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In a previous paper we have shown that all minimum-uncertainty packets are unitarily equiv-
alent to the coherent states and that coherence may be viewed as stationary minimality. In
this note we give some additional information relating to the nature of the unitary-equivalence
structure. We also give a new calculation of some matrix elements of the operator that imple-
ments the unitary equivalence which is not subject to the shortcoming inherent in the original
calculation.

In a recent paper' we pointed out that there is an

equivalence-class structure to the totality of min-
imum-uncertainty packets. We demonstrated that
any minimum-uncertainty packet (m.u.p. ) can be
written in the form U„l n), where I n) is a coherent
state and U„ is a special case of the unitary opera-
tor U, =expl —,'(zaa —e*a a )] which occurs when e
is real and equal to r. We also pointed out that of
all the m. u.p. 's only the coherent states (x=0) re-
main minimal under the influence of the free-field
Hamiltonian and hence one may identify the coher-
ent states as those which possess stationary mini-
mality.

We have written this addendum to present some
additional information and to remedy an incomplete
calculation of the matrix elements of U, in the co-
herent-state basis. In Eqs. (15) and (15') (see Ref.
1) there should be a multiplicative factor of
(cosh@) ' on the right-hand sides. The method
that we used in Ref. 1 to get Eqs. (15) and (15') per-
mitted us to determine the matrix elements of U,
only up to a multiplicative function of r. We will
now present a different calculation of (n I U, l P&

which does not have the above-mentioned difficulty.
It is sufficient, as we shall see later, to take z to
be real, say z =r. It is also convenient to express
U„ in terms of position and momentum variables x
and P. Then we have

&n I U, I ~& =&nl e'"""'""'I
u&

=e"~'&n
I
e'""'I

p&

The matrix element in (1) may be evaluated direct-

ly by extending a result due to Haag' as follows:

(O. I~'"'I &» f««(~ I
=*&&~l ~ 'I » &&I &&&" (2)

where C„and S„are coshr and sinhr, respectively.
Equation (5) contains the factor C, '~' which is
missing in Eq. (15) of Ref. 1. We can gain the re-
sult for complex z as well by noting the following
useful fact: If we define the unitary operator
Vs = exp( —,'i/a a), then we can quite easily show that

U, = VgU„Vg, (6)

where z =re'~.

where
I x& and

I y& are position eigenstates. It is
easily seen that the second matrix element in the
above integral is simply 5(xe" —y). Using this re-
sult to do the y integration in (2), we have

(~I UI&» "' f«,&=~ I
~&*(*~ I&»'

In the notation of Ref. 1 we have

&n I x& = (z'/v)'~'. exp(-,'x'x'+
&I 2 xn*x ——,

'
I
n I' ——,'n*').

(4)

Using this result, and a similar one for x-xe" in
(3), we get a simple Gaussian integral which yields

&nl U, IP& =C, '~'e p
I
nl' IPI'
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Since V&~ P) =
~

Pe' ~~'), the effect of V& in Eq. (5)
would be to multiply P by e'@ ' and multiply a by
e '~~'. This would then yield the result of Eq. (15)
in Ref. 1 with the additional factor of C„' '. Equa-
tion (6) is quite useful when dealing with the general
(nonminimal) states

~
z; o) =U,

~ n), as we have just
seen.

The presence of the factor C„' ' has an impor-
tant effect, namely, it results in (0~ U,

~
0) going

to zero as r goes to infinity. Hence in the limit
x-~ we get an inequivalent representation.

By an inequivalent representation of the canoni-
cal commutation relation [a, a j = 1 we mean a pair
of operators b, b which satisfies the relation
[5, b t j = 1 and is related to the pair a, at by means
of b =SaS~ and b =Sa~S~. The operator S has the
property that it maps the space in which a and a~

act into a space which is orthogonal to it. This
means that any vector in the domain of a is orthog-
onal to any vector in the domain of b. Since the
transformation S does preserve the commutation
relation it is sometimes called an improper unitary
transformation and the representation b, b~ an im-
properly equivalent representation.

In Ref. 1 we treat r as a positive number, i.e.,
the modulus of z. The minimal states are then
seen to be a special case of the states

~
z; o) = U,

~
n)

for which z is real. This is quite true and in order
to get all of the minimal states this way we simply
take the lao values of P which make z real, name-
ly, (It) =0, w. When dealing with the general state

~ z; o) this is a very convenient parametrization.
For the case of the minimal states it is perhaps
more convenient to simply consider r as a real
number which can be of either sign. In Ref. 1 this

point was not stressed and we mention it here to
prevent any possible ambiguity from arising.

It is interesting to consider the transformation
induced by U„ in terms of position and momentum.
The operator U„ is given by

eir bp+px) j2
r

A simple calculation then reveals that

U„ xU„ =xe',

U„pU„~ =pe ", (8)

where now x is any real number. So U„ is just a
scale transformation of x and p by reciprocal scale
factors. This might have been expected since if
one starts out with a minimal state the only changes
one can make and still retain minimality are trans-
lations in position and momentum and reciprocal
scale changes. The translations only involve
changing the value of o. in

~
r; o.) and the scale

changes, as we have just seen, are generated by
U„.

The minimum-uncertainty states have an old and
large literature. The first occurrence of them
seems to be in a paper by Schrodinger' in 1926.
A number of their properties may be found in a
wide range of papers, some of which are given be-
low. An interesting paper on states which mini-
mize the uncertainty product of operators other
than position and momentum has been written by
Jackiw. ' The equivalence-class structure and the
unitary equivalence to the coherent states as well
as the stated connection with coherence was first
pointed out in Ref. 1.
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