appendix, this is possible only if D(g) has the form

(f+(0)l G(z) 0
—1+&»f0

0
—zG'(0) ~ (z)JIf .D(() ' D (0)

(3.17)

Using the soft-pion theorem and setting f,(0) =0.9
leads to

- Z/2
&(t')=( b N& *) '(l3, +

y

where a and b are constants and

z/2
g ] z/2

(4 4)

(4 5)

0.005 ~ m, 'D'(0)/D(0) ~0.019

or, equivalently,

(3.18) At $ = to or z = -1, Eq. (4.4) tells us that D($) will
be divergent. Since this is unlikely, w'e set b = a,
therefore, D($) is given by

0.062 & )+12.3A., ~0.234 (3.19)

which improves considerably the bound of Sec. II.
This condition is barely satisfied at the lower
bound by the present experimental data.

A(0) =(m f» —m, f„)/n ~ (4 1)

If this is really the case, then it follows' from the
derivation of the inequality Eq. (2.19) that the pa-
rameter of Ref. 10 satisfies a =b. This is rather
unwelcome since on physical grounds we expect to
have a=-1 and b=0. However, in view of the
present experimental uncertainty, this conjecture
is perhaps premature. How'ever, without assum-
ing any specific form for the Hamiltonian, such as

IV. CONCLUDING REMARKS

As we have seen in the previous sections, our
inequality is stringent enough to test the chiral
SW(3) model. In particular, the estimate [A(0)] '~'
=1.01m, f, may be in conflict with experiment.
A similar remark is also applicable to the combi-
nation of the maximal estimate Eq. (2.20) and the
soft-pion theorem. At any rate, our sum rule
Eq. (2.22} appears to be already nearly saturated
with N=1. If this is so, then it implies first that
just p-K intermediate states are enough to domin-
ate the spectral weight function p(t) of A(q'). Sec-
ond, the value of a(0) must be near the maximal
value

D(0= 1, (' ) (4.6)

This reproduces Eq. (1.10) of the Introduction.
D($), as given in Eq. (4.6), has the right analytic
property with respect to $. Also, it follows that

D(5)/D(Q) = 1.11 (4.7)

D'(o) = .'((f If.) - (f./f )]+0(~')—, (4.9)

where e is the SW(3}-violating parameter. Hence,
Eq. (4.8) will give an approximate expression for
D(t) provided that our estimate Eq. (4.8) turns out
to be experimentally correct.
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at the soft-pion point. This is smaller by 15%,
compared to the value 1.28 given by the exact soft-
pion theorem Eq. (1.7). Similarly, we find

I,'D'(0)/D(0) = m„'(4t, )-'(I+ P,)
' =0.0063 .

(4.8)
This value is consistent with Eq. (3.1&). Also, it
is amusing to see that it gives a value similar to
that of the Dashen-Weinstein relation"
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APPENDIX

1
(g,f) = — d8 g*(e")f(e") .

2% p

(Al)

Here, we shall prove many relations used in the
text. Although Eqs. (2.1)-(2.11) are more or less
given in (I), we shall briefly sketch the proof in
order to make this paper as self-contained as pos-
sible. Besides, in the course of the proof, we

shall discover several other useful relations to be
used in some other proofs.

Let f(z) and g(z) be analytic functions inside the
unit circle lz l

&1 such that they have finite bound-

ary values almost everywhere on the boundary.
We shall define an inner product (g,f) by

( 2' efe+Z
rp(*) =exp —' de, 1 (e})

4m~ 0
e"-z (Alp)

I C (e")I' = (e(8) (Al 1)

almost everywhere on the unit circle. Further,
when we set

f(z) = C) (z)E(z),

then Eq. (All) implies

2'I' =— d8 (e(8)l F(e")l' .
0

Also, Eq. (AV) becomes

(A12)

(A13)

is known" to belong to H' with the boundary-value
condition

All such analytic functions f (z) with the finite
norm (f,f)'i' are known'9" to form a Hilbert
space denoted conventionally by H'. Notice that
the polynomials

n 1 2
I2 g g p(~ —I) (0)E(m) (p)„...m!(n-m}!

(A14)

g„(z) = z" (n = 0, 1, 2, . . . } (A2)

form an orthonormal set in this space since we
have by an elementary calculation

Before going into details, it is convenient to de-
fine the parameters A. and bn by

&=(9(0}l '

(g„,g ) = 5„(n,m = 0, 1, 2, . . . ) . (AS)

Moreover, the set composed of all polynomials
g„(z) is complete"" in the H' space. Hence, any
function f(z}belonging to H' can be expanded in
terms of g„'.

2
b =— d8e "' Inn)(8)'n y

0

then we can show

b, = 2 ln(() (0),

(A15)

f = Q a„g„, a„=(g„,f ) .
n=0

Then, the standard Parseval equality gives us

(A4)

(A5)

b„=— lny z

so that, for example,

q '(o) = b,q (o),

(n ) 1) (A16)

If follows easily from the Cauchy formula that

(g. ,f ) = (I/n! )f'"'(o) . (A6)

Therefore, Eq. (A5) can now be rewritten as

q "(0)= (2b. + b,')q (o),

(() "'(0) = [6(b, + b,b, ) + b, '] ()((0) .

(A17)

co 2

I 2 Q f(tl)(0)
p Pg

where we have set

(A7)

Now, let D(() be a real analytic function in the
complex ] plane with a cut on the real axis t, c (

Then, we define the conformal transforma-
tion

2 7l'

i'=(f, f)= d8lf(e")l' —.
2W 0

(A6)
((- I }'"=(I —I)"' (A16)

In particular, this gives the Bessel inequality
N 2

I2 )g f(n)(0) (A9)
pg f

n=p

for any non-negative integer N.
Now, let M (8} (0 & 8 & 2v) be a non-negative func-

tion defined on the unit circle such that both g()(8)
and In(u(8) are summable on the circle. Then, the
function defined by &(z) =-D(5) . (A19)

where t is a real fixed value satisfying t(tp. By
this mapping, the whole cut g plane is mapped in-
side the unit circle lzl &1. In addition, upper and
lower cuts at t, & g & ~ are mapped into the lower
and upper semicircle lzl= 1, respectively, and
the three points g =~, t„and t are transformed
into z=2, -2, and 0, respectively. In terms of
our mapping, we shall set
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Then, if we define (on the cut)

(A20)

9)(z) = [4C(t, —t)] '/'(1+ z)'/'(1 —z) '/'

ft 1+z ~i
X II (t.-t}"'"p, +

f=l 1-z (A26}

g —t, = (t, —t) cot'(-,' e),
we find

1I2 =-
l dg k(t)~ D(g) ~2

if we utilize the reality condition

(A21)

(A22)

The validity of Eq. (All) can be easily checked.
This formula gives (l ~ 1)

A=[4C(t, —t)] '" g(t, —t)- "(1+p,)-
j=l

(A29)

b, =— —,'[3 —(-1)']+Q a,. 1 —(- 1}'
l

~
~ J 1+p

Moreover, we note

F(0) =D(t),

F (O) = 4(t,-t)D—'(t),

E"(0)= 16(t —tPD "(t)—16(t —t)D'(t), (A23)

&"'(0)= -64(t —t)'D"'(t)

+ 192(t, —t}'D"(t}- 72(t, —t)D'(t) ~

The relations Eqs. (A14), (A16), (A21), and (A23),
reproduce Eq. (2.1), (2.3), (2.4), and (2.7).

Now, suppose that k(t') has the form

k(0 =c ff (t - t,)"' (t, - t.) .
f=1

Then Eq. (A20) leads to

Inw(8) =ln[4C(t —t }]+I ]nI+(z-31n~l —z(

(A24)

t()n(t, —t) ~ )nl( —(t/( —e ) l) —zl
/=1

1+Bi 1- pg+ln1+ ''z+ln1+ "'z
1-P~

I
1+p~

(A25)

where we have set

Z =859

p, =(t, t )"(t, —t) '". —
(A26)

We can evaluate the explicit form of q&(z} by means
of the Jensen-Poisson integral formula. Suppose
that G(z) is analytic inside the closed unit circle
)z~ c 1. Then, it has the representation2'

n(z) =z(n ),*)enn(& j ze „+*)nlo( ')I),

(A27)

where a is a constant with unit modulus (i.e., [a(
= 1) and the X„are the zero points of g(z) inside
the open circle )z~ &1. By means of this formula
and Eqs. (Alo} and (A25), we can show that tp(z)
is given by

as in Eqs. (2.9). For the K» problem, k(() has
the form Eq. (2.12). Then we calculate

1/)(z) = (3/162)'/'(I+ z)(l —z) '
1+z 1+z

p
—(t t }1/2 (t t)-1/2

p
—t 1/2(t t)-1/2

where t, and t, are now given by Eq. (1.11).
When we set t=o, then g(z), given by Eqs. (3.3)

and (3.8), is related to our tt)(z) by

(A30)

g(z) = (1-z*)[e (z)]* . (A31)

This immediately reproduces Eq. (3.11).
From our derivation, it is clear that our equal-

ity is the best one unless other information on

D($) is explicitly given as in Sec. Ill.
Also, if we have f("~(0)—= 0 (n~ &+ I), then f(z)

must be a polynomial in z of the order N'. Hence,
if our sum rule is already saturated for N= 1 as
we suggested in Sec. IV, then we must have f(z)
=a+bz, where g and b are constants. Then, we
must have

D(() =F(z) = (a+ bz)/(t)(z), (A32)

F(z) =(1-z) (1+2}2S'(z),

w(8) =g sin2'8[2 (2cos'28(2 2v(8)
(A33)

for some real non-negative constants e and p.
Then 27)(8) may become summable for some
choices of a and p. If we notice

1
de e(e)i P(z)(',

217 Q

(A34)

then we can use 27)(e) and E(8) instead of 21)(8) and
E(z). Then, after the final calculation, we vary

and this reproduces Eq. (4.6) for t =0
Finally, in the above derivation we have assumed

that both 2v(e) and In2()(e) are summable. In some
applications, 20(8) may have singularities at 8=0
and 8= g so that it may not be summable. In such
cases, let us set
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a and p over their allowable values so as to mini-
mize the desired inequality. In our E» problem,
it is sufficient to choose p =0 and n &0 from the
beginning. Then, after the final calculation, me

let z -0. This does not affect' the final expression

at all and hence, me can ignore this complication
from the beginning. In general, the summability
condition for w(8} can be dispensed with by a sim-
ilar limiting procedure as long as 1nw(8} is sum-
m able.
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